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Definition ([4, Section 9.1]). (매개화된)곡선이란공간의점이시각에따라변하는것을뜻한다.다시말하면,실수의
한 구간 I에서 정의된 연속함수

X : I → Rn

을 뜻한다. 이것을 좌표를 써서 표시하면

X(t) = (x1(t), x2(t), . . . , xn(t)), t ∈ I

와 같이 나타낼 수 있다. 이때 t를 매개변수 (parameter)라고 부른다.

Definition ([4, Section 16.1.1]). (삼차원)좌표공간 R3에서 (매개화된)곡면이란좌표평면 R2의한영역D에서정의된
연속사상

X : D → R3, (u, v) 7→ X(u, v)

을 뜻한다.

Differentiable Manifolds
Definition. Let M be a topological space. A chart (U,φ) on M consists of an open set U ⊂ M and a homeomor-
phism φ from U to an open subset of Rn.

Definition ([3, Section 36]). A topological manifold of dimension n is a Hausdorff space M with a countable basis
such that there is a collection of charts {φα : Uα → Rn}α∈A such that

⋃
α∈A Uα = M .

Definition ([2, Ch.0, 2.1 Definition, modified]). A differentiable (resp, Ck, C∞) manifold of dimension n is a
topological manifold of dimension n such that the collection of charts {φα : Uα → Rn}α∈A satisfy that

1.
⋃

α∈A Uα = M .

2. for any pair α, β ∈ A with Uα ∩Uβ ̸= ∅, the mapping φβ ◦φ−1
α is differentiable (resp, Ck, C∞) (see Figure 1).

3. The family {(Uα, φα)} is maximal relative to the conditions (1) and (2).

Remark ([2, Ch.0, 2.3 Remark]). A ⊂ M is open if and only if φ−1
α (A∩Uα) is open in Rn for all α ∈ A. Sometimes,

a differentiable manifold is defined without a topological manifold (i.e., M is just a set), and then the topology is
defined in this way.

Definition. A topological manifold with boundary of dimension n is a Hausdorff space M with a countable basis
such that there is a collection of maps {φα : Uα → Rn

+}α∈A where φα is a homeomorphism onto its image such that⋃
α∈A Uα = M , where Rn

+ = {(x1, . . . , xn) ∈ Rn : xn ≥ 0} is a Euclidean half space.

Definition ([2, Ch.0, 2.5 Definition]). Let M and N be differentiable manifolds of dimensions m and n. A mapping
f : M → N is differentiable at p ∈ M if there exist local charts (U,φ) of p ∈ M and (V, ϕ) of f(p) respectively, such
that the mapping ϕ ◦ f ◦ φ−1 : φ(U) ⊂ Rm → Rn is differentiable (see Figure 2).

Definition ([2, Ch.0, 3.1 Definition, modified]). Let M and N be topological (resp, differentiable) manifolds. If
M ⊂ N and the inclusion ı : M ⊂ N is an embedding (imbedding), i.e., if ı : M → N yields a homeomorphism
between M and ı(M) ⊂ N , then we say M is a submanifold of N .
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Figure 1: [2, Figure 1] Definition of a differentiable manifold.

Figure 2: [2, Figure 2] Definition of a differentiable mapping.

2



Figure 3: [2, Figure 3] Basis of a tangent space.

Remark. When a manifold M of dimension m is a submanifold of a manifold N of dimension n, then m ≤ n.

Definition ([2, Ch.0, 2.6 Definition, modified]). Let M be a differentiable manifold of dimension n. A differentiable
curve is a function α : (−ϵ, ϵ) → M . For p ∈ M , let

CurvespM := {α : (−ϵ, ϵ) → M : α(0) = p}

be the smooth curves of M centered at p. Pick a chart (U,φ) of p ∈ M , and then α, β : (−ϵ, ϵ) → M are equivalent,
written as α ∼ β, if

d

dt
(φ ◦ α)(0) = d

dt
(φ ◦ β)(0).

Then ∼ is regardless of the choice of a chart, and gives an equivalence relation. The set of tangent vectors of M at
p is defined by

TpM := CurvespM/ ∼ .

