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For a given task and data, Machine Learning / Deep Learning fits a parametrized model.

• Given data X,

• Parametrized model fθ,

• Loss function L tailored to the task,

• Machine Learning minimizes argminθ L(fθ,X ).

For many cases, getting explicit formula for argminθ L(fθ,X ) is impossible or too costly (e.g., inverting a large
scale matrix). So, gradient descent is used with the ∇θL(fθ,X ):

θn+1 = θn − λ∇θL(fθ,X ).

Application of Topological Data Analysis to Machine Learning is usually in two directions. First, a more common
approach, is to use TDA as features, so that the data X is augmented with extra TDA features. Second approach
is to accompany the loss function L with topological loss terms.

A persistence diagram is a multiset, and the space of persistence diagrams is complex. So directly applying a
persistence diagram in machine learning is difficult, due to the complicated space structure, cardinality issues, com-
putationally inefficient metrics, etc. If a persistence diagram is further summarized and embedded into a Euclidean
space or a functional space, then applying in machine learning becomes much more convenient. Some examples are:
persistence landscape, persistence silhouette, persistence image, etc.

The persistence landscape introduced in the study by [2] is an alternative representation of persistence diagrams.
This approach aims at representing the topological information encoded in persistence diagrams as elements of a
Hilbert space, for which statistical learning methods can be directly applied. The persistence landscape is a collection
of continuous, piecewise linear functions λ : N× R → R that summarizes a persistence diagram.

We first recall the definition of the persistence diagram:

Definition (Persistence Diagram). Let F be a filtration and let k ∈ N0. The corresponding k-th persistence diagram
Dgmk(F) is a finite multiset of (R ∪ {∞})2, consisting of all pairs (b, d) where either [b, d), (b, d), (b, d], or [b, d] is
the interval of filtration values for which a specific homology appears in PHkF . b is called a birth time and d is
called a death time.

Throughout this paper, we will assume that persistence diagrams consist of finitely many points (b, d) with
−∞ < b < d < ∞.

Let D be a persistence diagram. For a birth-death pair p = (b, d) ∈ D, define a piecewise linear function
Λp : R → R as

Λp(t) = max {0,min{b+ t, d− t}}

=


t− b, t ∈

[
b, b+d

2

]
,

d− t, t ∈
(
b+d
2 , d

]
,

0, otherwise.

In other words, a birth-death pair p = (b, d) is rotated π
4 clockwise to become

(
b+d
2 , d−b

2

)
, and then Λp is a tent

function with
(
b+d
2 , d−b

2

)
as its apex point.

The persistence landscape λ of D is a summary of the arrangement of piecewise linear curves obtained by
overlaying the graphs of the functions {Λp}p∈D. See Figure .
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Figure 1: Persistence Landscape. The 1st landscape function is the blue curve.

Definition. For a persistence diagram D, the corresponding persistence landscape is a function λ : N × R → R
defined as

λ(k, t) = kmaxp∈DΛp(t),

where kmax is the kth largest value in the set; in particular, 1max is the usual maximum function. Given k ∈ N,
the function λk : R → R by λk(t) = λ(k, t) is called the kth persistence landscape function.

Definition. The following is given informally in [2, Section 2.3]. It is proved more formally and precisely in [1].

Theorem. The mapping from persistence diagrams to persistence landscapes is invertible.

The advantage of the persistence landscape representation is two-fold. First, persistence diagrams are mapped
as elements of a functional space, opening the door to the use of a broad variety of statistical and data analysis
tools for further processing of topological features. Second, and fundamental from a theoretical perspective, the
persistence landscapes share the same stability properties as those of persistence diagrams.

Stability
The persistence diagrams and persistence landscapes share the same stability properties. Recall the stability theorem
for persistence modules:

Theorem ([3, Theorem 5.23]). Let PF and PG be two q-tame persistence modules. Then

dB(PF ,PG) ≤ dI(PF ,PG).

