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When analyzing data, we prefer robust features where features of the underlying manifold can be inferred
from features of finite samples. As I introduced before, homology is counting holes. But there is a problem of using
homology to data: that homology of finite sample is very differnt from homology of underlying manifold. See Figure .

We first recall the homology.

Definition. Let K be a simplicial complex, k ≥ 0 be a nonnegative integer, and G be an abelian group. The space
of k-chains on K, Ck(K;G), is the set whose elements are a finite formal sum of k-simplices of K with coefficients
from G, i.e.,

Ck(K;G) =

{∑
i

niσi : ni ∈ G, σi ∈ Kk

}
,

where Kk ⊂ K is the set of k-simplices of K. We write Ck(K) if the coefficient group G is understood from the
context.

For an integer k ≤ −1, we define Ck(K) = 0 for convenience.
Remark. Typical examples of G are G = Z and G = Z2 = Z/2Z. For G = Z2, Ck(K;Z2) becomes a vector space.
Remark. Ck(K;G) has an abelian group structure as for

∑
i niσi,

∑
i n

′
iσi ∈ Ck(K;G),(∑

i

niσi

)
+

(∑
i

n′iσi

)
:=
∑
i

(ni + n′i)σi.

When G is a field, Ck(K;G) has a natural vector space structure as for
∑
i niσi ∈ Ck(K;G) and λ ∈ G,

λ ·

(∑
i

niσi

)
=
∑
i

(λ · ni)σi.

To relate chain groups of different dimensions, we define the boundary map as sending each -simplex to the sum
of its (k − 1)-dimensional faces. We write σ = [v0, . . . , vk] for an ordered simplex, i.e., [v0, v1] = −[v1, v0].

Definition. A boundary map ∂k : Ck(K) → Ck−1(K) is defined for each simplex as (see Figure )

∂k[v0, . . . , vk] =

k∑
j=0

(−1)j [v0, . . . , v̂j , . . . , vk],

where [v0, . . . , v̂j , . . . , vk] = [v0, . . . , vj−1, vj+1, . . . , vk] ∈ Kk−1, i.e., v̂j means that vj is omitted. The definition is
extended to entire k-chain as

∂k

(∑
i

niσi

)
=
∑
i

ni∂kσi.

Remark. ∂k satisfies that for c, c′ ∈ Ck(K), ∂k(c+ c′) = ∂kc+ ∂kc
′, so ∂k : Ck(K) → Ck−1(K) is a homomorphism.

Lemma ([4, Lemma 2.1]). ∂k−1 ◦ ∂k = 0.

Definition. Cycles and boundaries

(a) A k-cycle group Zk = Zk(K) is the k-cycle whose boundary is 0, i.e.,

Zk(K) = ker ∂k = {c ∈ Ck(K) : ∂kc = 0}.
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Simplex Sum of Faces

Figure 1: Boundary map.

Figure 2: [3, Figure IV.1] Interleaving relations between cycle groups and boundary groups via boundary map.

(b) A k-boundary group Bk = Bk(K) is the k-cycle that is a boundary of (k + 1)-chain,

Bk(K) = im∂k+1 = {∂k+1d ∈ Ck(K) : d ∈ Ck+1(K)}.

Then the above Lemma implies that Bk(K), Zk(K), Ck(K) are interleaved as subgroups (see Figure ):

Bk(K) ⊂ Zk(K) ⊂ Ck(K).

Definition. The k-th homology group is the k-th cycle group modulo the k-th boundary group,

Hk = Hk(K) := Zk(K)/Bk(K).

The k-th Betti number is the rank of this group, βk = rankHk.

Example. Suppose K is given as the right of Figure , and use G = Z. Then for k = 1, its cycle group, boundary
group, homology group, and betti number is computed as in Figure .

Persistent homology is a multiscale approach to represent topological features.
A filtration F is a collection of objects (subcomplexes or subsets) approximating the data points at different

resolutions, formally defined as follows.

Definition (Filtration). A filtration F is a collection of increasing objects:
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• Z1(K) = ker ∂1 = Z2 =< , >

• B1(K) = im∂2 = Z =< >

• H1(K) = Z1(K)/B1(K) = Z =< >, β1(K) = 1

Figure 3: Homology example.

