Review on Geometry

Definition ([4, Section 9.1]). (매개화된) *곡선*이란 공간의 점이 시각에 따라 변하는 것을 뜻한다. 다시 말하면, 실수의 한 구간 *I*에서 정의된 연속함수

 $X: I \to \mathbb{R}^n$

을 뜻한다. 이것을 좌표를 써서 표시하면

$$X(t) = (x_1(t), x_2(t), \dots, x_n(t)), \quad t \in I$$

와 같이 나타낼 수 있다. 이때 t를 매개변수(parameter)라고 부른다.

Definition ([4, Section 16.1.1]). (삼차원) 좌표공간 ℝ³에서 (매개화된) *곡면*이란 좌표평면 ℝ²의 한 영역 *D*에서 정의된 연속사상

$$X: D \to \mathbb{R}^3, \qquad (u, v) \mapsto X(u, v)$$

을 뜻한다.

Differentiable Manifolds

Definition. Let M be a topological space. A chart (U, φ) on M consists of an open set $U \subset M$ and a homeomorphism φ from U to an open subset of \mathbb{R}^n .

Definition ([3, Section 36]). A topological manifold of dimension n is a Hausdorff space M with a countable basis such that there is a collection of charts $\{\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^n\}_{\alpha \in A}$ such that $\bigcup_{\alpha \in A} U_{\alpha} = M$.

Definition ([2, Ch.0, 2.1 Definition, modified]). A differentiable (resp. C^k , C^{∞}) manifold of dimension n is a topological manifold of dimension n such that the collection of charts $\{\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^n\}_{\alpha \in A}$ satisfy that

- 1. $\bigcup_{\alpha \in A} U_{\alpha} = M.$
- 2. for any pair $\alpha, \beta \in A$ with $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the mapping $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ is differentiable (resp. C^{k}, C^{∞}) (see Figure 1).
- 3. The family $\{(U_{\alpha}, \varphi_{\alpha})\}$ is maximal relative to the conditions (1) and (2).

Remark ([2, Ch.0, 2.3 Remark]). $A \subset M$ is open if and only if $\varphi_{\alpha}^{-1}(A \cap U_{\alpha})$ is open in \mathbb{R}^n for all $\alpha \in A$. Sometimes, a differentiable manifold is defined without a topological manifold (i.e., M is just a set), and then the topology is defined in this way.

Definition. A topological manifold with boundary of dimension n is a Hausdorff space M with a countable basis such that there is a collection of maps $\{\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}_{+}\}_{\alpha \in A}$ where φ_{α} is a homeomorphism onto its image such that $\bigcup_{\alpha \in A} U_{\alpha} = M$, where $\mathbb{R}^{n}_{+} = \{(x_{1}, \ldots, x_{n}) \in \mathbb{R}^{n} : x_{n} \geq 0\}$ is a Euclidean half space.

Definition ([2, Ch.0, 2.5 Definition]). Let M and N be differentiable manifolds of dimensions m and n. A mapping $f: M \to N$ is differentiable at $p \in M$ if there exist local charts (U, φ) of $p \in M$ and (V, ϕ) of f(p) respectively, such that the mapping $\phi \circ f \circ \varphi^{-1} : \varphi(U) \subset \mathbb{R}^m \to \mathbb{R}^n$ is differentiable (see Figure 2).

Definition ([2, Ch.0, 3.1 Definition, modified]). Let M and N be topological (resp. differentiable) manifolds. If $M \subset N$ and the inclusion $i : M \subset N$ is an embedding (imbedding), i.e., if $i : M \to N$ yields a homeomorphism between M and $i(M) \subset N$, then we say M is a submanifold of N.

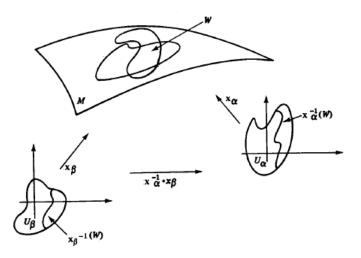


Figure 1: [2, Figure 1] Definition of a differentiable manifold.

