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Imagine a persistence diagram. In the persistence diagram, homological features whose lifetimes (the difference
between death and birth) are short are informally considered to be “noise”, since corresponding holes will be soon
filled out right after they are born. Those features corresponds to points in a persistence diagram lying close to
the diagonal. Meanwhile, homological features whose lifetimes are long are considered to be “signal”; those features
corresponds to points in a persistence diagram lying far from the diagonal. To statistically separate the noise from
the signal and provide statistical interpretation, we use the confidence set (or confidence band). See Figure .

We first recall the confidence set:
Suppose we have a statistical model (i.e. a collection of distributions) P. Let Cn(X1, . . . , Xn) be a set constructed

using the observed data X1, . . . , Xn. This is a random set. Cn is a 1− α confidence set for a parameter θ if:

P (θ ∈ Cn(X1, . . . , Xn)) ≥ 1− α.

And an asymptotic 1− α confidence set for a parameter θ if

lim inf
n→∞

P (θ ∈ Cn(X1, . . . , Xn)) ≥ 1− α. (1)

This means that no matter which distribution in P generated the data, the set guarantees the coverage property
described above.

How should Cn(X1, . . . , Xn) be like? A typical way to build the confidence set is to use a ball centered at
your estimator: Let θ̂ = θ̂(X1, . . . , Xn) denote an estimator for θ, which is a function of a sample, and let δn =
δn(X1, . . . , Xn) > 0. Sometimes δn is computed using bootstrap samples X∗

1 , . . . , X
∗
n as well. Then set

Cn(X1, . . . , Xn) = Bd(θ̂, δn),

where Bd(θ̂, δn) =
{
θ : d(θ, θ̂) ≤ δn

}
is the closed ball centered at θ̂ and radius δn. Then the above coverage condition

becomes
lim inf
n→∞

P
(
θ ∈ Bd(θ̂, δn)

)
≥ 1− α, (2)

and this is equivalent to
lim inf
n→∞

P
(
d(θ̂, θ) ≤ δn

)
≥ 1− α. (3)

In (3), δn is a random variable that upper bounds d(θ̂, θ) with probability (asymptotically) 1 − α, and called
confidence band.

Let X ⊂ Rd be the target geometric structure, and P be a distribution on Rd with supp(P ) = X. Let X1, . . . , Xn

be i.i.d. samples from P and X = {X1, . . . , Xn}. For the confidence set of persistent homology, the distance is the
bottleneck distance dB , and θ(P ) and θ̂(X ) should be appropriate persistent homologies (or persistence diagrams)
of P and X , denoted as D(P ) and D(X ), respectively. Also see Figure . Then (2) and (3) become

lim inf
n→∞

P
(
D(P ) ∈ BdB

(D(X ), δn)
)
≥ 1− α, (4)

where BdB
(D(X ), δn) = {D : dB(D,D(X )) ≤ δn}, and

lim inf
n→∞

P (d(D(X ),D(P )) ≤ δn) ≥ 1− α. (5)

We consider two cases:
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Figure 1: We use the confidence set / band to statistically separate the noise from the signals. In the persistence
diagram (right), points above the pink band are topological signals, while points inside the pink band are noise.
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Figure 2: We use the confidence set / band to statistically separate the noise from the signals. In the persistence
diagram (right), points above the pink band are topological signals, while points inside the pink band are noise.
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1. Persistent homologies from Čech complexes and Vietoris-Rips complexes. Let DCRd(X) and DCRd(X ) be the k-
th dimensional persistence diagrams induced from Čech complexes

{
HkČechRd(X, r)

}
r∈R and

{
HkČechRd(X , r)

}
r∈R,

respectively. Similarly, let DR(X) and DR(X ) be the k-th dimensional persistence diagrams induced from
Vietoris-Rips complexes {HkRips(X, r)}r∈R and {HkRips(X , r)}r∈R, respectively. We would like to find δn such
that lim infn→∞ P (dB (DCRd(X ),DCRd(X)) < δn) ≥ 1 − α and lim infn→∞ P (dB (DR(X ),DR(X)) < δn) ≥
1− α.