• Let K be a simplicial complex. A (subcomplexes) filtration F = {Fa ⊂ K}a∈R is a collection of subcomplexes
of K such that a ≤ b implies that Fa ⊂ Fb.

• A (subsets) filtration F = {Fa ⊂ X}a∈R is a collection of subsets of a topological space X such that a ≤ b
implies that Fa ⊂ Fb.

A typical way of setting the filtration is through a real-valued function.

Definition. For a simplicial complex K, a real function f : K → R is monotonic if f(σ) ≤ f(τ) whenever σ is a
face of τ .

For a real monotonic function f : K → R, if we let Fa := f−1(−∞, a], then the monotonicity implies that Fa is
a subcomplex of K and Fa ⊂ Fb whenever a ≤ b, so F = {Fa ⊂ K}a∈R is a subcomplexes filtration. Similarly, for
a real function f : X → R on a topological space X (not necessarily continuous), if we let Fa := f−1(−∞, a], then
F = {Fa ⊂ K}a∈R is a subsets filtration. This filtration F is called a sublevel filtration (of f).
Remark. We also consider a superlevel filtration

{
f−1[a,∞)

}
a∈R, in particular when f is a density function. How-

ever, a superlevel filtration
{
f−1[a,∞)

}
a∈R is equivalent to a sublevel filtration

{
(−f)−1(−∞, a]

}
a∈R, so for this

lecture note we just consider the sublevel filtrations.
For a filtration F and for each k ∈ N0 = N ∪ {0}, the associated persistent homology PHkF is an ordered

collection of k-th dimensional homologies, one for each element of F .

Definition (Persistent Homology). Let F be a filtration and let k ∈ N0. The associated k-th persistent homology
PHkF is a collection of groups {HkFa}a∈R equipped with homomorphisms {ıa,bk }a≤b, where HkFa is the k-th
dimensional homology group of Fa and ıa,bk : HkFa → HkFb is the homomorphism induced by the inclusion
Fa ⊂ Fb. Write Ha,b

k := im(ıa,bk ). The corresponding k-th persistent Betti numbers are the ranks of these groups,
βa,bk = rankHa,b

k .

The persistent homology groups Ha,b
k consist of homology classes of Fa that are still alive at Fb, or moreformally,

Ha,b
k = Zk(Fa)/(Bk(Fb) ∩ Zk(Fa)).
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Figure 4: [3, Figure VII.2] The class is γ is born at i since it does not lie in the (shaded) image of Hi−1
k . Furthermore,

γ dies entering j since this is the first time its image merges into the image of Hi−1
k .

⊂ ⊂ ⊂

⊂ ⊂ ⊂

Figure 5: Persistent Homology from subcomplexes of a simplicial complex.

For the k-th persistent homology PHkF , the set of filtration levels at which a specific homology appears is
always an interval [b, d) ⊂ [−∞,∞], i.e. a specific homology is formed at some filtration value b and dies when
the inside hole is filled at another value d > b. To be more concrete about the classes counted by the persistent
homology groups, let γ be a class in Hk(Fb). We say it is born at b ∈ R if γ /∈ Ha,b

k for all a < b. Furthermore, if γ
is born at b then it dies entering d if it merges with an older class as we go from Fc to Fd for any c ∈ [b, d), i.e., for
any c ∈ [b, d), there exists a < b such that ıb,ck (γ) /∈ Ha,c

k but ıb,dk (γ) ∈ Ha,d
k . See Figure . In this sense,

We visualize the collection of persistent Betti numbers by drawing points in two dimensions.

Definition (Persistence Diagram). Let F be a filtration and let k ∈ N0. The corresponding k-th persistence diagram
Dgmk(F) is a finite multiset of (R ∪ {∞})2, consisting of all pairs (b, d) where [b, d) is the interval of filtration
values for which a specific homology appears in PHkF . b is called a birth time and d is called a death time.

When does the persistence diagram “fully” represent all the topological information in the persistent homology?
There are two sufficient conditions [1, Theorem 2.8]:

• if {HkFa}a∈R changes only finite times, i.e., {ıa,bk : HkFa → HkFb}a≤b is not an isomorphism for finitely
many a1, . . . , am.

• or if for all a ∈ R, rank(HkFa) is finite.

And this covers all the practical cases.

Example. See Figure .