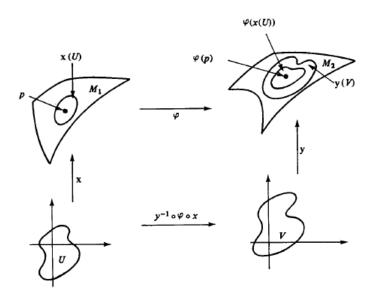


Figure 2: [2, Figure 2] Definition of a differentiable mapping.

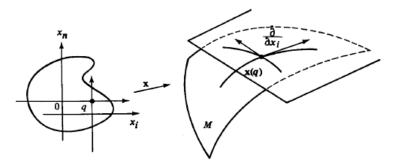


Figure 3: [2, Figure 3] Basis of a tangent space.

Remark. When a manifold M of dimension m is a submanifold of a manifold N of dimension n, then $m \leq n$.

Definition ([2, Ch.0, 2.6 Definition, modified]). Let M be a differentiable manifold of dimension n. A differentiable curve is a function $\alpha : (-\epsilon, \epsilon) \to M$. For $p \in M$, let

$$\operatorname{Curves}_p M \coloneqq \{ \alpha : (-\epsilon, \epsilon) \to M : \alpha(0) = p \}$$

be the smooth curves of M centered at p. Pick a chart (U, φ) of $p \in M$, and then $\alpha, \beta : (-\epsilon, \epsilon) \to M$ are equivalent, written as $\alpha \sim \beta$, if

$$\frac{d}{dt}(\varphi \circ \alpha)(0) = \frac{d}{dt}(\varphi \circ \beta)(0).$$

Then \sim is regardless of the choice of a chart, and gives an equivalence relation. The set of tangent vectors of M at p is defined by

$$T_p M := \operatorname{Curves}_p M / \sim .$$

To define a vector space structure on T_pM , again pick a chart (U, φ) of $p \in M$, and define a map $d\varphi_p : T_pM \to \mathbb{R}^n$ by

$$d\varphi_p([\alpha]) := \frac{d}{dt}(\varphi \circ \alpha)(0).$$

Then $d\varphi_p$ is a bijection, and we use this to transfer the vector-space operations on \mathbb{R}^n over to T_pM , i.e., we set

$$\begin{aligned} [\alpha] + [\beta] &:= d\varphi_p^{-1}(d\varphi_p([\alpha]) + d\varphi_p([\beta])), \\ \lambda[\alpha] &:= d\varphi_p^{-1}(\lambda d\varphi_p([\alpha])). \end{aligned}$$

Remark. T_pM acts on any real valued function $f: M \to \mathbb{R}$ as follows:

$$[\alpha] \in T_pM: f \mapsto [\alpha]f \coloneqq \left. \frac{d(f \circ \alpha)}{dt} \right|_{t=0}$$

Remark. Consider the coordinate curve: when $\varphi(p) = 0$, let $\frac{\partial}{\partial x_i}$ be the equivalent class of the following curve

$$x_i \mapsto \varphi^{-1}(0,\ldots,0,x_i,0,\ldots,0).$$

Then $\left\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\right\}$ forms a basis in T_pM (see Figure 3).

Definition ([2, Ch.0, 2.7 Proposition]). Let M and N be differentiable manifolds of dimensions m and n, and let $f: M \to N$ be a differentiable mapping. For every $p \in M$ and $v \in T_pM$, choose a differentiable curve $\alpha : (-\epsilon, \epsilon) \to M$ with $\alpha(0) = p$, $[\alpha] = v$. Take $\beta = f \circ \alpha$. The mapping $df_p : T_pM \to T_{f(p)}N$ given by $df_p(v) = [\beta]$ is a linear mapping that does not depend on the choice of α . The linear map df_p is called the differential of f at p.

Remark. When $M = \mathbb{R}^n$, for any $p \in M$ a chart can be always chosen as $(\mathbb{R}^n, \mathrm{id})$, and $\alpha \sim \beta$ if $\alpha'(0) = \beta'(0)$. Hence the tangent space T_pM is just the vector space of the velocities in the calculus, i.e.

$$T_p M = \{ \alpha'(0) \mid \alpha : (-\epsilon, \epsilon) \to M, \ \alpha(0) = p \}.$$

Remark. When M is a differentiable submanifold of N, we have a natural characterization of the tangent space T_pM of M as a linear subspace of the tangent space T_pN of N, since the inclusion $i: M \to N$ induces an injective linear map

$$d\iota_p: T_pM \to T_pN,$$

by

$$[\alpha] \in T_p M \to d\iota_p([\alpha]) = [\alpha] \in T_p N.$$

In particular, when $N = \mathbb{R}^n$, then $[\alpha]$ can be identified by $\alpha'(0) \in \mathbb{R}^n$, and hence $T_p M$ is again just the vector space of the velocities in the calculus, i.e.,

$$T_p M = \{ \alpha'(0) \mid \alpha : (-\epsilon, \epsilon) \to M, \ \alpha(0) = p \}$$

Remark. In this sense, we also use $\alpha'(0)$ for $[\alpha] \in T_pM$ from now on.

