Density Clustering
AR (Jisu KIM)
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The lecture note is largely based on Larry Wasserman’s lecture notes.

In a clustering problem we aim to find groups in the data. Unlike classification, the data are not labeled, and so
clustering is an example of unsupervised learning. The connection between clustering and topology is clearest if we
focus on density-based methods for clustering.

Example. Figures 1 and 2 show some synthetic examples where the clusters are meant to be intuitively clear. In
Figure 1 there are two blob-like clusters. Identifying clusters like this is easy. Figure 2 shows four clusters: a blob,
two rings and a half ring. Identifying clusters with unusual shapes like this is not quite as easy. In fact, finding
clusters of this type requires nonparametric methods.

Density-Based Clustering 1: Modes
Let p: R? = R be a density of X. Recall that a point € R? is a critical point of p if its gradient Vp is zero at z,
i.e., Vp(x) = 0. The Hessian H,(p) is the derivative of the gradient Vp at x.

Definition ([1, Definition 3.1]). p is a Morse function if its critical points are all non-degenerate, that is, the
determinant of the Hessian H, (p) is nonzero for all critical points z.

Assume that p has modes mq,...,my, and that p is a Morse function. For Morse function, m is a mode of p
if and only if Vp(m) = 0 and all eigenvalues of H,,(p) are negative. We can use the modes to define clusters as
follows.

Mode Clustering

Given any point 2 € R%, there is a unique gradient ascent path, or integral curve, passing through x that eventually
leads to one of the modes. We define the clusters to be the “basins of attraction” of the modes, the equivalence
classes of points whose ascent paths lead to the same mode.

Definition ([1, Definition 3.17]). An integral curve through z is a path 7, : R — R? such that m,(0) = z and

d

“ma(t) = Vp(m, (1), 1)

Integral curves never intersect (except at stationary points) and they partition the space. Equation (1) means
that the path 7 follows the direction of steepest ascent of p through =x.

Definition. The destination of the integral curve 7 through a (non-mode) point x is defined by

dest(z) = tli)rgo 7 (). (2)
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Figure 1: A synthetic example with two “blob-like” clusters.



Sesassase

° e
[
°

Figure 3: The left plot shows a function with four modes. The right plot shows the ascending manifolds (basins of
attraction) corresponding to the four modes.

It can then be shown that [1, Proposition 3.19] for all z, dest(z) = m; for some mode m;. That is: all integral
curves lead to modes.

Definition ([1, Definition 4.1]). For each mode m,, define the sets

Aj; = {x : dest(x) = mj}. (3)

These sets are known as the ascending manifolds, and also known as the cluster associated with m;, or the basin of
attraction of m;.

The A;’s partition the space. See Figure 3. The collection of ascending manifolds {A1, ..., Ay, } is called the
Morse complex.

Given data X1, ..., X, we construct an estimate p of the density. Let mq, ..., M be the estimated modes and
let Ay, ..., A be the corresponding ascending manifolds derived from p. The sample clusters C1, ..., C}, are defined
to be Cj = {Xl X, € .A]}

Recall that the kernel density estimator is

o) =) = 2 3 o (25) 0

where K is a smooth, symmetric kernel and h > 0 is the bandwidth.! The mean of the estimator is
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To locate the modes of pj, we use the mean shift algorithm [8, 9] which finds modes by approximating the
steepest ascent paths. Note that starting from a(?), the gradient ascent algorithm for pj, finds the next point as

a"Y = o™ £ AV, (al™) for some A > 0. (6)

In general, we can use a bandwidth matrix H in the estimator, with p(z) = pg(z) = % 1 Kg(x — X;) where Ky (x) =
|H|~% K(H % ).



Mean Shift Algorithm
1. Input: p(x) and a mesh of points A = {ay,...,an} (often taken to be the data points).

(0)

2. For each mesh point a;, set a; = a; and iterate the following equation until convergence:
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Let M be the unique values of the set {a§°°>, Ay

3. Output: M.

Figure 4: The Mean Shift Algorithm.
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Suppose we use KDE with G, i.e., pn(z) = —F2 > G (£532), and let g : R — R be satisfying G(z) = ¢ (
for all z € R, Then, py(a) = nhd g (H“ Xil; ) and the gradient becomes
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Hence if the kernel function K : R? — R satisfies g’ (||ac|| ) —cK (z) for some constant ¢ > 0, then
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and hence if we choose A = (ﬁ Y K (“*hXi ))_1 > 0, then the gradient ascent algorithm in (6) becomes
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The algorithm is given in Figure 4. The result of this process is the set of estimated modes M= {mi,...,my}. We
also get the clustering for free: the mean shift algorithm shows us what mode each point is attracted to. See Figure
5.