Example. See Figure . Suppose we want to find a loop structure of a circle, from 20 data points on a circle. We
attach disks of radius r to each data point, and increase the radius r from 0 to ∞. When r = 0.5, the collection
of disks form a loop, and this is the birth time of the loop. When r = 1, the inside hole is filled, and this is the
death time of the loop. Then we collect birth time and death time of all possible loops, and this is the persistent
homology / persistence diagram.
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Figure 6: Persistent Homology from Cech filtration.

Figure 7: Persistent Homology from Kde filtration.

Example. See Figure . Suppose we consider superlevel sets of the kernel density estimator. We decrease level L
from ∞ to 0. When L = 0.15, you can see that 1-dim hole is formed, and this is the birth time of this loop. And as
you decrease L, the inside hole becomes smaller, and when L = 0, then inside hole is filled, and this is the death
time of this loop. Then we collect birth time and death time of all possible loops, and this is the persistent homology
/ persistence diagram.

Stability Theorem
This section is mostly from [1].

To impose stability, we first endow the space of persistence diagrams with a metric. The most fundamental one
is the bottleneck distance.

Definition. The bottleneck distance between two persistence diagrams Dgmk(F) and Dgmk(G) is defined by

dB(Dgmk(F), Dgmk(G)) = inf
γ∈Γ

sup
p∈Dgmk(F)

∥p− γ(p)∥∞,

where the set Γ consists of all the bijections γ : Dgmk(F) ∪Diag → Dgmk(G) ∪Diag, and Diag is the diagonal
{(x, x) : x ∈ R} ⊂ R2 with infinite multiplicity.
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Figure 8: Bottleneck distance example.

Example. Consider computing the bottleneck distance between Diag1 = {(0, 0.3), (0.15, 0.3)} and Diag2 =
{(0, 0.2)}, see Figure (). First, consider a matching γ1 that matches (0, 0.3) in Diag1 to (0, 0.2) in Diag2 and
(0.15, 0.3) in Diag1 to (0.225, 0.225). For this case, sup

p∈Diag1
∥p − γ1(p)∥∞ = 0.1 (left figure). Second, consider an-

other matching γ2 that matches (0, 0.3) in Diag1 to (0.15, 0.15) in Diag2 and (0.15, 0.3) in Diag1 to (0, 0.2). For
this case, sup

p∈Diag1
∥p− γ2(p)∥∞ = 0.15 (middle figure). Bottleneck distance consider all possible matchings and take

the infimum (right figure).

The bottleneck distance imposes a metric structure on the space of persistence diagrams, which leads to the
persistence stability theorem, i.e., small perturbations in the data implies at most small changes in the persistence
diagrams in terms of the bottleneck distance.

For the stability theorem, we consider the case that the coefficient group G is a field so that the homology groups
HkFa are vector spaces. Recall that the k-th dimensional persistent homology is a collection of groups {HkFa}a∈R
equipped with homomorphisms {ıa,bk }a≤b.

Definition. A persistence module PF for a filtration F is a family {Fa}a∈R of vector spaces, together with a family
{ȷa,b : Fa → Fb}a≤b of homomorphisms such that: ∀a ≤ b ≤ c, ȷa,c = ȷb,c ◦ ȷa,b and ȷa,a = idFa

.

In this lecture note, for a function f : X → R defined on a metric space X, let P(f) be the persistence module
induced from sublevel filtrations

{
Hkf

−1(−∞, a]
}
a∈R (and inclusion homomorphism maps). For a metric space X ,

let PR(X ) be the persistence module induced from Vietoris-Rips complexes {HkRips(X , r)}r∈R. For a metric space
X and X ⊂ X, let PCX(X ) be the persistence module induced from Čech complexes

{
HkČechX(X , r)

}
r∈R.

We will impose a standard regularity condition for the persistence module PF , which is tameness.

Definition ([1, Section 3.8]). Let PF = {Fa}a∈R be a persistence module. A persistence module PF is q-tame if
the image im(ȷa,b) of the homomorphism ȷa,b : Fa → Fb is of finite rank for all a < b.

For the persistence module induced from the sublevel sets P(f) =
{
f−1(−∞, a]

}
a∈R, a sufficient condition for

the q-tame is that the image of f : Rd → R is lower bounded and proper.