Definition ([2, Ch.0, 3.1 Definition, modified]). Let M and N be differentiable manifolds. A differentiable mapping $f: M \to N$ is called an immersion if $df_p: T_pM \to T_{f(p)}N$ is injective for all $p \in M$. In addition if if $f: M \to N$ yields a homeomorphism between M and $f(M) \subset N$, then f is an embedding. This coincides with the previous definition of the embedding.

Remark. When there is an immersion $f: M \to N$ between a manifold M of dimension m and a submanifold of a manifold N of dimension n, then $m \leq n$.

Example ([2, Ch.0, 4.1 Example] Tangent bundle). Let M be a differentiable manifold of dimension n. A tangent bundle of M is $TM = \{(p, v) : p \in M, v \in T_pM\}$ with a differentiable structure of dimension 2n, described below:

Let $\{(U_{\alpha}, \varphi_{\alpha})\}$ be the maximal differentiable structure on M. For each α , define $\phi_{\alpha}: TM \to \varphi_{\alpha}^{-1}(U_{\alpha}) \times \mathbb{R}^n$ as

$$\phi_{\alpha}(p,v) = (\varphi_{\alpha}(p), (d\varphi_{\alpha})_p(v)).$$

Then $\{(\phi_{\alpha}^{-1}(\varphi_{\alpha}^{-1}(U_{\alpha})\times\mathbb{R}^n),\phi_{\alpha})\}$ becomes maximal charts for TM.

Example ([2, Ch.0, 3.1 Definition, modified] Regular surfaces in \mathbb{R}^n). A subset $M \subset \mathbb{R}^n$ is a regular surface of dimension k if for every $p \in M$ there exists a neighborhood U of p and a mapping $\varphi : U \to \varphi(U) \subset \mathbb{R}^k$ such that

1. φ is a differentiable homeomorphism onto its image $\varphi(U)$

2. $(d\varphi^{-1})_q : \mathbb{R}^k \to \mathbb{R}^n$ is injective for all $q \in U$.

Example ([2, Ch.0, 3.1 Definition, modified] Inverse image of a regular value). Let $F : U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable mapping of an open set U of \mathbb{R}^n . A point $p \in U$ is defined to be a critical point of F if the differential $dF_p : \mathbb{R}^n \to \mathbb{R}^m$ is not surjective. The image F(p) of a critical point is called a critical value of F, and a point $a \in \mathbb{R}^m$ that is not a critical point is called a regular value of F.

For a regular value $a \in F(U)$ of F, the inverse image $F^{-1}(a) \subset \mathbb{R}^n$ is a regular surface of dimension n - m.

Example ([2, Ch.0, 3.1 Definition, modified] Sphere). The sphere $S^n := \{x \in \mathbb{R}^{n+1} : ||x||_2 = 1\}$ is an inverse image of a regular value 1 of a function $||\cdot||_2 : \mathbb{R}^{n+1} \to \mathbb{R}$, so it is a manifold of dimension n.

Definition ([2, Ch.0, 5.1 Definition]). A vector field X on a differentiable manifold M is a correspondence that associates to each point $p \in M$ a vector $X(p) \in T_p M$. X can be viewed as a mapping of M into the tangent bundle TM. The vector field is differentiable if the mapping $X : M \to TM$ is differentiable.