2. Persistent homologies from the superlevel filtration of kernel density estimator (KDE). Consider the super-
level filtration

{
p̂−1
h [λ,∞)

}
λ∈R, then the persistent homology consists of morphisms ıλ1,λ2

k : Hkp̂
−1
h [λ1,∞) →

Hkp̂
−1
h [λ2,∞) for λ1 ≥ λ2 induced from inclusions p̂−1

h [λ1,∞) ⊂ p̂−1
h [λ2,∞). Let D(p̂h),D(ph),D(p) be the k-

th dimensional persistence diagrams induced from p̂h, ph, p, respectively, where ph = E [p̂h] and p is the density
of P . We would like to know either lim infn→∞ P (dB (D(p̂h),D(ph)) < δn) ≥ 1−α or lim infn→∞ P (dB (D(p̂h),D(p)) < δn) ≥
1− α.

Confidence set of persistent homologies from Čech complexes and Vietoris-Rips com-
plexes
Assume X is compact. Recall the stability theorem for Čech complexes and Vietoris-Rips complexes:

Corollary. For a compact set X ⊂ Rd and X ⊂ X,

dB(DCRd(X),DCRd(X )) ≤ dH(X,X ).

dB(DR(X),DR(X )) ≤ dH(X,X ).

Hence bounding the bottleneck distance between persistent homologies from Čech complexes and Vietoris-Rips
complexes can be sufficed by bounding Hausdorff distance. In other words, it suffices to find δn > 0 such that

lim inf
n→∞

P (dH(X,X ) ≤ δn) ≥ 1− α.

For a distribution P , we assume (a, b) assumption:

Definition. P satisfies (a, b) assumption if there exists r0 > 0 such that for all x ∈ supp(P ) and for all r < r0,

P (B(x, r)) ≥ arb.

Recall that under (a, b) assumption, we have probabilistic bound on the Hausdorff distance between X and X :

Method I: Subsampling.

Subsampling can be used to construct estimators of the quantiles of the distribution that behave well uniformly
over a large class of distributions. The usual approach to subsampling is based on the assumption that we have an
estimator θ̂ of a parameter θ such that f(n)(θ̂ − θ) converges in distribution to some fixed distribution J for some
ξ > 0. Unfortunately, our problem is not of this form. Nonetheless, we can still use subsampling as long as we are
willing to have conservative confidence intervals.

I first explain the usual approach for subsampling for estimating quantiles of the distribution of f(n)(θ̂ − θ).
Denote by Jn(x, P ) the distribution of f(n)(θ̂ − θ) at x, i.e., Jn(x, P ) = P

(
f(n)(θ̂ − θ) ≤ x

)
. In order to describe

the subsampling approach to approximate Jn(x, P ), let b = bn < n be a sequence of positive integers tending to

infinity, but satisfying b/n → 0, and define Nn =

(
n
b

)
. For i = 1, . . . , Nn, denote by X i

n,b the ith subset of data

of size b. We consider a feasible subsampling-based estimator of the distribution of f(n)(θ̂ − θ) as

L̂n(x) =
1

Nn

Nn∑
i=1

I
(
f(n)(θ̂(X i

n,b)− θ̂(X )) ≤ x
)
.

Theorem ([13, Theorem 2.1, Corollary 2.1]). Let b = bn < n be a sequence of positive integers tending to infinity,
but satisfying b/n → 0. then under the conditions that L̂n(x) converges to Jn(x, P ) uniformly over x ∈ Rand P ∈ P,
then

lim inf
n→∞

inf
P∈P

P
{
L̂−1
n (α1) ≤ f(n)(θ̂ − θ) ≤ L̂−1

n (1− α2)
}
≥ 1− α1 − α2,

for any α1, α2 ≥ 0 with 0 ≤ α1 + α2 < 1.
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For our case, we want to estimate the quantiles of the distributions dH(X,X ). We consider a subsampling
estimator of the distribution of dH(X,X ) as

L̂n(x) =
1

Nn

Nn∑
i=1

I
(
dH(X ,X i

n,b) ≤ x
)
,

and let cb = 2L̂−1
n (1− α).

Theorem ([13, Theorem 2.1, Corollary 2.1]). Let P be a distribution on Rd with supp(P ) = X, and assume P
satisfies (a, k) assumption with a, k > 0. Let X1, . . . , Xn be i.i.d. samples from P , and let X = {X1, . . . , Xn}. Let

b = o
(

n
logn

)
be a sequence of positive integers, and define Nn =

(
n
b

)
. For i = 1, . . . , Nn, denote by X i

n,b the ith

subset of data of size b. Then,

P (dB(DCRd(X),DCRd(X )) ≤ cb) , P (dB(DR(X),DR(X )) ≤ cb)

≥ P (dH(X,X ) ≤ cb) ≥ 1− α+O

(
(
b

n
)1/4

)
.

Method II: Concentration of measure.