To define a vector space structure on TpM , again pick a chart (U,φ) of p ∈ M , and define a map dφp : TpM → Rn

by

dφp([α]) :=
d

dt
(φ ◦ α)(0).

Then dφp is a bijection, and we use this to transfer the vector-space operations on Rn over to TpM , i.e., we set

[α] + [β] := dφ−1
p (dφp([α]) + dφp([β])),

λ[α] := dφ−1
p (λdφp([α])).

Remark. TpM acts on any real valued function f : M → R as follows:

[α] ∈ TpM : f 7→ [α]f :=
d(f ◦ α)

dt

∣∣∣∣
t=0

.

Remark. Consider the coordinate curve: when φ(p) = 0, let ∂
∂xi

be the eqiuivalent class of the following curve

xi 7→ φ−1(0, . . . , 0, xi, 0, . . . , 0).

Then
{

∂
∂x1

, . . . , ∂
∂xn

}
forms a basis in TpM (see Figure 3).

Definition ([2, Ch.0, 2.7 Proposition]). Let M and N be differentiable manifolds of dimensions m and n, and let
f : M → N be a differentiable mapping. For every p ∈ M and v ∈ TpM , choose a differentiable curve α : (−ϵ, ϵ) → M
with α(0) = p, [α] = v. Take β = f ◦α. The mapping dfp : TpM → Tf(p)N given by dfp(v) = [β] is a linear mapping
that does not depend on the choice of α. The linear map dfp is called the differential of f at p.

Remark. When M = Rn, for any p ∈ M a chart can be always chosen as (Rn, id), and α ∼ β if α′(0) = β′(0). Hence
the tangent space TpM is just the vector space of the velocities in the calculus, i.e.

TpM = {α′(0) | α : (−ϵ, ϵ) → M, α(0) = p}.
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Remark. When M is a differentiable submanifold of N , we have a natural characterization of the tangent space
TpM of M as a linear subspace of the tangentspace TpN of N , since the inclusion ı : M → N induces an injective
linear map

dıp : TpM → TpN,

by
[α] ∈ TpM → dıp([α]) = [α] ∈ TpN.

In particular, when N = Rn, then [α] can be identified by α′(0) ∈ Rn, and hence TpM is again just the vector space
of the velocities in the calculus, i.e.,

TpM = {α′(0) | α : (−ϵ, ϵ) → M, α(0) = p}.

Remark. In this sense, we also use α′(0) for [α] ∈ TpM from now on.

Definition ([2, Ch.0, 3.1 Definition, modified]). Let M and N be differentiable manifolds. A differentiable mapping
f : M → N is called an immersion if dfp : TpM → Tf(p)N is injective for all p ∈ M . In addition if if f : M → N
yields a homeomorphism between M and f(M) ⊂ N , then f is an embedding. This coincides with the previous
definition of the embedding.

Remark. When there is an immersion f : M → N between a manifold M of dimension m and a submanifold of a
manifold N of dimension n, then m ≤ n.

Example ([2, Ch.0, 4.1 Example] Tangent bundle). Let M be a differentiable manifold of dimension n. A tangent
bundle of M is TM = {(p, v) : p ∈ M,v ∈ TpM} with a differentiable structure of dimension 2n, described below:

Let {(Uα, φα)} be the maximal dfferentiable structure on M . For each α, define ϕα : TM → φ−1
α (Uα)× Rn as

ϕα(p, v) = (φα(p), (dφα)p(v)).

Then
{(

ϕ−1
α

(
φ−1
α (Uα)× Rn

)
, ϕα

)}
becomes maximal charts for TM .

Example ([2, Ch.0, 3.1 Definition, modified] Regular surfaces in Rn). A subset M ⊂ Rn is a regular surface of
dimension k if for every p ∈ M there exists a neighborhood U of p and a mapping φ : U → φ(U) ⊂ Rk such that

1. φ is a differentiable homeomorphism onto its image φ(U)

2. (dφ−1)q : Rk → Rn is injective for all q ∈ U .