Definition ([3, Section 41]). Let $\{U_{\alpha}\}$ be an indexed open covering of X. An indexed family of continuous functions

$$\rho_{\alpha}: X \to [0,1]$$

is said to be a partition of unity on X, dominated by (or subordinate to) $\{U_{\alpha}\}$, if:

- 1. (support ρ_{α}) $\subset U_{\alpha}$ for each α , i.e., $\overline{\{x : \rho_{\alpha}(x) \neq 0\}} \subset U_{\alpha}$.
- 2. The indexed family {support ρ_{α} } is locally finite, that is, $\forall x \in X$, there is only finite ρ_{α} 's such that $\rho_{\alpha}(x) > 0$.
- 3. $\sum \rho_{\alpha}(x) = 1$ for each $x \in X$.

Theorem ([2, Ch.0.5]). A differentiable manifold M of dimension n (with Hausdorff and countable basis condition) can be immersed in \mathbb{R}^{2n} and embedded in \mathbb{R}^{2n+1} .

Theorem ([2, Ch.0, 5.6 Theorem]). A differentiable manifold M (possibly without Hausdorff and countable basis condition) has a differentiable partition of unity if and only if every connected component of M is Hausdorff and has a countable basis.

Riemannian Metrics

Definition ([2, Ch.1, 2.1 Definition]). A Riemannian metric on a differential manifold M assigns to each $p \in M$ an inner product (that is, a symmetric, bilinear, positive-definite) $\langle , \rangle_p : T_p M \times T_p M \to \mathbb{R}$, that varies differentiably in the following sense: If (U, φ) is a chart with $\varphi^{-1}(x_1, \ldots, x_n) = q \in U$ and $\frac{\partial}{\partial x_i}(q) = d\varphi_x^{-1}(0, \ldots, 1, \ldots, 0)$, then $\left\langle \frac{\partial}{\partial x_i}(q), \frac{\partial}{\partial x_j}(q) \right\rangle_q = g_{ij}(x_1, \ldots, x_n)$ is a differentiable function on $\varphi(U)$.

Example ([2, Ch.1, 2.4 Example]). $M = \mathbb{R}^n$ with $\frac{\partial}{\partial x_i}$ identified with $e_i = (0, \ldots, 1, \ldots, 0)$. The metric is given by $\langle e_i, e_j \rangle = \delta_{ij}$. \mathbb{R}^n with this metric coincides with the usual Euclidean space of dimension n, and the Riemannian geometry is the usual metric Euclidean geometry.

Example ([2, Ch.1, 2.5 Example]). Let $f: M \to N$ be an immersion. If N has a Riemannian structure, f induces a Riemannian structure of M by defining $\langle u, v \rangle_p = \langle df_p(u), df_p(v) \rangle_{f(p)}, u, v \in T_p M$. Since df_p is injective, \langle, \rangle_p is positive definite as well. This metric in M is called the metric induced by f, and f is an isometric immersion. In particular, when M is a submanifold of N, we assume that M also has the metric induced from N as well.

Proposition ([2, Ch.1, 2.10 Proposition]). A differentiable manifold M has a Riemannian metric.

Definition ([2, Ch.1, 2.8 Definition]). A differentiable mapping $c : I \to M$ of an open interval $I \subset \mathbb{R}$ into a differentiable manifold M is called a curve.

Definition ([2, Ch.1, 2.9 Definition]). When M is a differentiable manifold, a vector field V along a curve $c: I \to M$ is a differentiable mapping that associates to every $t \in I$ a tangent vector $V(t) \in T_{c(t)}M$. To say that V is differentiable means that for any differentiable function f on M, the function $t \to V(t)f$ is differentiable on I.

The vector field $dc(\frac{d}{dt})$, denoted by $\frac{dc}{dt}$, is called the velocity field of c, and written as c' as well.

The restriction of a curve c to a closed interval $[a, b] \subset I$ is called a segment. We define the length of a segment by

$$l_a^b(c) = \int_a^b \left\langle \frac{dc}{dt}, \frac{dc}{dt} \right\rangle_{c(t)}^{1/2} dt.$$

Definition. Let $R \subset M$ be a region (open connected subset), whose closure is compact. For R being contained in a coordinate neighborhood U for a chart (U, φ) . We define the volume of R as the integral

$$\operatorname{vol}(R) = \int_{\varphi(R)} \sqrt{\det(g_{ij})} dx_1 \cdots dx_n,$$

and for general R, choose a partition of unity $\{\rho_{\alpha}\}$ subject to charts $\{U_{\alpha}\}$ and define as

$$\operatorname{vol}(R) = \sum_{\alpha} \int_{\varphi_{\alpha}(R \cap U_{\alpha})} (\rho_{\alpha} \circ \varphi_{\alpha}^{-1}) \sqrt{\det(g_{ij})} dx_1 \cdots dx_n.$$

