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The lecture note is largely based on [6].
There are two directions for building covers and using their nerves to exhibit the topological structure of data.

First is to cover data by balls, and then use distance function frameworks. This leads to geometric inference and
providing a framework to establish various theoretical results in Topological Data Analysis. Second is to use a
function defined on the data and use Mapper algorithm. This leads to exploratory data analysis and visualization.
See Figure 1.

We first recall the cover and the Nerve Theorem.

Definition ([12, Section 26]). A collection A of subsets of a space X is said to cover X, or to be a covering of X, if
the union of the elements of A is equal to X. It is called an open cover of X if its elements are open subsets of X.

We let U = {Ui}i∈I be a cover of X.

Definition. The nerve Nrv(U) of U is the simplicial complex whose vertices are Ui’s and

Nrv(U) :=

{
{U0, . . . , Uk} ∈ U :

k⋂
i=0

Ui ̸= ∅

}
. (1)

Given a cover of a data set, where each set of the cover can be, for example, a local cluster or a grouping of data
points sharing some common properties, its nerve provides a compact and global combinatorial description of the
relationship between these sets through their intersection patterns. See Figure 2.

The topology of the nerve is linked to underlying continuous spaces via Nerve Theorem. Under some assumptions,
the nerve of a cover is homotopic equivalent to the topology of the union of sets of the cover by the following Nerve
Theorem.

Theorem (Nerve Theorem [8, Corollary 4G.3][7, Section III.2]). Let U = {Ui}i∈I be an open cover of a space X
such that for any finite subset {U0, . . . , Uk} ⊂ U , the intersection

⋂k
i=0 Ui is either empty or contractible. Then, the

nerve Nrv(U) is homotopic equivalent to X.

Figure 1: [1] Covering data by balls, and then use distance function frameworks (left). Using a function defined on
the data and using Mapper algorithm (right).
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Figure 2: [6, Figure 3] Point cloud and an open cover (left), and the nerve of this cover (right).

This lecture focuses on using distance functions to do geometric inference. In this lecture note, X ⊂ Rd is the
target geometric structure, and X ⊂ X is the data points. The general strategy to infer topological information
about X from X proceeds in two steps:

1. X is covered by a union of balls of a fixed radius centered on the xi’s. Under some regularity assumptions on
X, one can relate the topology of this union of balls to X.

2. From a practical and algorithmic perspective, topological features of X are inferred from the nerve of the
union of balls, using the Nerve theorem.

We compare spaces up to homotopy equivalence:

Definition ([8, Chapter 0]). Let f0, f1 : X → Y . A homotopy between f0 and f1 is a continuous function F :
X × [0, 1] → Y such that for all x ∈ X, F (x, 0) = f0(x) and F (x, 1) = f1(x). Two functions f0, f1 are homotopic if
such F exists, and we write f0 ≃ f1.

Definition ([8, Chapter 0]). A map f : X → Y is called a homotopy equivalence if there is a map g : Y → X such
that f ◦ g ≃ idY and g ◦ f ≃ idX . The space X and Y are said to be homotopy equivalent or to have the same
homotopy type, and write X ≃ Y , if such homotopy equivalence f : X → Y exists.

Distance function
Definition. Given a closed subset A ⊂ Rd, the distance function dA to A is the non-negative function defined by
(see Figure 3)

dA(x) := inf
y∈A

d(x, y) for all x ∈ Rd.

The distance function to A is continuous and indeed 1-Lipschitz: for all x, y ∈ Rd,

|dA(x)− dA(y)| ≤ d(x, y).

Moreover, A is completely characterized by dA since A = d−1
A (0).

Definition. For any non-negative real number r, the r-offset Ar of A is the r-sublevel set of dA defined by (see
Figure 3)

Ar = d−1
A ([0, r]) = {x ∈ Rd : dA(x) ≤ r}.

Now Recall the Hausdorff distance:

Definition (Hausdorff distance [2, Definition 7.3.1]). Let X be a metric space, and A,B ⊂ X be a subset. The
Hausdorff distance between A and B, denoted by dH(A,B), is defined as

dH(A,B) := inf {r > 0 : A ⊂ Br and B ⊂ Ar} .

Indeed, the Hausdorff distance can be expressed in various equivalent ways in terms of distance functions.
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Figure 3: [3] distance function dP and offsets P r.

Figure 4: [6, Figure 1] Hausdorff distance dH(A,B) (left) and Gromov-Hausdorff distance dGH(A,B) between A
and B.
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Figure 5: The graphical illustration for the generalized gradient ∇A(x), from [4].