Recall the probabilistic bound of Hausdorff distance dH(X,X ):

Proposition ([11, Proposition 7.2][3, Theorem 2]). Let P be a distribution on Rd with supp(P ) = X, and assume
P satisfies (a, b) assumption with a, b > 0. Let X1, . . . , Xn be i.i.d. samples from P , and let X = {X1, . . . , Xn}.
Then there exists t0 > 0 such that for all t < t0,

P (dH(X,X ) < t) ≥ 1− a−1t−b exp(−natb). (6)

We just solve (6) numerically. Let tn(α) < t0 be the solution to the equation

a−1t−b exp(−natb) = α,

then
P (dH(X,X ) < tn(α)) ≥ 1− α.

For making a confidence set based on this, we need to know a and b. b can be estimated as well, but we regard b as
given. For e.g., b can be the dimension of the manifold X. Let rn be a positive small number, and then we consider
the plug-in estimator of a,

ân = min
i

r−b
n

1

n

n∑
j=1

I (Xj ∈ B(Xi, rn/2))

 .

Then if rnvanishes at an appropriate rate as n → ∞, ân is a consistent estimator of a.

Proposition ([4, Theorem 5]). Let P be a distribution on Rd satisfying that for all x ∈ supp(P ) and for all r < r0,

arb ≤ P (B(x, r)) ≤ a′rb.

Let X1, . . . , Xn be i.i.d. samples from P , and rn ≍
(

logn
n

)1/(b+2)

. Then

ân − a = OP (rn).

We now use ân to estimate tn(α) as follows. Assume that n is even, and split the data randomly into two halves,
X = X1 ⊔ X2. Let ân be the plug-in estimator of a computed from X1, and define t̂1,n to solve the equation

â−1
n t−b exp(−nânt

b) = α. (7)
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Theorem ([4, Theorem 5]). Let DCRd(X2) and be DR(X2) the k-th dimensional persistence diagrams induced from
Čech complexes or Vietoris-Rips complexes, respectively, with the second halves X2. Then,

P
(
dB(DCRd(X),DCRd(X2)) ≤ t̂1,n

)
, P
(
dB(DR(X),DR(X2)) ≤ t̂1,n

)
≥ P

(
dH(X,X ) ≤ t̂1,n

)
≥ 1− α+O

(
(
log n

n
)1/(2+b)

)
.

In practice, [4] has found that solving (7) for t̂n without splitting the data also works well although they do not
have a formal proof. Another way to define t̂n which is simpler but more conservative, is to define

t̂n =

(
2

nân
log
(n
α

))1/b

.

Then t̂n = un (1 +O(ân − a)) where un =
(

a
nân

log
(
n
α

))1/b
, and so

P
(
dH(X,X ) ≤ t̂n

)
= P (dH(X,X ) ≤ un) +O

(
(
log n

n
)1/(2+b)

)
≥ 1− α+O

(
(
log n

n
)1/(2+b)

)
.

Confidence set of persistent homologies from kernel density estimators
Recall that a kernel function K : Rd → R is a function satisfying

∫
K(x)dx = 1.Given a kernel K and a bandwidth

h, the kernel density estimator (KDE) is defined to be

p̂(x) =
1

n

n∑
i=1

1

hd
K

(
x−Xi

h

)
.

Then the average KDE ph : Rd → R is

ph(x) =
1

hd
EP

[
K

(
x−X

h

)]
.

Recall the stability theorem for the persistent homology induced from functions:

Corollary. For two functions f, g : X → R, if P(f) and P(g) are q-tame, then

dB(P(f),P(g)) ≤ ∥f − g∥∞ .

Hence bounding the bottleneck distance between persistent homologies of p̂h and ph can be sufficed by bounding
their infinity distances ∥p̂h − ph∥∞ . In other words, it suffices to find δn > 0 such that

lim inf
n→∞

P (∥p̂h − ph∥∞ ≤ δn) ≥ 1− α.

