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Homology is a classical concept in algebraic topology, providing a powerful tool to formalize and handle the
notion of the topological features of a topological space or of a simplicial complex in an algebraic way. For any
dimension k, the k-dimensional “holes” are represented by a vector space (or more generally R-module) Hk, whose
dimension is intuitively the number of such independent features. For example, the zero-dimensional homology
group H0 represents the connected components of the complex, the one-dimensional homology group H1 represents
the one-dimensional loops, the two-dimensional homology group H2 represents the two-dimensional cavities, and so
on.

We first start with the definition of group, subgroup, and quotient group:

Definition. An abelian group (G,+) is a set G and a binary operation + : G×G → G satisfying

(a) for all a, b, c ∈ G, (a+ b) + c = a+ (b+ c)

(b) there exists 0 ∈ G such that a+ 0 = 0 + a = a for all a ∈ G

(c) for all a ∈ G, there exists −a ∈ G such that a+ (−a) = −a+ a = 0.

(d) for all a, b ∈ G, a+ b = b+ a.

Definition. For an abelian group (G,+) and H ⊂ G, H is a subgroup of G if (H,+) is itself a group, and denote
as H ≤ G.

Definition. Let (G,+) be an abelian group and H ≤ G. For each a ∈ G, we define its coset as a+H := {a+ h :
h ∈ H} ⊂ G. Then the quotient group is a set defined as

G/H := {a+H : a ∈ G} .

Write [a] = a+H for convenience. We define the group structure on G/H as [a] + [b] := [a+ b].

Note that [a] = [b] ∈ G/H if and only if a− b ∈ H. So G/H is defined as like “all the members in H are announced
as zero”.

Example. Z = {. . . ,−1, 0, 1, . . .} be a group of integer with binary operator +, and 2Z = {. . . ,−2, 0, 2, . . .} be a
set of even integers. Then 2Z is a subgroup of Z.The quotient group Z2 := Z/2Z can be characterized as

Z2 = {[0], [1]},

where [0] + [0] = [1] + [1] = [0] and [0] + [1] = [1] + [0] = [1].

Then recall the simplicial complex:
Given a set V , an (abstract) simplicial complex is a set K of subsets of V such that α ∈ K implies cardα < ∞,

and α ∈ K and β ⊂ α implies β ∈ K. Each set α ∈ K is called its simplex. The dimension of a simplex α is
dimα = cardα− 1, and the dimension of the simplicial complex is the maximum dimension of any of its simplices.
Note that a simplicial complex of dimension 1 is a graph. See Figure .
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Graph Simplicial complex

Figure 1: Graph (left) and simplicial complex (right).

Homology
Definition. Let K be a simplicial complex, k ≥ 0 be a nonnegative integer, and G be an abelian group. The space
of k-chains on K, Ck(K;G), is the set whose elements are a finite formal sum of k-simplices of K with coefficients
from G, i.e.,

Ck(K;G) =

{∑
i

niσi : ni ∈ G, σi ∈ Kk

}
,

where Kk ⊂ K is the set of k-simplices of K. We write Ck(K) if the coefficient group G is understood from the
context.

For an integer k ≤ −1, we define Ck(K) = 0 for convenience.

Remark. Typical examples of G are G = Z and G = Z2 = Z/2Z. For G = Z2, Ck(K;Z2) becomes a vector space.

Remark. Ck(K;G) has an abelian group structure as for
∑

i niσi,
∑

i n
′
iσi ∈ Ck(K;G),(∑

i

niσi

)
+

(∑
i

n′
iσi

)
:=
∑
i

(ni + n′
i)σi.

When G is a field, Ck(K;G) has a natural vector space structure as for
∑

i niσi ∈ Ck(K;G) and λ ∈ G,

λ ·

(∑
i

niσi

)
=
∑
i

(λ · ni)σi.

To relate chain groups of different dimensions, we define the boundary map as sending each -simplex to the sum
of its (k − 1)-dimensional faces. We write σ = [v0, . . . , vk] for an ordered simplex, i.e., [v0, v1] = −[v1, v0].

Definition. A boundary map ∂k : Ck(K) → Ck−1(K) is defined for each simplex as (see Figure )

∂k[v0, . . . , vk] =

k∑
j=0

(−1)j [v0, . . . , v̂j , . . . , vk],

where [v0, . . . , v̂j , . . . , vk] = [v0, . . . , vj−1, vj+1, . . . , vk] ∈ Kk−1, i.e., v̂j means that vj is omitted. The definition is
extended to entire k-chain as

∂k

(∑
i

niσi

)
=
∑
i

ni∂kσi.