A modified version of the algorithm is the blurred mean-shift algorithm [2]. Here, we use the data as the mesh
and we replace the data with the mean-shifted data at each step. This converges very quickly but must be stopped
before everything converges to a single point; see Figures 6 and 7.

What we are doing is tracing out the gradient flow. The flow lines lead to the modes and they define the clusters.
In general, a flow is a map ¢ : R x R — R? such that ¢(z,0) = z and ¢(¢(x,t),s) = ¢(x, s +1). The latter is called
the semi-group property.

A — g _ | g




Figure 5: A simple example of the mean shift algorithm.
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Figure 6: The crescent data example. Top left: data. Top right: a few steps of mean-shift. Bottom left: a few steps
of blurred mean-shift.
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Figure 7: The Broken Ring example. Top left: data. Top right: a few steps of mean-shift. Bottom left: a few steps
of blurred mean-shift.



Choosing the Bandwidth

As usual, choosing a good bandwidth is crucial. You might wonder if increasing the bandwidth, decreases the
number of modes. [12] showed that the answer is yes if you use a Normal kernel.

Theorem ([12, Theorem|). Let pp, be a kernel density estimator using a Gaussian kernel in one dimension. Then
the number of modes of Py is a nmon-increasing function of h. The Gaussian kernel is the unique kernel with this

property.

We still need a way to pick h. We can use cross-validation as before. One could argue that we should choose h
so that we estimate the gradient g(z) = Vp(z) well since the clustering is based on the gradient flow.
How can we estimate the loss of the gradient? Consider, first the scalar case. Note that

Jo =22 [w+ [wr

We can ignore the last term. The first term is known. To estimate the middle term, we use integration by parts to
get
/ = — / P'p
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suggesting the cross-validation estimator

where p!/ is the leave-one-out second derivative. More generally, by repeated integration by parts, we can estimate
the loss for the r'" derivative by

OVah) = [0 @)de - 2 (-1 35 ()

Let’s now discuss estimating derivatives more generally following [3|. Let
1 n
ﬁH(Z‘) = E X;KH(.Z‘ — Xi)
1=

where Kg(z) = |H|"Y2K(H~'/?z). Let D = 8/0x = (9/0x1,...,0/0x4) be the gradient operator. Let H(x) be
the Hessian of p(x) whose entries are 9%p/(dz;0xy,). Let

D®p = (Dp)®" = 9"p/dz®" € R
denote the r*" derivatives, organized into a vector. Thus
D®p=p, D®p=Dp, D%p=vec(H)

where vec takes a matrix and stacks the columns into a vector.
The estimate of D®"p is

1 & 1 &
5" (2) = D¥ () = = Y D¥Ky(z—X;) == > [H|V>(HV?)® D K(H /(2 — X;).
P (z) pu(z) =~ 2 u(x )= i:1| | ) ( (z — X3)
The integrated squared error is

L= / D% s (a) — D= ()| .

[4] shows that E[L] is minimized by choosing H so that each entry has order n=2/(4+27+4) Jeading to a risk of order
O(n=4/(@+2r+4)) Tn fact, it may be shown that

1 1
E[L] = E|H|_1/2tr((H_1)®TR(D®TK)) = R (K« K, D®"p)
+trR* (K *x Ky, D%"p) — 2tr R* (K, D®"p) + trR(D%"p)



where

and (a * g) is componentwise convolution.
To estimate the loss, we expand L as

L= / ||[D®" pg (x)]|*dx — 2/<D®T'ﬁH(x),D®Tp(a:)>dx + constant.

Using some high-voltage calculations, Chacon and Duong (2013) derived the following leave-one-out approximation
to the first two terms:
CV,(H) = (—1)"|H|""/?(vec(H~")* )T B(H)
where ) 5
BH)=—Y D®*KHY*(X;,-X;)) - —— Y D**KH 'YX, - X;
(H) = o5 SO DO R = X)) = o=y S DO K (X, = X))
’J i#j
and K = K « K In practice, the minimization is easy if we restrict to matrices of the form H = h2I.