For topological data analysis, we often fix h: when the goal is to correctly estimate the density p, it is necessary
to have h → 0. However, when the goal is to estimate “topological information” of the distribution P , topological
information carried by ph is often equivalent to p. For example, suppose the support of the kernel K is supp(K) =

B(0, 1). Then when supp(p) = X, then supp(ph) = Xh = {x ∈ Rd : d(x,X) ≤ h}, (closed) h-offset of X. And we
have already seen that Xh and X are homotopy equivalent under suitable conditions. Further, P might not have
the density p but ph always exists, and then p̂h → ∞ if h → 0 but p̂h → ph if h is fixed. Also, the p̂h’s convergence
to ph is ≍

√
1

nhd (when density p exists) while to p is ≍ h2β +
√

1
nhd for some constant β > 0, so the convergence

to ph is much faster if we fix h. See [4, Section 4.4] for more discussions.
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Finite sample band

Lemma ([4, Lemma 9]). Let P be a distribution on Rd with supp(P ) = X, with X ⊂ [−C,C]d. Let X1, . . . , Xn

be i.i.d. samples from P . Assume that supx K(x) = K(0) and that K is L-Lipschitz, that is, |K(x)−K(y)| ≤
L ∥x− y∥2. Then

P (∥p̂h − ph∥∞ > δ) ≤ 2

(
4CL

√
d

δhd+1

)d

exp

(
− nδ2h2d

2K2(0)

)
.

The proof of the above lemma uses Hoeffding’s inequality. A sharper result can be obtained by using Bernstein’s
inequality; however, this introduces extra constants that need to be estimated.

We can use the above lemma to approximate the persistence diagram for ph, denoted by D(ph), with the diagram
for p̂h, denoted by D(p̂h):

Corollary ([4, Corollary 10]). Let δn solve(
4CL

√
d

δnhd+1

)d

exp

(
−nδ2nh

2d

2K2(0)

)
= α.

Then
P (dB(D(ph),D(p̂h)) ≤ δn) ≥ P (∥p̂h − ph∥∞ ≤ δn) ≥ 1− α.

Asymptotic bootstrap confidence band

A tighter—albeit only asymptotic—bound can be obtained using large sample theory. The simplest approach is the
bootstrap.

First, recall the pivotal bootstrap confidence interval:
et θ = T (P ) and θ̂n = T (Pn) and define the pivot Rn = θ̂n − θ. Let θ̂∗n,1, . . . , θ̂

∗
n,B denote bootstrap replications

of θ̂n. Let H(r) denote the cdf of the pivot:

H(r) = P(Rn ≤ r).

Define
C∗

n =
(
θ̂n −H−1

(
1− α

2

)
, θ̂n −H−1

(α
2

))
.

Then
P (θ ∈ C∗

n) = 1− α.

Hence, C∗
n is an exact 1 − α confidence interval for θ. Unfortunately, computing C∗

n depends on the unknown
distribution H but we can form a bootstrap estimate of H:

Ĥ(r) =
1

B

B∑
b=1

I(R∗
n,b ≤ r),

where R∗
n,b = θ̂∗n,b− θ̂n. Let r∗β denote the β sample quantile of (R∗

n,1, . . . , R
∗
n,B). It follows that the 1−α bootstrap

confidence interval is
Cn =

(
θ̂n − r∗1−α/2, θ̂n − r∗α/2

)
.

For our case, θ = ph and θ̂ = p̂h. Let X∗
1 , . . . , X

∗
n be a sample from the empirical distribution Pn. Then

θ̂∗n = p̂∗h, the kernel density estimator constructed from X∗
1 , . . . , X

∗
n . We use the pivot as

√
nhd ∥p̂h − ph∥∞ instead

of ∥p̂h − ph∥∞, due to the reason which will be clarified later. Let H(r) denote the cdf of the pivot:

H(r) = P
(√

nhd ∥p̂h − ph∥∞ ≤ r
)
.

And then we let

C∗
n =

(
p̂h − H−1 (1− α)√

nhd
, p̂h +

H−1 (1− α)√
nhd

)
,

where f ∈ (g, h) is understood as g(x) ≤ f(x) ≤ h(x) for all x ∈ Rd. Then p ∈ C∗
n if and only if

√
nhd ∥p̂h − ph∥∞ ≤

H−1 (1− α), so
P (ph ∈ C∗

n) = 1− α.
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As above, we form a bootstrap estimate of H:

Ĥ(r) =
1

B

B∑
b=1

I
(√

nhd
∥∥∥p̂(b)h − p̂h

∥∥∥
∞

≤ r
)
,

where p̂∗h,b is the kernel density estimator computed from the b-th bootstrap sample X
(b)
1 , . . . , X

(b)
n . And let

Zα := Ĥ−1 (1− α) = inf

{
r :

1

B

B∑
b=1

I
(√

nhd
∥∥∥p̂(b)h − p̂h

∥∥∥
∞

≤ r
)
≥ 1− α

}
.

