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The lecture note is largely based on [5] and [1].
There are two directions for building covers and using their nerves to exhibit the topological structure of data.

First is to cover data by balls, and then use distance function frameworks. This leads to geometric inference and
providing a framework to establish various theoretical results in Topological Data Analysis. Second is to use a
function defined on the data and use Mapper algorithm. This leads to exploratory data analysis and visualization.
See Figure 1.

We first recall the cover and the Nerve Theorem.

Definition ([10, Section 26]). A collection A of subsets of a space X is said to cover X, or to be a covering of X, if
the union of the elements of A is equal to X. It is called an open cover of X if its elements are open subsets of X.

We let U = {Ui}i∈I be a cover of X.

Definition. The nerve NrvU of U is the simplicial complex whose vertices are Ui’s and

NrvU :=

{
{U0, . . . , Uk} ∈ U :

k⋂
i=0

Ui ̸= ∅

}
. (1)

Given a cover of a data set, where each set of the cover can be, for example, a local cluster or a grouping of data
points sharing some common properties, its nerve provides a compact and global combinatorial description of the
relationship between these sets through their intersection patterns. See Figure 2.

The topology of the nerve is linked to underlying continuous spaces via Nerve Theorem. Under some assumptions,
the nerve of a cover is homotopic equivalent to the topology of the union of sets of the cover by the following Nerve
Theorem.

Theorem (Nerve Theorem [9, Corollary 4G.3][8, Section III.2]). Let U = {Ui}i∈I be an open cover of a space X
such that for any finite subset {U0, . . . , Uk} ⊂ U , the intersection

⋂k
i=0 Ui is either empty or contractible. Then, the

nerve NrvU is homotopic equivalent to X.

Figure 1: [1] Covering data by balls, and then use distance function frameworks (left), Using a function defined on
the data and using Mapper algorithm (right).
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Figure 2: [5, Figure 3] Point cloud and an open cover (left), and the nerve of this cover (right).

Figure 3: [5, Figure 4A] The pull-back cover of the height function f on a surface (left), The refined pull-back cover
(middle), and its nerve (right).

Using Covers and Nerves for Exploratory Data Analysis and Visualiza-
tion: the Mapper algorithm
Using the nerve of covers as a way to summarize, visualize, and explore data is a natural idea that was first proposed
for TDA in the study by [13], giving rise to the so-called Mapper algorithm.

Definition. Let f : X → Rd, d ≥ 1, be a continuous real valued function and let U = {Ui}i∈I be a cover of Rd.
The pull-back cover of X induced by (f, U) is the collection of open sets {f−1(Ui)}i∈I . The refined pull-back cover
is the collection of connected components of the open sets f−1(Ui), i ∈ I.

The idea of the Mapper algorithm is, given a data set X and a well-chosen real-valued function f : X → Rd, to
summarize X through the nerve of the refined pull-back of a cover U of f(X ). See Figure 3. For well-chosen covers
U , this nerve is a graph providing an easy and convenient way to visualize the summary of the data.

When X is indeed a finite set of points, each open set f−1(Ui) is also a finite set of points, so its connected
components are one-point sets, and not quite useful. Hence, we use clusters instead of connected components. This
algorithm is called Mapper, described in Algorithm 1 and illustrated in Figure 4.

The Mapper algorithm contains various choices that are left to the user.

The choice of lens/filter function

The choice of the lens or filter function f strongly depends on what to be highlighted. Some classical choices are:

• Density estimates: Mapper reveals the structure and connectivity of high-density areas (clusters).

• Principal Component Analysis (PCA) coordinates, Non-Linear Dimensionality Reduction (NLDR) coordi-
nates, eigenfunctions of graph laplacians: Mapper revealssome ambiguity in the use of nonlinear dimensionality
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Algorithm 1 The Mapper Algorithm.
Input: a data set X with a metric or a dissimilarity measure between data points, a function f : X → Rd (called
lens or filter), and a cover U of f(X ).

1. for each U ∈ U , decompose f−1(U) into clusters CU,1, . . . , CU,kU
.

2. Compute the nerve of the cover of X defined by the CU,1, . . . , CU,kU
, U ∈ U .

Output: the nerve (often a graph for well-chosen covers): a vertex vU,i for each cluster CU,i, and an edge between
vU,i and vU ′,j if CU,i ∩ CU ′,j ̸= ∅.

Figure 4: [5, Figure 4B] Mapper algorithm on a point cloud sampled around a circle and the height function. First,
the pull-back cover of the height function n the point cloud is computed and refined via clustering (left). Second,
the nerve of the refined pull-back cover is computed (right).
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Figure 5: [1] The resolution r and the gain g.

reductions.

• The centrality function f(x) =
∑

y∈X d(x, y) and the eccentricity function f(x) = maxy∈X d(x, y) do not
require prior knowledge about the data.

• Distance to a root point for data that are sampled around one-dimensional filamentary structures: Mapper
recovers the underlying topology of the filamentary structures [4].

The choice of the cover

Consider when f is a real-valued function f : X → R, then U is usually a set of intervals. The resolution r is the
maximum diameter of an interval in U . The resolution may also be replaced by a number N of intervals in the
cover. The gain g is the percentage of overlap between intervals, when they overlap. See Figure 5.