A Dbetter idea is to used fixed (non-decreasing h). We don’t need h to go to 0 to find the clusters. More on this
when we discuss persistence.

Theoretical Analysis

How well can we estimate the modes?

Theorem. [7, Theorem 1] Assume that p is Morse with finitely many modes myq, ..., my. Then for h > 0 and not

too large, pp, is Morse with modes mp1, ..., mp, and (possibly after relabelling),
max [[m; —mj|| = O(h?).
With probability tending to 1, pp has the same number of modes which we denote by mp1, ..., Mmpg. Furthermore,

. 1
max [[rijn —mjn|| = Op (\/ nhd+2>
) ) 1
mjax||mjh—mj|\:0(h )+ Op s

Remark: Setting h < n~/(4+6) gives the rate n=2/(¢+6) which is minimax (Tsyabkov 1990) under smoothness
assumptions. See also Romano (1988). However, if we take the fixed h point if view, then we have a n~1/2 rate.

Proof Outline. Build a small ball B; around each m ;. We will skip the first step, which is to show that there
is one (and only one) local mode in B;. Let’s focus on showing

. /1
mellmjh—mth:Op( W)-

For simplicity, write m = mj;, and x = ;. Let g(x) and H(z) be the gradient and Hessian of py(z) and let §(x)
and H (z) be the gradient Hessian of fy (). Then

and

1
(0,0 07 = i) = glm) + (& = )" [+ (o~ m))du
0

and so .

(@ —m)" ; H(m +u(z —m))du = (g(m) — §(m))



where we used the fact that 0 = g(m). Multiplying on the right by = — m we have
(@ —m)" /01 H(m + (e —m))(z —m)du = (§(m) — §(m))" (x —m).
Let A = info<y<i Amin(H(m + u(z —m))). Then A = Anin(H(m)) + op(1) and
(x7m{[ﬂ@+mm@xx7mMZMmmm

Hence, using Cauchy-Schwartz,

N N . 1
Nz =m|* < ||g(m) — g(m)[| ||z —ml| < [l —m]| Sgpllg(y) =9I < [lz —m|[Op (anﬂH)
wdmnxfmnzopc/mgg.m

Remark: If we treat h as fixed (not decreasing) then the rate is Op(y/1/n) independent of dimension.

Density-Based Clustering II: Level Set Clustering

Let p be the density if the data. Let Ly = {x : pp(x) > ¢t} denote an upper level set of p. Suppose that L; can be
decomposed into finitely many disjoint sets: Ly = C1J---|J Ck,. We call C; = {C4,...,Ck,} the level set clusters
at level ¢.

Let C = U,>(Cs- The clusters in C form a tree: if A, B € C, the either (i) A C B or (ii) B C A or (iii) ANB = 0.
We call C the level set cluster tree.

The level sets can be estimated in the obvious way: Ly = {x : pn(z) > t}. How do we decompose L; into its
connected components? This can be done as follows. For each ¢ let

X = {)(7 : ﬁh(Xz) > t}.

Now construct a graph G; where each X; € X} is a vertex and there is an edge between X; and X if and only if
[|X; — Xj|| < e where € > 0 is a tuning parameter. Bobrowski et al (2104) show that we can take e = h. G; is a
called a Rips graphs. The clusters at level ¢ are estimated by taking the connected components of the graph G;. In
summary:

e Compute py,.

e For each ¢, let Xy = {X; : pn(X;) > t}.

e Form a graph G for the points in X; by connecting X; and X if || X; — X;|| < h.
e The clusters at level ¢ are the connected components of G;.

A Python package, called DeBaCl, written by Brian Kent, can be found at
http://www.brianpkent.com/projects.html.
Fabrizio Lecci has written an R implementation, include in his R package: TDA (topological data analysis). You
can get it at:
http://cran.r-project.org/web/packages/TDA/index .html
Two examples are shown in Figures 8 and 9.