Remark. ∂k satisfies that for c, c′ ∈ Ck(K), ∂k(c+ c′) = ∂kc+ ∂kc
′, so ∂k : Ck(K) → Ck−1(K) is a homomorphism.

Lemma ([2, Lemma 2.1]). ∂k−1 ◦ ∂k = 0.

Definition. Cycles and boundaries

(a) A k-cycle group Zk = Zk(K) is the k-chain whose boundary is 0, i.e.,

Zk(K) = ker ∂k = {c ∈ Ck(K) : ∂kc = 0}.
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Simplex Sum of Faces

Figure 2: Boundary map.

Figure 3: [1, Figure IV.1] Interleaving relations between cycle groups and boundary groups via boundary map.

(b) A k-boundary group Bk = Bk(K) is the k-chain that is a boundary of (k + 1)-chain,

Bk(K) = im∂k+1 = {∂k+1d ∈ Ck(K) : d ∈ Ck+1(K)}.

Then the above Lemma implies that Bk(K), Zk(K), Ck(K) are interleaved as subgroups (see Figure ):

Bk(K) ⊂ Zk(K) ⊂ Ck(K).

Definition. The k-th homology group is the k-th cycle group modulo the k-th boundary group,

Hk = Hk(K) := Zk(K)/Bk(K).

The k-th Betti number is the rank of this group, βk = βk(K) = rankHk.

Example. Suppose K is given as the right of Figure , and use G = Z. Then for k = 1, its cycle group, boundary
group, homology group, and betti number is computed as in Figure .

Singular homology is a way to define homology on a general topological space.

Definition. Let ∆k be the standard geometric realization of k-simplex as

∆k :=

{
x ∈ Rk+1 :

k∑
i=0

xi = 1, xi ≥ 0

}
.

3



• Z1(K) = ker ∂1 = Z2 =< , >

• B1(K) = im∂2 = Z =< >

• H1(K) = Z1(K)/B1(K) = Z =< >, β1(K) = 1

Figure 4: Homology example for Figure .

For a topological space X, a singular k-simplex in X is just a map σ : ∆k → X. We also write σ = [v0, . . . , vk] as
an ordered simplex, i.e., [v0, v1] = −[v1, v0].

Definition. Let X be a simplicial complex, k ≥ 0 be a nonnegative integer, and G be an abelian group. The space
of singular k-chains on X, CS

k (X;G), is the set whose elements are a finite formal sum of singular k-simplices of X
with coefficients from G, i.e., if we let Xk be the set of singular k-simplexes of X, then

CS
k (X;G) =

{∑
i

niσi : ni ∈ G, σi ∈ Xk

}
,

We write CS
k (X) if the coefficient group G is understood from the context.

For an integer k ≤ −1, we define CS
k (X) = 0 for convenience.

Definition. A boundary map ∂S
k : CS

k (X) → CS
k−1(X) is defined for each simplex as

∂S
k [v0, . . . , vk] =

k∑
j=0

(−1)j [v0, . . . , v̂j , . . . , vk],

where [v0, . . . , v̂j , . . . , vk] = [v0, . . . , vj−1, vj+1, . . . , vk] ∈ Kk−1, i.e., v̂j means that vj is omitted. The definition is
extended to entire singular k-chain as

∂S
k

(∑
i

niσi

)
=
∑
i

ni∂kσi.

Definition. SIngular cycles and boundaries

(a) A singular k-cycle group ZS
k = ZS

k (X) is the singular k-chain whose boundary is 0, i.e.,

ZS
k (X) = ker ∂S

k = {c ∈ CS
k (X) : ∂S

k c = 0}.
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(b) A singular k-boundary group BS
k = BS

k (X) is the singular k-chain that is a boundary of (k + 1)-chain,

BS
k (X) = im∂S

k+1 = {∂S
k+1d ∈ CS

k (X) : d ∈ CS
k+1(X)}.

Definition. The singular k-th homology group is the singular k-th cycle group modulo the singular k-th boundary
group,

HS
k = HS

k (X) := ZS
k (X)/BS

k (X).