• small r (large N) implies finer resolution and more nodes.

• large r (small N) implies rougher resolution and less nodes.

• small g implies less connectivity. Note that if g is below 50%, then every point of the real line is covered by
at most 2 open sets of U , and the output nerve is a graph.

• large g implies more connectivity and the dimensionality of the nerve increases.

The output of Mapper is very sensitive to the choice of U , and small changes in the resolution and gain parameters
may result in very large changes in the output, making the method very unstable. A classical strategy explores
some range of parameters and selects the ones that provide the most informative output from the user perspective.

The choice of the clusters

There are two strategies to compute the clusters of the preimage of the open sets U ∈ U .

1. (local) Apply for each U ∈ U , a cluster algorithm chosen by the user, to the preimage f−1(U). See Figure 6.

2. (global) Build a neighboring graph on top of the data set X , for example, a k-NN graph or a Vietoris-Rips
graph, and for each U ∈ U , take the connected components of the subgraph with the vertex set f−1(U). See
Figure 7.
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Figure 6: [1] Local approach to compute the clusters of the preimage of the open sets U ∈ U .

Figure 7: [1] Global approach to compute the clusters of the preimage of the open sets U ∈ U .
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Figure 8: [8, Figure VI.13] For a Morse function, its Reeb graph is indeed a finite graph where critical points of a
Morse function correspond to nodes of a finite graph.

Theoretical and Statistical Aspects of Mapper
The output of the Mapper algorithm can be seen as a discretized version of the Reeb graph [11], or Reeb space.
Given a topological space X and a continuous function f : X → Z, where (Z, dZ) is a metric space, the Reeb space
of X is an approximation of X that preserves its connectivity structures. When f : X → R is scalar-valued, it is
usually called the Reeb graph.

Definition. [2, Definition 2.1] Let X be a topological space and f : X → Z be a continuous function defined on it.
The Reeb space of X is the quotient space endowed with a quotient topology,

Rf (X) := X/∼f ,

where, for all x, x′ ∈ X, one has x ∼f x′ if and only if f(x) = f(x0) and x, x′ belong to the same connected
component of f−1(f(x)) = f−1(f(x′)).

When X is a manifold (with boundary) and f : X → R is a Morse function, Reeb graph is indeed a finite graph
(finite simplicial complex with dimension ≤ 1): see [12, Lemma 2.1]. The nodes of Reeb graph Rf correspond to
the critical points of X, and the rest of the Reeb graph is partitioned into arcs connecting the nodes. See Figure 8.

There is no standard connection between the Mapper and the Reeb graph, relatively compared to, for e.g., the
stability theorem of Persistent Homology. Stability, consistency, and confidence set between the Mapper and the
Reeb graph has been studied in [3]:

Definition. The (exact) modulus of continuity of f is defined as

ωf (δ) = sup
∥x−x′∥≤δ

|f(x)− f(x′)| .

Theorem. [3, Theorem 7] Suppose X is a smooth and compact Euclidean submanifold with reach τ > 0 and
convexity radius ρ > 0. Let X ⊂ X be a finite set of points. Assume that the filter function f : X → R is Morse. Let
ωf be the modulus of continuity for f . Let r, g be the resolution parameter and the gain parameter for Mapper, and
suppose we use Vietoris-Rips graph Rips(X , δ) for clusters for Mapper. Then, if δ and dH(X ,X) is small enough
compared to τ, ρ, g, r, then the bottleneck distance d△ between extended persistence diagram of the Reeb graph Rf (X)
and the mapper M(X ) is bounded as

d△(Rf (X),M(X )) ≤ r + 2ωf (δ).

Stability and consistency is extended to between the Mapper and the Reeb space in [2]. Other approaches have
been focused on how the perturbation of Mapper algorithm affects in [6, 7].

Data Analysis with Mapper
As an exploratory data analysis tool, Mapper has been used for visualizing the topological shape of data, detecting
clusters, and feature selection. After Mapper graph is computed from data, we find interesting topological structures
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Figure 9: [14, Figure 3(a)] Unfolding pathway.

Figure 10: [14, Figure 3(b)] Refolding pathway.

(loops, clusters). For visualization, these topological structures directly represents the topological shape of data.
For clustering, these topological structres are used to exhibit interesting clusters. For feature selection, we select
the features/variables that best discriminate the data in these topological structures.

Example ([14]). Mapper is used for detecting multiple intermediate states on folding pathways. Data are con-
formations of molecules, 760 from unfolding events and 550 from folding events. The density is used as a filter
function, and for unfolding events, the filter function reflects distance to folded states, and for folding events, the
filter function reflects distance to extended states. Figure 9 and 10 show Mapper results for unfolding events events
and folding events, respectively. Mapper of unfolding events has one unfolding pathway, but mapper of folding
events has two refolding pathways. So this indicates that Refolding pathway has two different pahways to follow.

Software
There are many software options for computing mapper: Ayasdi, giotto-tda, Mapper Interactive, Scikit-TDA: Kep-
pler Mapper, TDA Mapper, Python Mapper. For example, you can find a tutorial for using TDA Mapper at
http://bertrand.michel.perso.math.cnrs.fr/Enseignements/TDA/Mapper.html.
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