Theory

How well does this work? Define the Hausdorff distance between two sets by
H(U,V) inf{e: UcCcV@e and VCU@e}
where

Vde= U B(x,¢€)
zeV
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Figure 8: DeBaClR in two dimensions.
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Figure 9: DeBaCIlR in three dimensions.



and B(zx,¢) denotes a ball of radius € centered at . We would like to say that L; and L, are close. In general this
is not true. Sometimes L; and L4 s are drastically different even for small é. (Think of the case where a mode has
height ¢.) But we can estimate stable level sets. Let us say that L; is stable if there exists a > 0 and C' > 0 such
that, for all § < a,

H(Li_5,Liy5) < C9.

Theorem. Suppose that Ly is stable. Then H(Ly, L;) = Op(+/logn/(nh)).

Proof. Let r, = \/logn/(nhd)). We need to show two things: (i) for every z € L, there exists y € L; such that
||z — y|| = Op(ry) and (ii) for every x € L; there exists y € L; such that ||z — y|| = Op(r,). First, we note that, by
earlier results, ||pr — prllco = Op(ryn). To show (i), suppose that x € L;. By the stability assumption, there exists
y € Lyi,, such that ||z —y|| < Cr,. Then py(y) > t 4 r, which implies that py(y) > ¢ and so y € L;. To show (i),
let € Ly so that pp,(z) > t. Thus pp(z) > t — r,,. By stability, there is a y € L; such that ||z —y|| < Cr,,. O

Cluster Tree with multi-scale

Another way to measure the consistency of the cluster tree is through multi-scale approach, that is, we look at the
connected components C; = {C1,...,C, } of a level set L; for different values ¢ € [0, 00) simultaneously.

Definition. [11, Definition 1] For a density function p, its cluster tree T, : R — P(X) is a function where T,(\) is
the set of connected components of the upper level set {x € X : p(z) > A}.
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For measuring a distance between trees that reflects multi-scale structure, we use [, metric.

Definition. [11] The [, metric between trees are defined as doo (T}, Ty) = ||p — ¢|| -
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_ With this metric, we make a confidence set for the cluster tree. Recall that an asymptotic 1 — « confidence set
C, is a collection of trees with the property that

P(T, € Cy) =1—a+o(l).

We let T, be the cluster tree from the kernel density estimator py,, where

. 1 & z—X;
ph(x)—nhd;K< 3 ),

and the confidence set as the ball centered at T}, and radius e,, i.e.

Co = {T: doo(T, Tp,) < €a}, (7)

where €, is the bootstrap quantile defined by

B
. 1 ~xb ~
ea:mf{z: Bbg_lf(th —ph||oo>z) <a}. (8)

bth

Here, p; is the density estimator based on the bootstrap sample.

Theorem. [11, Theorem 3] Under minor conditions on the kernel, above confidence set Co in (7) satisfies

log" n /6
P(TheC’a>:1—a+O<< s ) )

Persistence

Consider a smooth density p with M = sup, p(x) < oo. The t-level set clusters are the connected components of
the set Ly = {z : p(z) > t}. Suppose we find the upper level sets L; = {z : p(z) >t} as we vary t from M to 0.
Persistent homology measures how the topology of L; varies as we decrease t. In our case, we are only interested
in the modes, which correspond to the zeroth order homology. (Higher order homology refers to holes, tunnels etc.)
The idea of using persistence to study clustering was introduced by [6].

Imagine setting ¢ = M and then gradually decreasing t. Whenever we hit a mode, a new level set cluster is born.
As we decrease t further, some clusters may merge and we say that one of the clusters (the one born most recently)
has died. See Figure 10.

In summary, each mode m; has a death time and a birth time denoted by (d;,b;). (Note that the birth time
is larger than the death time because we start at high density and move to lower density.) The modes can be
summarized with a persistence diagram where we plot the points (dy, b1),. .., (dg, b) in the plane. See Figure 10.
Points near the diagonal correspond to modes with short lifetimes. We might kill modes with lifetimes smaller than
€o in (8). This corresponds to killing a mode if it is in a 2¢, band around the diagonal. See [10]. Note that the
starting and ending points of the vertical bars on the level set tree are precisely the coordinates of the persistence
diagram. (A more precise bootstrap approach was introduced in [5].)
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Figure 10: Starting at the top of the density and moving down, each mode has a birth time b and a death time d.
The persistence diagram (right) plots the points (dy,b1),...,(ds,bs). Modes with a long lifetime are far from the
diagonal.
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