The singular k-th Betti number is the rank of this group, βS
k = βS

k (X) = rankHS
k .

When a simplicial complex K is viewed as a topological space, then the singular k-chain group CS
k , k-cycle

group ZS
k , k-boundary group BS

k are in general much larger than the (simplicial) k-chain group Ck, (simplicial)
k-cycle group Zk, (simplicial) k-boundary Bk. However, the singular k-th homology group and the (simplicial) k-th
homology group are equivalent as a group, also as a vector space if G is a field.

Theorem ([2, Theorem 2.27]). For an abelian group G, when a simplicial complex K is viewed as a topological
space, then its (simplicial) k-th homology group Hk(K;G) and its singular k-th homology group HS

k (K;G) are
isomorphic as abelian groups. Further, if G is a field, then Hk(K;G) and HS

k (K;G) are isomorphic as vector spaces
as well.

Hence we don’t differenciate Hk and HS
k , and βk and βS

k .
An singular simplex σ : ∆k → X of X and a continuous map f : X → Y induces a singular complex of Y by

f#(σ) = f ◦ σ : ∆k → Y . Then f# extends linearly to f# : CS
k (X) → CS

k (Y ) via

f#

(∑
i

niσi

)
=
∑
i

nif#σi.

Then f# ◦ ∂S
k = ∂S

k ◦ f#, and f# sends cycles to cycles and boundaries to boundaries. Hence f# induces a homo-
morphisms f∗ : Hk(X) → Hk(Y ).

One important equivalence is that the homotopy equivalence induces the isomorphic homologies.

Theorem ([2, Theorem 2.10]). If two maps f, g : X → Y are homotopic, then they induces the same homomorphism
f∗, g∗ : Hk(X) → Hk(Y ).

Theorem ([2, Theorem 2.11]). The maps f∗ : Hk(X) → Hk(Y ) induced by a homotopy equivalence f : X → Y are
isomorphisms by all k.

Inference
Suppose X ⊂ Rd is the target geometric structure, and X ⊂ X is the data points. Recall the reconstruction theorems:

Theorem (Reconstruction Theorem [4, Proposition 7.1][3, Theorem 13, 14]). Let X ⊂ Rd be a set with positive
reach τX > 0, and let X ⊂ Rd be a set of points. Let δ > 0 be satisfying X ⊂

⋃
x∈X B(x, δ). Suppose for some

constant C, the following is satisfied:
dH(X,X )

τX
< C.

Then there exists some r > 0 satisfying that X is homotopy equivalent to ČechRd(X , r) or Rips(X , r).

Theorem (Reconstruction Theorem [4, Proposition 7.1][3, Theorem 13, 14]). Let X ⊂ Rd be a compact subset
with positive reach τX > 0, satisfying that for some a, k > 0, M(X, ϵ) ≤ aϵ−k. P is a distribution on Rd with
supp(P ) = X, and assume P satisfies (a, b) assumption with a, b > 0. X1, . . . , Xn are i.i.d. samples from P , and let
X = {X1, . . . , Xn}. Then there exists some r > 0 satisfying that

P
(
X ≃ ČechRd(X , r) and Rips(X , r)

)
≥ 1− C exp (−nC) ,

where C depends only on on τX, a, b, k.

When X and Y are homotopy equivalent, then their homologies are also the same as well. So the homology
inference can be done via the inference on the homotopy as well.

One different way for a homology inference is via the Vietoris-Rips complex:

Theorem. Let X ⊂ Rd be a compact subset with R := wfs(X) > 0 and let X ⊂ Rd be a finite set of points such that
dH(X,X ) := ϵ < 1

9R. Then for any r ∈
[
2ϵ, 1

4 (R− ϵ)
]

and for any η ∈ (0, R),

βk(Xη) = rank (Hk(Rips(X , r)) → Hk(Rips(X , 4r))) ,

where the map Hk(Rips(X , r)) → Hk(Rips(X , 4r)) is the natural inclusion.

5



References
[1] Herbert Edelsbrunner and John L. Harer. Computational topology. American Mathematical Society, Providence,

RI, 2010. An introduction.

[2] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

[3] Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman. Homotopy Reconstruc-
tion via the Cech Complex and the Vietoris-Rips Complex. In Sergio Cabello and Danny Z. Chen, editors,
36th International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 54:1–54:19, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

[4] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high
confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–441, 2008.

6