Proposition. Let A,B ⊂ Rd be two closed sets.The Hausdorff distance dH(A,B) between A and B is defined by
any of the following equivalent assertions:

1. dH(A,B) is the smallest number r such that A ⊂ Br and B ⊂ Ar.

2. dH(A,B) = max {supx∈A dB(x), supx∈B dA(x)}.

3. dH(A,B) = ∥dA − dB∥∞.

Given a closed set A ⊂ Rd, the distance function dA is usually not differentiable. Nevertheless, it is possible to
define a generalized gradient vector field ∇A : Rd → Rd for dA that coincides with the classical gradient at the
points where dA is differentiable. Recall its definition:

For any point x ∈ Rd \A, let ΓA(x) be the set of points in A closest to x. Let ΘA(x) be the center of the unique
smallest closed ball enclosing ΓA(x). Then, for x ∈ Rd \ A, the generalized gradient of the distance function dA is
defined as

∇A(x) =
x−ΘA(x)

dA(x)
, (2)

and set ∇A(x) = 0 for x ∈ A. See Figure 5 for a graphical illustration.
The map x ∈ Rd → ∇A(x) is in general not continuous. In other words, ∇A is a discontinuous vector field.

Nevertheless, it is possible to show [101, 117] that when K is compact, x 7→ ∥∇K(x)∥2 is a lower semi-continuous
function, i.e. for any a ∈ R, ∥∇K∥−1

2 (∞, a] is a cloed subset of Rd, or equivalently, lim infx→x0
∥∇K(x)∥2 ≥

∥∇K(x0)∥2.
Now recall the definition of critical points and weak feature size.

Definition ([4]). Let A ⊂ Rd be a closed subset.

(a) The critical point of the distance function dA is defined as the points x for which ∇A(x) = 0. Equivalently, a
point x is a critical point if and only if it lies in the convex hull of ΓA(x). A real c ≥ 0 is a critical value of
dA if there exists a critical point x ∈ Rd such that dA(x) = c. A regular value of dA is a value which is not
critical.

(b) The weak feature size of A, denoted as wfs(A), is the infimum of the positive critical points of dA. If dA does
not have critical values, then wfs(A) = ∞.

Using the notion of critical point, some properties of distance functions are similar to the ones of differentiable
functions. In particular, the sublevel sets of dK are topological submanifolds of Rd and their topology can change
only at critical points.

Theorem. Let K ⊂ Rd be a compact set and let r be a regular value of dK . The level set d−1
K (r) is a (d − 1)-

dimensional topological submanifold of Rd.
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Theorem (Isotopy Lemma [4, Lemma 2.1]). Let K ⊂ Rd be a compact set and let r1 < r2 be two real numbers such
that [r1, r2] does not contain any critical value of dK . Then all the level sets d−1

K (r), r ∈ [r1, r2] are homeomorphic
(and even isotopic) and the set d−1

K [r1, r2] is homeomorphic to d−1
K (r1)× [r1, r2].

It follows from the Isotopy Lemma that if 0 < α ≤ β < wfs(K), then Kα and Kβ are isotopic. In other words,
the knowledge of K at precision, or scale, α gives the same information for any choice of 0 < α < wfs(K).

Deterministic Reconstruction
The following result allows to compare the topology of the offsets of two close compact sets with positive weak
feature sizes.

Theorem. Let K,K ′ ⊂ Rd be two compact sets and ϵ > 0 be such that

dH(K,K ′) < ϵ <
1

2
min {wfs(K),wfs(K ′)} .

Then for any 0 < α ≤ 2ϵ, Kα and K ′α are homotopy equivalent.

Theorem (Reconstruction Theorem [4, Theorem 4.6][10, Theorem 12]). Assume K,K ′ ⊂ Rd are compact sets such
that K has positive µ-reach τµ > 0 for some µ ∈ (0, 1], and that

dH(K,K ′) = ϵ <
µ2

5µ2 + 12
τµ.

Then for all r ∈ (0,wfs(K)) and for all r′ ∈
[
4ϵ
µ2 , τµ − 3ϵ

)
, (K ′)r

′
is homotopy equivalent to Kr.And (K ′)r

′
is

homotopy equivalent to K as well.

Theorem (Reconstruction Theorem [13, Proposition 7.1][10, Theorem 19, 20]). Let X ⊂ Rd be a set with positive
reach τX > 0, and let X ⊂ Rd be a set of points. Let δ > 0 be satisfying X ⊂

⋃
x∈X B(x, δ). Suppose for some

constant C, the following is satisfied:
dH(X,X )

τX
< C.

Then there exists some r > 0 satisfying that X is homotopy equivalent to ČechRd(X , r) or Rips(X , r).