Example ([2, Ch.0, 3.1 Definition, modified] Inverse image of a regular value). Let F : U ⊂ Rn → Rm be a
differentiable mapping of an open set U of Rn. A point p ∈ U is defined to be a critical point of F if the differential
dFp : Rn → Rm is not surjective. The image F (p) of a critical point is called a critical value of F , and a point
a ∈ Rm that is not a critical point is called a regular value of F .

For a regular value a ∈ F (U) of F , the inverse image F−1(a) ⊂ Rn is a regular surface of dimension n−m.

Example ([2, Ch.0, 3.1 Definition, modified] Sphere). The sphere Sn := {x ∈ Rn+1 : ∥x∥2 = 1} is an inverse image
of a regular value 1 of a function ∥·∥2 : Rn+1 → R, so it is a manifold of dimension n.

Definition ([2, Ch.0, 5.1 Definition]). A vector field X on a differentiable manifold M is a correspondence that
associates to each point p ∈ M a vector X(p) ∈ TpM . X can be viewed as a mapping of M into the tangent bundle
TM . The vector field is differentiable if the mapping X : M → TM is differentiable.

Definition ([3, Section 41]). Let {Uα} be an indexed open covering of X. An indexed family of continuous functions

ρα : X → [0, 1]

is said to be a partition of unity on X, dominated by (or subordinate to) {Uα}, if:

1. (support ρα) ⊂ Uα for each α, i.e., {x : ρα(x) ̸= 0} ⊂ Uα.

2. The indexed family {support ρα} is locally finite, that is, ∀x ∈ X, there is only finite ρα’s such that ρα(x) > 0.

3.
∑

ρα(x) = 1 for each x ∈ X.

Theorem ([2, Ch.0.5]). A differentiable manifold M of dimension n (with Hausdorff and countable basis condition)
can be immersed in R2n and embedded in R2n+1.

Theorem ([2, Ch.0, 5.6 Theorem]). A differentiable manifold M (possibly without Hausdorff and countable basis
condition) has a differentiable partition of unity if and only if every connected component of M is Hausdorff and
has a countable basis.
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Riemannian Metrics
Definition ([2, Ch.1, 2.1 Definition]). A Riemannian metric on a differential manifold M assigns to each p ∈ M
an inner product (that is, a symmetric, bilinear, positive-definite) ⟨, ⟩p : TpM ×TpM → R, that varies differentiably
in the following sense: If (U,φ) is a chart with φ−1(x1, . . . , xn) = q ∈ U and ∂

∂xi
(q) = dφ−1

x (0, . . . , 1, . . . , 0), then〈
∂

∂xi
(q), ∂

∂xj
(q)

〉
q
= gij(x1, . . . , xn) is a differentiable function on φ(U).

Example ([2, Ch.1, 2.4 Example]). M = Rn with ∂
∂xi

identified with ei = (0, . . . , 1, . . . , 0). The metric is given by
⟨ei, ej⟩ = δij . Rn with this metric coincides with the usual Euclidean space of dimension n, and the Riemannian
geometry is the usual metric Euclidean geometry.

Example ([2, Ch.1, 2.5 Example]). Let f : M → N be an immersion. If N has a Riemannian structure, f induces
a Riemannian structure of M by defining ⟨u, v⟩p = ⟨dfp(u), dfp(v)⟩f(p), u, v ∈ TpM . Since dfp is injective, ⟨, ⟩p is
positive definite as well. This metric in M is called the metric induced by f , and f is an isometric immersion. In
particular, when M is a submanifold of N , we assume that M also has the metric induced from N as well.

Proposition ([2, Ch.1, 2.10 Proposition]). A differentiable manifold M has a Riemannian metric.

Definition ([2, Ch.1, 2.8 Definition]). A differentiable mapping c : I → M of an open interval I ⊂ R into a
differentiable manifold M is called a curve.

Definition ([2, Ch.1, 2.9 Definition]). When M is a differentiable manifold, a vector field V along a curve c : I → M
is a differentiable mapping that associates to every t ∈ I a tangent vector V (t) ∈ Tc(t)M . To say that V is
differentiable means that for any differentiable function f on M , the function t → V (t)f is differentiable on I.