We have the following stability theorem between persistence landscape’s L∞ distance and the bottleneck distance.

Theorem ([2, Theorem 13]). For persistence diagrams Dand D′, let λk and λ′
k be their k-th persistence landscape

functions. Then,
∥λk − λ′

k∥∞ ≤ dB(D,D′).
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In particular, we have the stability theorem of persistence landscape of functions. We remark that we don’t even
need the tameness conditions.

Theorem ([2, Theorem 13]). Let f, g : X → R be real-valued functions, and let D(f) and D(g) be the persistence
diagrams induced from sublevel (or superlevel) filtration of f and g. Let λf

k and λg
k be their k-th persistence landscape

functions. Then, ∥∥∥λf
k − λg

k

∥∥∥
∞

≤ ∥f − g∥∞ .

Asymptotic Normality and Bootstrap Confidence band
We first recall the bootstrap empirical process.

Bootstrap empirical process can be used to find a confidence band for a function h(t); that is, we find a pair of
functions a(t) and b(t) such that the probability that h(t) ∈ [a(t), b(t)] for all t is at least 1− α. I refer the reader
to [4], Van der Vaart and Wellner [1996], and [5] for more details.

An empirical process is a stochastic process based on a random sample. Let X1, . . . , Xn be independent and
identically distributed random variables taking values in the measure space (X, P ). For a measurable function
f : X → R, we denote Pf =

∫
fdP and Pnf =

∫
fdPn = 1

n

∑n
i=1 f(Xi). By the law of large numbers Pnf converges

almost surely to Pf . Given a class F of measurable functions, we define the empirical process Gn indexed by F as

{Gnf}f∈F = {
√
n(Pnf − Pf)}f∈F .

ℓ∞(F) is the collection of all bounded functions ϕ : F → R, equipped with the sup norm. We say {Gnf}f∈F
converges in distribution (or converges weakly) to {Gf}f∈F in the space ℓ∞(F) if, for any bounded continuous
function H : ℓ∞(F) → R, EH({Gnf}f∈F ) → EH({Gf}f∈F ) holds.

Definition ([4, Definition 1.3][5, Section 2.1]). A class F of measurable functions f : X → R is called P -Donsker
if the process {Gnf}f∈F converges in distribution to a limit process in the space ℓ∞(F). The limit process is a
Gaussian process G with zero mean and covariance function E [GfGg] := Pfg − PfPg; this process is known as a
Brownian Bridge.

One sufficient condition for Donsker class is to assume bound on the covering number: a set C = {f1, . . . , fN} is
an ϵ-cover of F if, for every f ∈ F there exists a fj ∈ C such that ∥f − fj∥L2(Q) < ϵ, and the size of the smallest
ϵ-cover is called the covering numberand is denoted by Np(F , L2(Q), ϵ).

Theorem ([4, Lemma 2.3][5, Theorem 2.5]). Let F be an appropriately measurable class of measurable functions
with F satisfying f(x) ≤ F (x) for all f ∈ F with PF 2 < ∞. Suppose∫ 1

0

√
log sup

Q
N (F , L2(Q), ϵ ∥F∥Q,2)dϵ < ∞,

then F is P -Donsker.

Let P ∗
nf = 1

n

∑n
i=1 f(X

∗
i ) where {X∗

1 , . . . , X
∗
n} is a bootstrap sample from Pn. the measure that puts mass 1/n

on each element of the sample {X1, . . . , Xn}. The bootstrap empirical process G∗
n indexed by F is defined as

{G∗
nf}f∈F = {

√
n(P ∗

nf − Pnf)}f∈F .

Theorem ([4, Theorem 1.4][5, Theorem 2.6, Theorem 2.7]). F is P -Donsker if and only if Gn converges in distri-
bution to G in ℓ∞(F).

