Homology Inference
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Homology is a classical concept in algebraic topology, providing a powerful tool to formalize and handle the
notion of the topological features of a topological space or of a simplicial complex in an algebraic way. For any
dimension k, the k-dimensional “holes” are represented by a vector space (or more generally R-module) Hy, whose
dimension is intuitively the number of such independent features. For example, the zero-dimensional homology
group Hy represents the connected components of the complex, the one-dimensional homology group H; represents
the one-dimensional loops, the two-dimensional homology group Hs represents the two-dimensional cavities, and so
on.

We first start with the definition of group, subgroup, and quotient group:

Definition. An abelian group (G, +) is a set G and a binary operation + : G x G — G satisfying
(a) forall a,b,c € G, (a+b)+c=a+ (b+¢)
(b) there exists 0 € G such that a+0=0+a=aforalla € G
(c) for all @ € G, there exists —a € G such that a + (—a) = —a+a = 0.
(d) forall a,b € G,a+b=>b+a.

Definition. For an abelian group (G,+) and H C G, H is a subgroup of G if (H,+) is itself a group, and denote
as H <.

Definition. Let (G, +) be an abelian group and H < G. For each a € G, we define its coset as a + H == {a + h :
h € H} C G. Then the quotient group is a set defined as

G/H ={a+H:a€G}.
Write [a] = a + H for convenience. We define the group structure on G/H as [a] + [b] == [a + b].

Note that [a] = [b] € G/H if and only if a —b € H. So G/H is defined as like “all the members in H are announced
as zero’.

Example. Z = {...,—1,0,1,...} be a group of integer with binary operator +, and 2Z = {...,—2,0,2,...} be a
set of even integers. Then 27 is a subgroup of Z.The quotient group Zs := Z/2Z can be characterized as

Zo = {[0], (1]},
where [0] + [0] = [1] + [1] = [0] and [0] + [1] = [1] + [0] = [1].

Then recall the simplicial complex:

Given a set V, an (abstract) simplicial complex is a set K of subsets of V' such that @ € K implies carda < oo,
and o € K and f C « implies § € K. Each set a € K is called its simplexr. The dimension of a simplex « is
dim o = carda — 1, and the dimension of the simplicial complex is the maximum dimension of any of its simplices.
Note that a simplicial complex of dimension 1 is a graph. See Figure .
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Figure 1: Graph (left) and simplicial complex (right).

Homology

Definition. Let K be a simplicial complex, £ > 0 be a nonnegative integer, and G be an abelian group. The space
of k-chains on K, C(K;G), is the set whose elements are a finite formal sum of k-simplices of K with coefficients
from G, i.e.,

Cv(K;G) = {Zniai :n; € G,0; € Kk} ,
i
where K}, C K is the set of k-simplices of K. We write Cy(K) if the coefficient group G is understood from the
context.

For an integer k < —1, we define Cj(K) = 0 for convenience.
Remark. Typical examples of G are G =Z and G = Zy = Z/27. For G = Zs, Cy(K;Zs) becomes a vector space.
Remark. Ci(K;G) has an abelian group structure as for Y. n;0;, >, nio; € Cp(K; G),

<Z niai> + (Z n;0i> = Z(nz +n})o;.
When G is a field, Cy(K; G) has a natural vector space structure as for ), n;o; € Cy(K;G) and A € G,

?

To relate chain groups of different dimensions, we define the boundary map as sending each -simplex to the sum
of its (k — 1)-dimensional faces. We write o = [vy, ..., vg] for an ordered simplex, i.e., [vg, v1] = —[v1,vo].

Definition. A boundary map 9y : C(K) — Cj_1(K) is defined for each simplex as (see Figure )

k
On[vo, .., ve) =Y (=1 v, ..., D5, ., vk,
=0

J

where [vo,...,0;,...,0%] = [Vo,...,Vj—1,Vj41,...,0k] € Ki_1, i.e., 0; means that v; is omitted. The definition is
extended to entire k-chain as
8k (Z niai> = Z?’Liakdi.
i i

Remark. Oy satisfies that for ¢,¢’ € Cy(K), Or(c+ ') = Oxc+ Ok, 80 O : Cx(K) — Ci—1(K) is a homomorphism.
Lemma ([2, Lemma 2.1]). 0x_1 0 9 = 0.
Definition. Cycles and boundaries
(a) A k-cycle group Z = Zy(K) is the k-chain whose boundary is 0, i.e.,
Zp(K) =ker oy = {c € Ci(K) : Orc = 0}.
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Figure 2: Boundary map.
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Figure 3: [1, Figure IV.1] Interleaving relations between cycle groups and boundary groups via boundary map.

(b) A k-boundary group By = By(K) is the k-chain that is a boundary of (k + 1)-chain,
Bi(K) = imdgy1 = {Ok+1d € Cx(K) : d € Cry1(K)}.

Then the above Lemma implies that By (K), Z,(K), Cr(K) are interleaved as subgroups (see Figure ):

By(K) C Zk(K) C Ck(K).

Definition. The k-th homology group is the k-th cycle group modulo the k-th boundary group,
Hk = Hk(K) = Zk(K)/Bk(K)

The k-th Betti number is the rank of this group, 8 = 8x(K) = rank H.

Example. Suppose K is given as the right of Figure , and use G = Z. Then for k = 1, its cycle group, boundary
group, homology group, and betti number is computed as in Figure .

Singular homology is a way to define homology on a general topological space.
Definition. Let A* be the standard geometric realization of k-simplex as

k
AF = {xeRkH:in =1,z 20}.