Proposition ([1, Corollary 3.34]). Let X be an image of a locally finite simplicial complex (that is, there is a locally
finite simplicial complex K such that X is a continuous image of |K|). Let f : X → R be a proper (f−1(C) for a
compact set C is compact) continuous function that is bounded below. Then the persisence modules P(f) is q-tame.

For persistence module induced from Čech complex ČechX(X , r) or Vietoris-Rips complex Rips(X , r), a sufficient
condition is that X is totally bounded:

Definition. A metric space X is totally bounded if for any ϵ > 0, there exists a finite set of points x1, . . . , xn ∈ X
that ϵ-approximates X, i.e. for all x ∈ X, there exists xi such that d(x, xi) < ϵ.
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Proposition ([2, Proposition 5.1]). If (X , dX ) is a totally bounded metric space, then the persistence modules
PR(X ) is q-tame. If (X, dX) is a totally bounded metric space and X ⊂ X, then the persistence modules PCX(X ) is
q-tame.

For two functions f, g : X → R satisfying ∥f − g∥∞ ≤ ϵ, their sublevel sets filtrations are nested as follows:
∀a ∈ R, write Fa := f−1(−∞, a] and Ga := g−1(−∞, a], then Fa ⊂ Ga+ϵ and Ga ⊂ Fa+ϵ. By letting Fa = Hk(Fa)
and Ga = Hk(Ga), this induces the homomorphisms induced by the inclusions as Fa → Ga+ϵ and Ga → Fa+ϵ. Also,
the canonical inclusions Fa ⊂ Fb and Ga ⊂ Gb for a ≤ b induces homomorphisms as Fa → Fb and Ga → Gb. This
homomorphisms relations can be extended as follows:

Definition ([1, Section 4.2]). Two persistence modules PF =
{
{Fa}a∈R, {ȷa,bF }a≤b

}
and PG = {Ga, {ȷa,bG }a≤b}a∈R

are said to be strongly ϵ-interleaved if there exist two families of homomorphisms {ϕa : Fa → Ga+ϵ}a∈R and
{ψa : Ga → Fa+ϵ}a∈R such that the following diagrams commute for all a ≤ b:

Fa−ϵ
ȷa−ϵ,a+ϵ
F //

ϕa−ϵ ""

Fa+ϵ Fa+ϵ
ȷa+ϵ,b+ϵ
F // Fb+ϵ

Ga

ψa

<<

Ga
ȷa,b
G

//

ψa

<<

Gb

ψb

;;

Fa
ϕa

""

Fa
ȷa,b
F //

ϕa ""

Fb
ϕb

##
Ga−ϵ

ȷa−ϵ,a+ϵ
G

//

ψa−ϵ

<<

Ga+ϵ Ga+ϵ
ȷa+ϵ,b+ϵ
G

// Gb+ϵ

Definition ([1, Section 5.1]). The interleaving distance between two persistence modules PF and PG is defined as

dI(PF ,PG) := inf {ϵ > 0 : PF and PG are ϵ-strongly interleaved.}

It is immediate that for two functions f, g : X → R,

dI(P(f),P(g)) ≤ ∥f − g∥∞ .

Proposition ([2, Lemma 4.3, Corollary 4.10]). 1. For two metric spaces X ,Y,

dI(PCX (X ),PCY(Y)) ≤ dGH(X ,Y),

dI(PR(X ),PR(Y)) ≤ dGH(X ,Y).

2. For two subsets X ,Y ⊂ X,
dI(PCX(X ),PCX(Y)) ≤ dH(X ,Y).

If two persistence modules are strongly interleaved, then their bottleneck distance are close, which is the strong
stability theorem. Note that the bottleneck distance between filtrations are calculated on the persistence diagrams,
so we can naturally consider the bottleneck distance to be defined on the persistence modules as well.

Theorem ([1, Theorem 5.23]). Let PF and PG be two q-tame persistence modules. Then

dB(PF ,PG) ≤ dI(PF ,PG).

Corollary. For two functions f, g : X → R, if P(f) and P(g) are q-tame, then

dB(P(f),P(g)) ≤ ∥f − g∥∞ .

Corollary ([2, Theorem 5.2]). For two totally bounded metric spaces X ,Y,

dB(PCX (X ),PCY(Y)) ≤ dGH(X ,Y).

dB(PR(X ),PR(Y)) ≤ dGH(X ,Y).

..
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