C = 3− 2
√
2 for ČechRd(X , r) in [13, Proposition 7.1] and C = 0.07856 . . . for Rips(X , r) in [10, Theorem 20].

Probabilistic Reconstruction
Recall that X ⊂ Rd is the target geometric structure, and X ⊂ X is the data points. When X has a positive reach
τX > 0, in terms of Reconstruction Theorem, we want to ensure that the Hausdorff distance dH(X,X ) is small
enough with respect to τX. In the probabilistic setting where X is a point cloud of random samples, dH(X,X ) is
also random and can be controlled via the packing number argument.

We assume that X ⊂ Rd is a set with positive reach τX > 0, and P is a distribution on Rd with supp(P ) = X.
X1, . . . , Xn are i.i.d. samples from P and X = {X1, . . . , Xn}.

First recall the regularity condition on the volume growth imposed by the positive reach.

Proposition ([11, Lemma 25][13, Lemma 5.3][9, Lemma 3]). Let M ⊂ Rd be a k-dimensional submanifold with its
reach τM > 0. Then for p ∈ M and r < τM , the volume of a ball volM (M ∩ B(p, r)) is bounded as(

1− r2

4τ2M

) k
2

rkωd ≤ volM (M ∩ B(p, r)) ≤ d!

k!
2drkωd, (3)

where ωd := λd(B(0, 1)) is the volume of a unit ball in Rd.

For a distribution P , we assume (a, b) assumption:

Definition. P satisfies (a, b) assumption if there exists r0 > 0 such that for all x ∈ supp(P ) and for all r < r0,

P (B(x, r)) ≥ arb.
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(a, b) assumption is a weaker than manifold assumption, as implied by the lower bound of the volume growth of
(3).

Corollary. Let M ⊂ Rd be a k-dimensional submanifold with its reach τM > 0. P is a distribution on Rd with
supp(P ) = M , and P has a density p with respect to volume measure on M with infx∈M p(x) > 0. Then P satisfies
(a, k) assumption.

We begin with the basic probability lemma.

Lemma ([13, Lemma 5.1]). Let {Ai} for i = 1, . . . , l be a finite collection of measurable sets of X and let P
be a probability measure on X such that for all 1 ≤ i ≤ l, P (Ai) > α. Let X1, . . . , Xn be i.i.d. from P and
X = {X1, . . . , Xn}. Then

P (∀i,X ∩Ai ̸= ∅) ≥ 1− l exp(−nα).

Proof. Let Ei be the event that X ∩Ai = ∅, then

P (Ei) = (1− P (Ai))
n ≤ (1− α)n.

Hence by union bound and 1− α ≤ exp(−α),

P

(
l⋃

i=1

Ei

)
≤

l∑
i=1

P (Ei) ≤ l(1− α)n ≤ l exp(−nα).

And then

P (∀i,X ∩Ai ̸= ∅) = 1− P

(
l⋃

i=1

Ei

)
≥ 1− l exp(−nα).

Now, the idea is to take Ai = B(Xi, r), and then bound l.

Definition (Covering). Let (X, d) be a metric space and A ⊂ X be bounded. We say that {x1, . . . , xn} ⊂ X is an
ϵ-covering of A if A ⊂

⋃n
i=1 Bd(xi, ϵ), i.e., for all x ∈ A, there exists xi such that d(x, xi) < ϵ. Moreover, we say

N(ϵ) = N(A, ϵ) = min {n : ∃ϵ-covering of A with size n}

is the covering number of A.

Definition (Packing). Let (X, d) be a metric space and A ⊂ X be bounded. We say that {x1, . . . , xm} ⊂ X is an
ϵ-packing of A if

{
Bd

(
xi,

ϵ
2

)
: 1 ≤ i ≤ m

}
are pairwise disjoint, i.e., d(xi, xj) ≥ ϵ for all disjoint i, j. Moreover, we

say
M(ϵ) = M(A, ϵ) = max {m : ∃ϵ-packing of A with size m}

is the packing number of A.

Lemma.
M(2ϵ) ≤ N(ϵ) ≤ M(ϵ).

Proof. For M(2ϵ) ≤ N(ϵ), consider an an 2ϵ-packing {x1, . . . , xm} and an ϵ-covering {y1, . . . , yn}. Then if xi, xj ∈
Bd(yk, ϵ) for i ̸= j, then d(xi, xj) ≤ d(xi, yk) + d(yk, xj) < 2ϵ, contradicting that d(xi, xj) ≥ 2ϵ. Hence each ball
Bd(yk, ϵ) can contain at most 1 point among {x1, . . . , xm}, so m ≤ n, which implies M(2ϵ) ≤ N(ϵ).