=0



o 71 (K)=kerd, = 72 =< A ,\j>

. Bl(K) =1imdy = 7Z :<\]>
e Hi(K)=71(K)/B1(K) =7 =< A >, B (K)=1
Figure 4: Homology example for Figure .

For a topological space X, a singular k-simplex in X is just a map o : A¥ — X. We also write o = [vg, ..., vx] as
an ordered simplex, i.e., [vg,v1] = —[v1, vo].

Definition. Let X be a simplicial complex, £ > 0 be a nonnegative integer, and G be an abelian group. The space
of singular k-chains on X, C’,f (X;G), is the set whose elements are a finite formal sum of singular k-simplices of X
with coefficients from G, i.e., if we let X, be the set of singular k-simplexes of X, then

C;?(X,G) = {Znim Tn; € G7O'i S Xk} s
We write C2(X) if the coefficient group G is understood from the context.
For an integer k < —1, we define Ci(X) = 0 for convenience.

Definition. A boundary map 8¢ : C¢ (X) — C;_,(X) is defined for each simplex as

k
O wo, - vk = > (=1 [vo, ..., D5, ., 0k,
j=0

where [vo,...,0;,...,0%] = [Vo,...,Vj—1,Vj41,...,0k] € Ki_1, i.e., 0; means that v; is omitted. The definition is

extended to entire singular k-chain as
(r“);j (Z niai> = Z?’Liakai.
i i

Definition. SIngular cycles and boundaries
(a) A singular k-cycle group st = Z,;9 (X) is the singular k-chain whose boundary is 0, i.e.,

Z3(X) =kerdy = {ce CY(X):07c=0}.



(b) A singular k-boundary group By = By (X) is the singular k-chain that is a boundary of (k + 1)-chain,
B (X) = imdy,, = {07, € CF (X) : d € Gy (X))

Definition. The singular k-th homology group is the singular k-th cycle group modulo the singular k-th boundary
group,

H} = H{(X) = Z; (X)/Bi (X).
The singular k-th Betti number is the rank of this group, 8¢ = B¢ (X) = rankH} .

When a simplicial complex K is viewed as a topological space, then the singular k-chain group C;f , k-cycle

group Z;, k-boundary group B are in general much larger than the (simplicial) k-chain group Cj, (simplicial)
k-cycle group Zy, (simplicial) k-boundary Bj. However, the singular k-th homology group and the (simplicial) k-th
homology group are equivalent as a group, also as a vector space if G is a field.
Theorem ([2, Theorem 2.27]). For an abelian group G, when a simplicial complex K is viewed as a topological
space, then its (simplicial) k-th homology group Hy(K;G) and its singular k-th homology group H} (K;G) are
isomorphic as abelian groups. Further, if G is a field, then Hy(K;G) and H,f(K; Q) are isomorphic as vector spaces
as well.

Hence we don’t differenciate Hy, and H,f, and B and 6;3.
An singular simplex o : A*¥ — X of X and a continuous map f : X — Y induces a singular complex of Y by
fu(o)=foo:A¥ =Y. Then fz extends linearly to fu : CF(X) — CZ(Y) via

f# (ngz) = Znif#0i~

Then fy 087 = 07 o fu, and fy sends cycles to cycles and boundaries to boundaries. Hence fyx induces a homo-
morphisms fi. : Hp(X) — Hi(Y).
One important equivalence is that the homotopy equivalence induces the isomorphic homologies.

Theorem ([2, Theorem 2.10]). If two maps f,g : X — Y are homotopic, then they induces the same homomorphism
fir 9ot Hi(X) — Hi(Y).

Theorem (|2, Theorem 2.11]). The maps f. : Hy(X) = H(Y) induced by a homotopy equivalence f : X — Y are
isomorphisms by all k.

Inference

Suppose X C R? is the target geometric structure, and X C X is the data points. Recall the reconstruction theorems:

Theorem (Reconstruction Theorem [4, Proposition 7.1][3, Theorem 13, 14]). Let X C R? be a set with positive
reach tx > 0, and let X C R be a set of points. Let § > 0 be satisfying X C | B(x,d). Suppose for some
constant C, the following is satisfied:

reX

dy (X, X)

X

<C.

Then there exists some r > 0 satisfying that X is homotopy equivalent to C‘echR(i(X,r) or Rips(X,r).

Theorem (Reconstruction Theorem [4, Proposition 7.1][3, Theorem 13, 14]). Let X C RY be a compact subset
with positive reach Tx > 0, satisfying that for some a,k > 0, M(X,e) < ae™*. P is a distribution on R? with
supp(P) = X, and assume P satisfies (a,b) assumption with a,b > 0. X1,...,X,, are i.i.d. samples from P, and let
X ={Xy,..., X, }. Then there exists some r > 0 satisfying that

P (X~ Cechga(X,r) and Rips(X, 7)) >1—Cexp(—nC),
where C' depends only on on 1x,a,b, k.

When X and Y are homotopy equivalent, then their homologies are also the same as well. So the homology
inference can be done via the inference on the homotopy as well.
One different way for a homology inference is via the Vietoris-Rips complex:

Theorem. Let X C R? be a compact subset with R = wfs(X) > 0 and let X C R? be a finite set of points such that
dg(X,X) =e€< éR. Then for any r € [2¢, 2(R — €)| and for any n € (0, R),

Br(X") = rank (Hy(Rips(X,r)) — Hp(Rips(X,4r))),
where the map Hy(Rips(X,r)) — Hy(Rips(X,4r)) is the natural inclusion.
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