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Differentiable Manifolds

Definition. Let M be a topological space. A chart (U, ¢) on M consists of an open set U C M and a homeomor-
phism ¢ from U to an open subset of R™.

Definition ([3, Section 36]). A topological manifold of dimension n is a Hausdorff space M with a countable basis
such that there is a collection of charts {¢q : Uy = R"}qeca such that (J,c 4 Us = M.

Definition ([2, Ch.0, 2.1 Definition, modified]). A differentiable (resp, C*, C°°) manifold of dimension n is a
topological manifold of dimension n such that the collection of charts {p, : Uy = R"}4ca satisfy that

1. Upen Ua = M.
2. for any pair a, 8 € A with U, NUg # (), the mapping (g 0 ;! is differentiable (resp, C*, C*) (see Figure 1).

3. The family {(Ua, ¢o)} is maximal relative to the conditions (1) and (2).

Remark (|2, Ch.0, 2.3 Remark|). A C M is open if and only if ¢ (ANU,) is open in R™ for all a« € A. Sometimes,
a differentiable manifold is defined without a topological manifold (i.e., M is just a set), and then the topology is
defined in this way.

Definition. A topological manifold with boundary of dimension n is a Hausdorff space M with a countable basis
such that there is a collection of maps {p, : Uy — Ri}ae A where ¢, is a homeomorphism onto its image such that
Uaca Ua = M, where R} = {(21,...,2,) € R" : 2, > 0} is a Euclidean half space.

Definition (|2, Ch.0, 2.5 Definition]). Let M and N be differentiable manifolds of dimensions m and n. A mapping
f: M — N is differentiable at p € M if there exist local charts (U, ) of p € M and (V, ¢) of f(p) respectively, such
that the mapping ¢ o fop~!:p(U) C R™ — R" is differentiable (see Figure 2).

Definition ([2, Ch.0, 3.1 Definition, modified]). Let M and N be topological (resp, differentiable) manifolds. If
M C N and the inclusion ¢+ : M C N is an embedding (imbedding), i.e., if + : M — N yields a homeomorphism
between M and «(M) C N, then we say M is a submanifold of N.
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Figure 1: [2, Figure 1] Definition of a differentiable manifold.
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Figure 2: [2, Figure 2] Definition of a differentiable mapping.



Figure 3: [2, Figure 3] Basis of a tangent space.

Remark. When a manifold M of dimension m is a submanifold of a manifold IV of dimension n, then m < n.

Definition ([2, Ch.0, 2.6 Definition, modified]). Let M be a differentiable manifold of dimension n. A differentiable
curve is a function « : (—¢,¢) — M. For p € M, let

Curves,M = {a: (—€,e) = M : a(0) = p}

be the smooth curves of M centered at p. Pick a chart (U, ) of p € M, and then «, 5 : (—e€,e) — M are equivalent,
written as a ~ (3, if

2 p00)(0) = (9o H)0).

Then ~ is regardless of the choice of a chart, and gives an equivalence relation. The set of tangent vectors of M at

p is defined by
T,M := Curves, M/ ~ .

To define a vector space structure on T, M, again pick a chart (U, ¢) of p € M, and define a map dyp, : T,M — R
by

dgy(fo]) = 2 (p 0 a)0).

Then dyp,, is a bijection, and we use this to transfer the vector-space operations on R"™ over to T,M, i.e., we set

[o] + [B] := diy, ' (dy([0]) + dipp ([B])),
Ma] := dgy ™t (Adgpy([a))).

Remark. T,M acts on any real valued function f: M — R as follows:

[l e T,M : f—[a]f = d(foa)

dt o

Remark. Consider the coordinate curve: when ¢(p) = 0, let ai be the eqiuivalent class of the following curve

Zq

xi— @ 10,...,0,2;,0,...,0).

Then {3%1, ce B%n} forms a basis in T,M (see Figure 3).
Definition ([2, Ch.0, 2.7 Proposition]). Let M and N be differentiable manifolds of dimensions m and n, and let
f+ M — N be adifferentiable mapping. For every p € M and v € T, M, choose a differentiable curve v : (—¢,¢) — M
with a(0) = p, [a] = v. Take 8 = f oa. The mapping df, : T,M — Ty, N given by df,(v) = [f] is a linear mapping
that does not depend on the choice of a. The linear map dfy, is called the differential of f at p.

Remark. When M = R", for any p € M a chart can be always chosen as (R",id), and a ~ g if o/(0) = §'(0). Hence
the tangent space T, M is just the vector space of the velocities in the calculus, i.e.

T,M ={a/(0) | a: (—€,€) = M, a(0) = p}.