The vector field dc( d
dt ), denoted by dc

dt , is called the velocity field of c, and written as c′ as well.
The restriction of a curve c to a closed interval [a, b] ⊂ I is called a segment. We define the length of a segment

by

lba(c) =

∫ b

a

〈
dc

dt
,
dc

dt

〉1/2

c(t)

dt.

Definition. Let R ⊂ M be a region (open connected subset), whose closure is compact. For R being contained in
a coordinate neighborhood U for a chart (U,φ). We define the volume of R as the integral

vol(R) =

∫
φ(R)

√
det(gij)dx1 · · · dxn,

and for general R, choose a partition of unity {ρα} subject to charts {Uα} and define as

vol(R) =
∑
α

∫
φα(R∩Uα)

(ρα ◦ φ−1
α )

√
det(gij)dx1 · · · dxn.

Example. The integral of a function f on a manifold M with respect to the volume measure can be computed as,
by choose a partition of unity {ρα} subject to charts {Uα},∫

M

fdvol =
∑
α

∫
φα(Uα)

(ρα ◦ φ−1
α )(f ◦ φ−1

α )
√

det(gij)dx1 · · · dxn.

Geodesics
Definition ([1, 1.3 Definitions]). Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a map c
from a closed interval [0, l] ⊂ R to X such that c(0) = x,c(l) = y, and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l].

Let I ⊂ R be an interval. A map c : I → X is a linearly reparameterized geodesic or a constant speed geodesic,
if there exists a constant λ such that d(c(t), c(t′)) = λ|t− t′| for all t, t′ ∈ I.

A local geodesic in X is a map c from an interval I ⊂ R to X with the property that for every t ∈ I there exists
ϵ > 0 such that d(c(t′), c(t′′)) = |t′ − t′′| for all t′, t′′ ∈ (t− ϵ, t+ ϵ).

Definition ([1, 1.3 Definitions]). Let (X, d) be a metric space. (X, d) is said to be a geodesic metric space (or, more
briefly, a geodesic space) if every two points in X are joined by a geodesic. We say that (X, d) is uniquely geodesic
if there is exactly one geodesic joining x to y, for all x, y ∈ X.
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Definition. When M is a differentiable manifold, a vector field V along a geodesic c : I → M is called parallel if
⟨c′, V ⟩ = constant along c.

Definition. Let V be a vector field along a curve c : I → M . The Levi-Civita connection ∇̄c′V of Rn along c is
defined as (

∇̄c′V
)
(c(t)) :=

d

dt
V (c(t)) ∈ Tc(t)Rn.

Definition ([2, Ch.2, Exercise 3]). Let M be a differentiable submanifold of Rn, and let V be a vector field along
a curve c : I → M . The Levi-Civita connection ∇c′V of M along c is defined as

(∇c′V ) (c(t)) :=
((
∇̄c′V

)
(c(t))

)⊤ ∈ Tc(t)M,

where
((
∇̄c′V

)
(c(t))

)⊤ is the projection of
(
∇̄c′V

)
(c(t)) ∈ Tc(t)Rn to Tc(t)M .

Definition ([2, Ch.2, 2.5 Definition]). Let M be a differentiable submanifold of Rn, and let V be a vector field
along a curve c : I → M . V is called parallel if ∇c′V = 0.

Proposition ([2, Ch.2, 2.6 Proposition]). Let M be a differentiable manifold and c : I → M be a curve. LetV0 ∈
Tc(t0)M for some t0 ∈ I. Then there exists a unique parallel vector field V along c such that V (t0) = V0. V (t) is
called the parallel transport of V (t0) along c.

Definition ([2, Ch.2, 2.5 Definition]). Let M be a differentiable submanifold of Rn. A parametrized curve c : I → M
is a (local) geodesic at t0 ∈ I if ∇c′c

′ = 0 at the point t0; if γ is a geodesic at t for all t ∈ I, we say that γ is a
(local) geodesic.
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