In words, above theorem states that F is P -Donsker if and only if the bootstrap empirical process converges in
distribution to the limit process G. Suppose we are interested in constructing a condence band of level 1 − α for
{Pf}f∈F , where F is P -Donsker. Let θ̂ = supf∈F |Gnf |. We proceed as follows:

1. Draw X∗
1 , . . . , X

∗
n ∼ Pn and compute θ̂∗ = supf∈F |G∗

nf |.

2. Repeat the previous step B times to obtain θ̂∗1 , . . . , θ̂
∗
B .

3. Compute Zα = inf
{
r : 1

B

∑B
j=1 I(θ̂

∗
j ≤ r) ≥ 1− α

}
.
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4. For f ∈ F define the confidence band Cn(f) =
[
Pnf − Zα√

n
, Pnf + Zα√

n

]
.

Let DT be the space of positive, countable, T -bounded persistence diagrams; that is, for each (b, d) ∈ D, we
have 0 ≤ b ≤ d ≤ T and there are countable number of points where d > 0. Let the persistence diagrams
D1, . . . ,Dn be a sample from the distribution P over the space of persistence diagrams DT . Let λ

(k)
1 , . . . , λ

(k)
n be

k-th persistence landscape functions corresponding to D1, . . . ,Dn . We define the mean landscape µ : R → R as
µ(t) = EP [λ

(k)
i (t)], and the empirical mean landscape λ̄n : R → R as λ̄n(t) =

1
n

∑n
i=1 λ

(k)
i (t). We here show that{√

n(λ̄n(t)− µ(t))
}
t∈[0,T ]

converges to a Gaussian process, so that we can use the bootstrap confidence band above.

Let F = {ft : 0 ≤ t ≤ T}, where ft : DT → R is defined by ft(D) = λ
(k)
D (t), where λ

(k)
D is the k-th persistence

landscape function of the persistence diagram D. We can write
√
n(λ̄n(t) − µ(t)) as an empirical process indexed

by t ∈ [0, T ]:

√
n(λ̄n(t)− µ(t)) =

√
n

(
1

n

n∑
i=1

λ
(k)
i (t)− EP [λ

(k)
i (t)]

)
=

√
n(Pnft − Pft) ≡ Gnft.

Then by considering a constant function F ≡ T , we have a uniform VC type bound on N (F , L2(Q), ϵ ∥F∥Q,2), and
we can conclude that F is P -Donsker.

Theorem ([4, Theorem 2.4]). Let G be a Brownian bridge with covariance function κ(t, u) =
∫
DT

ft(D)fu(D)dP (D)−∫
DT

ft(D)dP (D)
∫
DT

fu(D)dP (D). Then, Gn converges in distribution to G.

This theorem gives the asymptotic normality of persistence landscapes. Moreover, we can follow the bootstrap
confidence band procedure. See Figure :

1. Draw D∗
1 , . . . ,D∗

n ∼ Pn, construct corresponding k-th persistence landscape functions λ∗
1, . . . , λ

∗
n.

2. Let λ̄∗
n = 1

n

∑n
i=1 λ

∗
i and compute θ̂∗ = sup0≤t≤T

∣∣√n
(
λ̄∗
n(t)− λ̄n(t)

)∣∣.
3. Repeat step 1 and 2 B times to obtain θ̂∗1 , . . . , θ̂

∗
B .

4. Compute Zα = inf
{
r : 1

B

∑B
j=1 I(θ̂

∗
j ≤ r) ≥ 1− α

}
.

5. Define the confidence band Cn(t) =
[
λ̄n(t)− Zα√

n
, λ̄n(t) +

Zα√
n

]
.

Theorem ([4, Theorem 2.5]). The bootstrap confidence band Cn(t) =
[
λ̄n(t)− Zα√

n
, λ̄n(t) +

Zα√
n

]
is a confidence

band for µ(t):
P (µ(t) ∈ Cn(t) for all t) ≥ 1− α.
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Figure 2: Confidence Band for Persistence Landscape.
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