Remark. When M is a differentiable submanifold of NV, we have a natural characterization of the tangent space
T,M of M as a linear subspace of the tangentspace 1T,)N of N, since the inclusion 2 : M — N induces an injective
linear map
duy, : T,M — T,N,
by
la] € T,M — diy([a]) = [a] € T,N.
In particular, when NV = R", then [a] can be identified by &’(0) € R”, and hence T, M is again just the vector space
of the velocities in the calculus, i.e.,
T,M ={a/(0) | a: (=e,€) = M, a(0) = p}.
Remark. In this sense, we also use ¢/(0) for [a] € T,M from now on.

Definition ([2, Ch.0, 3.1 Definition, modified]). Let M and N be differentiable manifolds. A differentiable mapping
f M — N is called an immersion if dfy, : T,M — T}, N is injective for all p € M. In addition if if f: M — N
yields a homeomorphism between M and f(M) C N, then f is an embedding. This coincides with the previous
definition of the embedding.

Remark. When there is an immersion f : M — N between a manifold M of dimension m and a submanifold of a
manifold N of dimension n, then m < n.

Example ([2, Ch.0, 4.1 Example] Tangent bundle). Let M be a differentiable manifold of dimension n. A tangent
bundle of M is TM = {(p,v) : p € M,v € T,M} with a differentiable structure of dimension 2n, described below:
Let {(Ua, ©a)} be the maximal dfferentiable structure on M. For each a, define ¢, : TM — o1 (U,) x R™ as
$a(p,v) = (Pa(p), (dpa)p(v))-
Then {(¢5" (95" (Ua) X R™) ,¢q)} becomes maximal charts for TM.

Example (|2, Ch.0, 3.1 Definition, modified| Regular surfaces in R™). A subset M C R™ is a regular surface of
dimension k if for every p € M there exists a neighborhood U of p and a mapping ¢ : U — ¢(U) C R¥ such that
1. ¢ is a differentiable homeomorphism onto its image ¢(U)
2. (dp=1), : R¥ — R" is injective for all ¢ € U.

Example ([2, Ch.0, 3.1 Definition, modified] Inverse image of a regular value). Let F' : U C R™ — R™ be a
differentiable mapping of an open set U of R™. A point p € U is defined to be a critical point of F' if the differential
dF, : R™ — R™ is not surjective. The image F(p) of a critical point is called a critical value of F', and a point
a € R™ that is not a critical point is called a regular value of F'.

For a regular value a € F(U) of F, the inverse image F~!(a) C R" is a regular surface of dimension n — m.

Example (|2, Ch.0, 3.1 Definition, modified| Sphere). The sphere S™ := {z € R"*! : ||z||, = 1} is an inverse image
of a regular value 1 of a function ||-||, : R"™! — R, so it is a manifold of dimension n.

Definition (|2, Ch.0, 5.1 Definition]). A vector field X on a differentiable manifold M is a correspondence that
associates to each point p € M a vector X (p) € T,M. X can be viewed as a mapping of M into the tangent bundle
T M. The vector field is differentiable if the mapping X : M — T'M is differentiable.

Definition (|3, Section 41]). Let {U,} be an indexed open covering of X. An indexed family of continuous functions
Po s X — [0,1]
is said to be a partition of unity on X, dominated by (or subordinate to) {U,}, if:
1. (support py) C U, for each a, i.e., {x : po(z) # 0} C U,.
2. The indexed family {support p,} is locally finite, that is, Vo € X, there is only finite p,’s such that p,(z) > 0.
3. > palr) =1 for each x € X.

Theorem ([2, Ch.0.5]). A differentiable manifold M of dimension n (with Hausdorff and countable basis condition)
can be immersed in R*™ and embedded in R?"+1.

Theorem (|2, Ch.0, 5.6 Theorem]|). A differentiable manifold M (possibly without Hausdorff and countable basis
condition) has a differentiable partition of unity if and only if every connected component of M is Hausdorff and
has a countable basis.



Riemannian Metrics

Definition (|2, Ch.1, 2.1 Definition]|). A Riemannian metric on a differential manifold M assigns to each p € M
an inner product (that is, a symmetric, bilinear, positive-definite) (, ), : T, M x T, M — R, that varies differentiably

in the following sense: If (U, ) is a chart with ¢=!(z1,...,2,) = ¢ € U and 8%i(q) =dp;1(0,...,1,...,0), then

<a?c- (q), %(q)> = gij(21,...,xy) is a differentiable function on ¢(U).
; 3 ;

Example ([2, Ch.1, 2.4 Example|). M = R"™ with % identified with e; = (0,...,1,...,0). The metric is given by
(e;,e;) = ;7. R™ with this metric coincides with the usual Euclidean space of dimension n, and the Riemannian
geometry is the usual metric Euclidean geometry.