Example. The integral of a function f on a manifold M with respect to the volume measure can be computed as, by choose a partition of unity $\{\rho_{\alpha}\}$ subject to charts $\{U_{\alpha}\}$,

$$\int_M f d\text{vol} = \sum_{\alpha} \int_{\varphi_{\alpha}(U_{\alpha})} (\rho_{\alpha} \circ \varphi_{\alpha}^{-1}) (f \circ \varphi_{\alpha}^{-1}) \sqrt{\det(g_{ij})} dx_1 \cdots dx_n.$$

Geodesics

Definition ([1, 1.3 Definitions]). Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ is a map c from a closed interval $[0, l] \subset \mathbb{R}$ to X such that c(0) = x, c(l) = y, and d(c(t), c(t')) = |t - t'| for all $t, t' \in [0, l]$.

Let $I \subset \mathbb{R}$ be an interval. A map $c: I \to X$ is a linearly reparameterized geodesic or a constant speed geodesic, if there exists a constant λ such that $d(c(t), c(t')) = \lambda |t - t'|$ for all $t, t' \in I$.

A local geodesic in X is a map c from an interval $I \subset \mathbb{R}$ to X with the property that for every $t \in I$ there exists $\epsilon > 0$ such that d(c(t'), c(t'')) = |t' - t''| for all $t', t'' \in (t - \epsilon, t + \epsilon)$.

Definition ([1, 1.3 Definitions]). Let (X, d) be a metric space. (X, d) is said to be a geodesic metric space (or, more briefly, a geodesic space) if every two points in X are joined by a geodesic. We say that (X, d) is uniquely geodesic if there is exactly one geodesic joining x to y, for all $x, y \in X$.

Definition. When M is a differentiable manifold, a vector field V along a geodesic $c : I \to M$ is called parallel if $\langle c', V \rangle = \text{constant along } c.$

Definition. Let V be a vector field along a curve $c : I \to M$. The Levi-Civita connection $\overline{\nabla}_{c'} V$ of \mathbb{R}^n along c is defined as

$$\left(\bar{\nabla}_{c'}V\right)(c(t)) \coloneqq \frac{d}{dt}V(c(t)) \in T_{c(t)}\mathbb{R}^n.$$

Definition ([2, Ch.2, Exercise 3]). Let M be a differentiable submanifold of \mathbb{R}^n , and let V be a vector field along a curve $c: I \to M$. The Levi-Civita connection $\nabla_{c'} V$ of M along c is defined as

$$\left(\nabla_{c'}V\right)\left(c(t)\right) \coloneqq \left(\left(\bar{\nabla}_{c'}V\right)\left(c(t)\right)\right)^{+} \in T_{c(t)}M,$$

where $((\bar{\nabla}_{c'}V)(c(t)))^{\top}$ is the projection of $(\bar{\nabla}_{c'}V)(c(t)) \in T_{c(t)}\mathbb{R}^n$ to $T_{c(t)}M$.

Definition ([2, Ch.2, 2.5 Definition]). Let M be a differentiable submanifold of \mathbb{R}^n , and let V be a vector field along a curve $c: I \to M$. V is called parallel if $\nabla_{c'} V = 0$.

Proposition ([2, Ch.2, 2.6 Proposition]). Let M be a differentiable manifold and $c : I \to M$ be a curve. Let $V_0 \in T_{c(t_0)}M$ for some $t_0 \in I$. Then there exists a unique parallel vector field V along c such that $V(t_0) = V_0$. V(t) is called the parallel transport of $V(t_0)$ along c.

Definition ([2, Ch.2, 2.5 Definition]). Let M be a differentiable submanifold of \mathbb{R}^n . A parametrized curve $c: I \to M$ is a *(local) geodesic at* $t_0 \in I$ if $\nabla_{c'}c' = 0$ at the point t_0 ; if γ is a geodesic at t for all $t \in I$, we say that γ is a *(local) geodesic*.

References

- Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
- [2] Manfredo Perdigão do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty.
- [3] James R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [MR0464128].
- [4] 김홍종. 미적분학 2. 제2개정판 edition, 2016.