Then the 1− α bootstrap confidence interval is

Cn =

(
p̂h − Zα√

nhd
, p̂h +

Zα√
nhd

)
.

Theorem ([4, Theorem 12]). As n → ∞ and B sufficiently large with respect to n,

P

(
dB(D(ph),D(p̂h)) ≤

Zα√
nhd

)
≥ P

(√
nhd ∥p̂h − ph∥∞ ≤ Zα√

nhd

)
= 1− α+O

(√
1

n

)
.

The algorithm for computing the confidence set Cn can be summarized as below:

1. Given a sample X = {X1, . . . , Xn}, compute the kernel density estimator p̂h.

2. Draw X∗ = {X∗
1 , . . . , X

∗
n} from X = {X1, . . . , Xn} (with replacement), and compute θ∗ =

√
nhd ∥p̂∗h − p̂h∥∞,

where p̂∗h is the density estimator computed using X∗.

3. Repeat the previous step B times to obtain θ∗1 , . . . , θ
∗
B .

4. Compute Zα = inf
{
r : 1

B

∑B
j=1 I(θ

∗
j ≤ r) ≥ 1− α

}
.

5. The (1− α) confidence band for ph is
[
p̂h − Zα√

nhd
, p̂h + Zα√

nhd

]
.

Remark. We have emphasized fixed h asymptotics since, for topological inference, it is not necessary to let h → 0
as n → ∞. However, it is possible to let h → 0 if one wants. Suppose h ≡ hn and h → 0 as n → ∞. We require that
nhd/ log n → ∞ as n → ∞. As before, let Zα be the bootstrap quantile. It follows from [10, Theorem 3.4] that

P

(
dB(D(ph),D(p̂h)) ≤

Zα√
nhd

)
≥ P

(√
nhd ∥p̂h − ph∥∞ ≤ Zα√

nhd

)
= 1− α+O

((
log n

nhd

)(4+d)/(4+2d)
)
.

Bottleneck bootstrap

The previous bootstrap confidence band is by bootstrapping on the distance ∥p̂h − ph∥∞ and by using the stability
theorem. However, more precise inferences can be obtained by directly bootstrapping the persistence diagram. Let
t̂α be

t̂α = inf

{
r :

1

B

B∑
b=1

I
(√

ndB(D(p̂
(b)
h ),D(p̂h)) ≤ r

)
≥ 1− α

}
.

Theorem ([1, Corollary 20]). Let P be a distribution on Rd with supp(P ) = X, and let X1, . . . , Xn be i.i.d. samples
from P . Suppose X is a compact manifold with boundary. Let K : Rd → R be a kernel function satisfying that
ph = E [p̂h] is Morse and has finitely many critical points. Then

P

(
dB(D(ph),D(p̂h)) ≤

t̂α√
n

)
= 1− α+O

(
log n√

n

)
.
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Bootstrap Empirical Process of kernel density estimators
Bootstrap empirical process can be used to find a confidence band for a function h(t); that is, we find a pair of
functions a(t) and b(t) such that the probability that h(t) ∈ [a(t), b(t)] for all t is at least 1− α. I refer the reader
to [2], Van der Vaart and Wellner [1996], and [9] for more details.

An empirical process is a stochastic process based on a random sample. Let X1, . . . , Xn be independent and
identically distributed random variables taking values in the measure space (X, P ). For a measurable function
f : X → R, we denote Pf =

∫
fdP and Pnf =

∫
fdPn = 1

n

∑n
i=1 f(Xi). By the law of large numbers Pnf converges

almost surely to Pf . Given a class F of measurable functions, we define the empirical process Gn indexed by F as

{Gnf}f∈F = {
√
n(Pnf − Pf)}f∈F .

ℓ∞(F) is the collection of all bounded functions ϕ : F → R, equipped with the sup norm. We say {Gnf}f∈F
converges in distribution (or converges weakly) to {Gf}f∈F in the space ℓ∞(F) if, for any bounded continuous
function H : ℓ∞(F) → R, EH({Gnf}f∈F ) → EH({Gf}f∈F ) holds.

Definition ([2, Definition 1.3][9, Section 2.1]). A class F of measurable functions f : X → R is called P -Donsker
if the process {Gnf}f∈F converges in distribution to a limit process in the space ℓ∞(F). The limit process is a
Gaussian process G with zero mean and covariance function E [GfGg] := Pfg − PfPg; this process is known as a
Brownian Bridge.