Example ([2, Ch.1, 2.5 Example|). Let f : M — N be an immersion. If N has a Riemannian structure, f induces
a Riemannian structure of M by defining (u, v>p = (dfp(u),dfp(v»f(p), u,v € T,M. Since df, is injective, (, >p is
positive definite as well. This metric in M is called the metric induced by f, and f is an isometric immersion. In

particular, when M is a submanifold of NV, we assume that M also has the metric induced from N as well.
Proposition (|2, Ch.1, 2.10 Proposition]). A differentiable manifold M has a Riemannian metric.

Definition (|2, Ch.1, 2.8 Definition]). A differentiable mapping ¢ : I — M of an open interval I C R into a
differentiable manifold M is called a curve.

Definition (|2, Ch.1, 2.9 Definition|). When M is a differentiable manifold, a vector field V along a curve ¢ : I — M
is a differentiable mapping that associates to every t € I a tangent vector V(t) € T,uM. To say that V is
differentiable means that for any differentiable function f on M, the function ¢ — V'(¢)f is differentiable on I.
The vector field dc(%), denoted by %, is called the velocity field of ¢, and written as ¢’ as well.
The restriction of a curve ¢ to a closed interval [a,b] C I is called a segment. We define the length of a segment

by
b 1/2
de d
1b(c) = / <C, C> dt.
o \dt'dt/
Definition. Let R C M be a region (open connected subset), whose closure is compact. For R being contained in
a coordinate neighborhood U for a chart (U, ¢). We define the volume of R as the integral

vol(R) = / /det(g;;)dxy - - - dxy,
»(R) ’

and for general R, choose a partition of unity {p,} subject to charts {U,} and define as

vol(R) = Z/ (RAU )(Pa 0 g )/ det(gij)day - - - diy.
«a a(RNUa

Example. The integral of a function f on a manifold M with respect to the volume measure can be computed as,
by choose a partition of unity {p,} subject to charts {U,},

/M fdvol = Z/ w. (Pa © o )(f o pa )/ det(gij)day - - - day.

o a(Ua)

Geodesics

Definition ([1, 1.3 Definitions|). Let (X, d) be a metric space. A geodesic path joining € X to y € X is a map ¢
from a closed interval [0,!] C R to X such that ¢(0) = x,¢(l) =y, and d(c(t),c(t')) = |t — '] for all t,¢" € [0,1].

Let I C R be an interval. A map ¢: I — X is a linearly reparameterized geodesic or a constant speed geodesic,
if there exists a constant A such that d(c(¢),c(t')) = A|[t — t/| for all ¢, ¢’ € I.

A local geodesic in X is a map ¢ from an interval I C R to X with the property that for every ¢ € I there exists
€ > 0 such that d(c(t'),c(t”)) = |t/ —¢"| for all ¢/, t" € (t — €, + €).

Definition ([1, 1.3 Definitions]). Let (X, d) be a metric space. (X, d) is said to be a geodesic metric space (or, more
briefly, a geodesic space) if every two points in X are joined by a geodesic. We say that (X, d) is uniquely geodesic
if there is exactly one geodesic joining x to y, for all z,y € X.



Definition. When M is a differentiable manifold, a vector field V' along a geodesic ¢ : I — M is called parallel if
(¢/, V) = constant along c.

Definition. Let V be a vector field along a curve ¢ : I — M. The Levi-Civita connection V.V of R" along c is
defined as

(Vo) (c(t)) = %V(c(t)) € T, R".

Definition ([2, Ch.2, Exercise 3|). Let M be a differentiable submanifold of R™, and let V be a vector field along
a curve ¢ : I — M. The Levi-Civita connection V.V of M along c is defined as

(Ve V) (e(t) = (Ve V) ()| € Ty M,

where ((VoV) (c(t)))T is the projection of (Vo V) (c(t)) € ToyR™ to Toy M.

Definition ([2, Ch.2, 2.5 Definition|). Let M be a differentiable submanifold of R™, and let V' be a vector field
along a curve ¢: I — M. V is called parallel if V.V = 0.

Proposition (|2, Ch.2, 2.6 Proposition|). Let M be a differentiable manifold and ¢ : I — M be a curve. LetV, €
TooyM for some to € I. Then there exists a unique parallel vector field V' along ¢ such that V(to) = Vo. V(t) is
called the parallel transport of V(tg) along c.

Definition ([2, Ch.2, 2.5 Definition]). Let M be a differentiable submanifold of R". A parametrized curve ¢ : I — M
is a (local) geodesic at tg € I if V¢! = 0 at the point tp; if v is a geodesic at ¢ for all ¢ € I, we say that v is a
(local) geodesic.
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