For N(ϵ) ≤ M(ϵ), we claim that any maximal ϵ-packing is an ϵ-covering. Let {x1, . . . , xn} ⊂ X be a maximal
ϵ-packing, that is, there does not exist y ∈ X such that d(y, xi) ≥ ϵ for all 1 ≤ i ≤ n. If A ⊂

⋃n
i=1 Bd(xi, ϵ) does

not hold, then y ∈ A\ (
⋃n

i=1 Bd(xi, ϵ)) satisfies that d(y, xi) ≥ ϵ for all 1 ≤ i ≤ n, contradicting the maximality of
ϵ-packing. So A ⊂

⋃n
i=1 Bd(xi, ϵ), and {x1, . . . , xn} is also an ϵ-covering, and N(ϵ) ≤ M(ϵ) holds.

When A is a manifold, then the packing number is upper bounded by by the lower bound of the volume growth
of (3).

Corollary. Let X ⊂ Rd be a comapct k-dimensional submanifold with its reach τM > 0. Then M(X, ϵ) ≤ aϵ−k for
some a > 0.

The (a,b) assumption on the distribution also gives an upper bound on the packing number as well.
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Corollary ([5, Lemma 10]). Let P be a distribution on Rd with supp(P ) = X, and assume P satisfies (a, b)
assumption with a, b > 0. Then there exists ϵ0 > 0 such that for all ϵ < ϵ0,

M(X, ϵ) ≤ a−1ϵ−b.

Proof. Let ϵ0 be satisfying that for ϵ < ϵ0, P (B(x, r)) ≥ arb holds. For ϵ < ϵ0, let {B(xi, ϵ) : 1 ≤ i ≤ l} be an
ϵ-packing of X. Then B(xi, ϵ)’s are disjoint, so

1 = P (X) ≥ P

(
l⋃

i=1

B(xi, ϵ)

)
=

l∑
i=1

P (B(xi, ϵ)) ≥ larb,

so l ≤ a−1ϵ−b. Since this holds for all ϵ-packing of X, M(X, ϵ) ≤ a−1ϵ−b as well.

From the Reconstruction Theorem, a sufficient condition for X ≃ ČechRd(X , r) or Rips(X , r) is that dH(X,X ) <
CτX. Hence, the probability of the homotopy equivalence can be lower bounded by the probability of Hausdorff
distance dH(X,X ) being small.

Proposition ([13, Proposition 7.2][5, Theorem 2]). Let P be a distribution on Rd with supp(P ) = X, and assume
P satisfies (a, b) assumption with a, b > 0. Let X1, . . . , Xn be i.i.d. samples from P , and let X = {X1, . . . , Xn}.
Then there exists ϵ0 > 0 such that for all ϵ < ϵ0,

P (dH(X,X ) < ϵ) ≥ 1− a−1ϵ−b exp(−naϵb).

Proof. Let ϵ0 be satisfying that for ϵ < ϵ0, P (B(x, r)) ≥ arb holds. For ϵ < ϵ0, let {B(xi, ϵ) : 1 ≤ i ≤ l} be an
ϵ-covering of X, then

l ≤ N(X, ϵ) ≤ M(X, ϵ) ≤ a−1ϵ−b.

Now, ∀i,X ∩ B(xi, ϵ) ̸= ∅ implies that dH(X,X ) < ϵ. So from the basic probability lemma,

P (dH(X,X ) < ϵ) ≥ P (∀i,X ∩ B(xi, ϵ) ̸= ∅)
≥ 1− a−1ϵ−b exp(−naϵb).

Theorem (Reconstruction Theorem [13, Theorem 7.1][10, Theorem 19, 20]). Let X ⊂ Rd be a compact subset with
positive reach τX > 0. Let P be a distribution on Rd with supp(P ) = X, and assume P satisfies (a, b) assumption
with a, b > 0. Let X1, . . . , Xn be i.i.d. samples from P , and let X = {X1, . . . , Xn}. Then there exists some r > 0
satisfying that

P
(
X ≃ ČechRd(X , r) and Rips(X , r)

)
≥ 1− C exp (−nC) ,

where C depends only on on τX, a, b.

Proof. As soon as dH(X,X ) < C ′τX, there exists some r > 0 satisfying that X is homotopy equivalent to ČechRd(X , r)
and Rips(X , r). Hence from above,

P
(
X ≃ ČechRd(X , r) and Rips(X , r)

)
≥ P (dH(X,X ) < C ′τX)

≥ 1− a−1(C ′τX)
−b exp(−na(C ′τX)

b).
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