One sufficient condition for Donsker class is to assume bound on the covering number: a set C = {f1, . . . , fN} is
an ϵ-cover of F if, for every f ∈ F there exists a fj ∈ C such that ∥f − fj∥L2(Q) < ϵ, and the size of the smallest
ϵ-cover is called the covering numberand is denoted by Np(F , L2(Q), ϵ).

Theorem ([2, Lemma 2.3][9, Theorem 2.5]). Let F be an appropriately measurable class of measurable functions
with F satisfying f(x) ≤ F (x) for all f ∈ F with PF 2 < ∞. Suppose∫ 1

0

√
log sup

Q
N (F , L2(Q), ϵ ∥F∥Q,2)dϵ < ∞,

then F is P -Donsker.

Let P ∗
nf = 1

n

∑n
i=1 f(X

∗
i ) where {X∗

1 , . . . , X
∗
n} is a bootstrap sample from Pn. the measure that puts mass 1/n

on each element of the sample {X1, . . . , Xn}. The bootstrap empirical process G∗
n indexed by F is defined as

{G∗
nf}f∈F = {

√
n(P ∗

nf − Pnf)}f∈F .

Theorem ([2, Theorem 1.4][9, Theorem 2.6, Theorem 2.7]). F is P -Donsker if and only if Gn converges in distri-
bution to G in ℓ∞(F).

In words, above theorem states that F is P -Donsker if and only if the bootstrap empirical process converges in
distribution to the limit process G. Suppose we are interested in constructing a condence band of level 1 − α for
{Pf}f∈F , where F is P -Donsker. Let θ̂ = supf∈F |Gnf |. We proceed as follows:

1. Draw X∗
1 , . . . , X

∗
n ∼ Pn and compute θ̂∗ = supf∈F |G∗

nf |.

2. Repeat the previous step B times to obtain θ̂∗1 , . . . , θ̂
∗
B .

3. Compute Zα = inf
{
r : 1

B

∑B
j=1 I(θ̂

∗
j ≤ r) ≥ 1− α

}
.

4. For f ∈ F define the confidence band Cn(f) =
[
Pnf − Zα√

n
, Pnf + Zα√

n

]
.

Now we turn to the kernel density estimator. For fixed h > 0, let F = {Kx,h : x ∈ X} and F̃ =
{
K̃x,h : x ∈ X

}
, where

Kx,h, K̃x,h : Rd → R is Kx,h(·) = K
(
x−·
h

)
and K̃x,h = h−dKx,h. Then it follows that PK̃x,h = ph, PnK̃x,h = p̂h,

and θ̂ = supKx,h∈F

∣∣∣GnK̃x,h

∣∣∣ = √
n ∥p̂h − ph∥∞. Then, the validity of the bootstrap empirical process is sufficed by

whether F̃ , or equivalently F , is P -Donsker. One sufficient condition is that F is a uniformly bounded VC-class,
which is defined imposing appropriate bounds on the metric entropy of the function class [6, 14, 8]:
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Assumption. We assume F := {Kx,h : x ∈ X} is a uniformly bounded VC-class with dimension ν, i.e. there exists
positive numbers A and v such that, for every probability measure Q on Rd and for every ϵ ∈ (0, ∥K∥∞), the covering
numbers N (F , L2(Q), ϵ) satisfy

N (F , L2(Q), ϵ) ≤
(
A ∥K∥∞

ϵ

)ν

,

where the covering numbers is the minimal number of open balls of radius ϵ with respect to L2(Q) distance whose
centers are in F to cover F .

Note that Kx,h(x) ≤ ∥K∥∞, so this assumption implies∫ 1

0

√
log sup

Q
N (F , L2(Q), ϵ ∥F∥Q,2)dϵ ≤

∫ 1

0

√
ν log(A/ϵ)dϵ < ∞,

and this implies that F is P -Donsker.
One sufficient condition is to impose uniformly bounded VC class condition on a larger function class,

F(0,∞) = {Kx,h : x ∈ X, h > 0} .

This is implied by condition (K) in [7] or condition (K1) in [5], which are standard conditions to assume for the
uniform bound on the KDE. In particular, the condition is satisfied when K(x) = ϕ(p(x)), where p is a polynomial
and ϕ is a bounded real function of bounded variation as in [12], which covers commonly used kernels, such as
Gaussian, Epanechnikov, Uniform, etc.

However, this is not equivalent to having that

F̃(0,∞) =
{
h−dKx,h : x ∈ X, h > 0

}
is a uniformly bounded VC class. In fact, when we allow h to vary among (0,∞), then F̃(0,∞) is not P -Donsker
anymore.
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