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Probability Spaces

A probability space is a triple (2, F, P) where 0 is a set of “outcomes,” F is a set of “events,” and P : F — [0, 1]
is a function that assigns probabilities to events.
Definition. Let Q be a set. A nonempty collection F of subsets of  is called o-algebra (or field) if

(i) if A € F then Q\A € F, and

(ii) if Ay, Ag,--- € F, then _f'lei € F.

1=

Example. F = {¢,Q} trivial o—field
F =2%={A| AC Q}: power set =>0—field

Without P, (Q, F) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an o-algebra F, a function
u: F — R is a measure if

(i) u(A) > p(¢) =0 for all A € F, and

(iii) For Ay, Ay, --- € F with A, N A; = ¢ for any i # j,

H (UI‘L) = ZM(Az’)-

Definition. (1) p(£2) < co =finite measure
(2) 1(2) = 1 =probability measure

(3) Ja partition Ay, Ag,--- with [JA; = Q and pu(A;) < co = o—finite measure
i=1

Theorem ([Durrett(2010), Theorem 1.1.4]). Let v be a measure on (£, F).

(1) Monotonicity. If A C B then u(A) < u(B).



(1) Subadditivity. If A C |J A; then p(A) < > p(4;).
i=1 j

(iti) Continuity from below. A, 1A (i.e. Ay C Ay C -+ and A= |J 4;) then p(A;) 1 u(A).

=1

(iv) Continuity from above. A, L A (i.e. Ay D Aa D+ and A= () A;) with u(Ar) < oo then u(4;) | u(A).
i=1

Definition. Let A be a class of subsets of Q. Then o(A) denotes the smallest c—algebra that contains A.

For any any A, such o(A) exists and is unique: [Durrett(2010), Exercise 1.1.1].

Definition. Borel c—field on R%, denoted by R?, is the smallest o—field containing all open sets.

Theorem ([Durrett(2010), Theorem 1.1.2]). There is a unique measure p on (R, R) with
w((a, b)) =b—a.

Such measure is called Lebesgue measure.

Example ([Durrett(2010), Example 1.1.3]). Product space
(4, Fi, P;) : sequence of probability spaces
Let Q=1 x -+ x Qp, = {(w1, - ,wn)| w; € Q;}
F = F1 X -+ X F, =the o—field generated by Ay x --- X A, where A; € F;
P=P x---x P, (ie. P(A; X -+ x A,) = P1(41) - P,(Ay)

Distribution and Random Variables

Definition. Let (2, F) and (S, S) are measurable spaces. A mapping X : Q — S is a measurable map from (Q, F)

to (S,S) if

forall BeS, X }(B) ={weQ: X(w) € B} eF.

If (S,S) = (R, B(R?)) and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 14 of a set A € F:



1 weA,

0 w¢A.

If X is a random variable, then X induces a probability measure on R.

Definition. The probability measure p on (R, B(R)) defined as p(A) = P(X € A) for all A € B(R) is called the

distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.

Definition. The distribution function F(x) of a random variable X is defined as F(z) = P(X < x).

Theorem ([Durrett(2010), Theorem 1.2.1]). Any distribution function F has the following properties:
(i) F' is nondecreasing.
(i1) nlLII;OF(x) =1, HEIFOOF(:E) =0.
(iii) F is right continuous. i.e. lian(y) = F(z).
Yyx

(iv) P(X <x)=F(z—) = glgF(x)
(v) P(X =x) = F(z) — F(z—).

Theorem ([Durrett(2010), Theorem 1.2.2]). If F' satisfies (i) (i) (i) in [Durrett(2010), Theorem 1.2.1], then it
is the distribution function of some random variable. That is, there exists a triple (Q, F, P) and a random variable

X such that F(z) = P(X < x).

Theorem. If F satisfies (i) (i) (i), then 3! probability measure p on (R, B(R)) such that for all a < b,

p((a,b]) = F(b) — F(a)

Definition. If X and Y induce the same distribution p on (R, B(R)), we say X and Y are equal in distribution.

We write



Definition. When the distribution function F(z) = P(X < x) has the form F(z) = [ f(y)dy, then we say X

has the density function f.
Remark. f is not unique, but unique up to Lebesque measure 0.
Theorem (|Durrett(2010), Theorem 1.3.2]). If X : (2, F) — (S,S) and f: (S,8) = (T, T) are measurable maps,

then f(X) is measurable.

Theorem. f: (S,8) = (T,7) and suppose S = o(open sets), T = o(open sets). Then, if f is continuous then f

1s measurable.

Theorem ([Durrett(2010), Theorem 1.3.3]). If Xy,---, X, are random variables and f : (R",R"™) — (R, R) is

measurable, then (X1, -+, X,) is a random variable.
Theorem ([Durrett(2010), Theorem 1.3.4]). If X1,---, X, are random variables then X1 + --- 4+ X, is a random
variable.

Remark. If X,Y are random variables, then
cX (cis scalar), X +Y, XY, sin(X), X2, ---,

are all random variables.

Theorem ([Durrett(2010), Theorem 1.3.5]). infX,,, supX,, limsupX,, liminfX,, are random variables.

Integration

Let p be a o-finite measure on (€2, F).



Definition. For any predicate Q(w) defined on 2, we say @ is true (u—)almost everywhere (or a.e.) if p({w :
Q(w) is false}) =0

Step 1.

Definition. ¢ is a simple function if p(w) = > a;14, with A; € F
i=1
If ¢ is a simple function and ¢ > 0, we let

[ edp = éam(&)

Step 2.

Definition. If f is measurable and f > 0 then we let

J fdu=sup{[hdp: 0<h < fand h simple}

Step 3.

Definition. We say measurable f is integrable if [ |f|dp < co
let f(z):= f(z) VO, f~(x) = (—f)(x) VO where a V b = max(a, b)
We define the integral of f by
[fdu= [ fTdu— [ f~dp
we can also define [ fdp if [ fTdu = o0 and [ f~du < oo, or [ frdu < ooand [ f~dp= oo

Theorem. (1.4.7) Suppose f and g are integrable.
(i) If f >0 a.e. then [ fdu >0
(i) Ya € R, [afdu=a [ fdu
(i) [ f+gdup= [ fdu+ [ gdp
(iv) If g < f a.e. then [ gdu < [ fdu
(v) If g = [ a.e. then [gdp = [ fdp
(vi) | [ fdul < [|fldu



Independence

Definition. Let (2, F, P) be probability space. Two events A, B € F are independent if
P(ANB)=P(A) x P(B)
Two random variables X and Y are independent if
VO, DeR, P(XeC,YeD)=P(X e€C)P(Y € D)
Two o-fields F; and Fo(C F) are independent if
VA € F1, VB € F5, A and B are independent.

Remark. An infinite collection of objects (oc—fields, random variables, or sets) is said to be independent if every

finite subcollection is.

Definition. o—fields Fi,--- ,F, are independent if
n n
i=1 i=1
random variables X1, -+, X,, are independent if

P(N{Xie Bi}) = [ P(Xi € B;), VB; € R
i=1 i=1

Sets Ay,---, A, are independent if
P(NA)=]IP(4;) forall I C {1,--- ,n}
iel i€l

Remark. the definition of independent events is not enough to assume pairwise independent, which is P(4;NA;) =

P(A;)P(A;), i # j. It is clear that indenendent events are pairwise independent, but converse is not true.

Example. Let X;, X3, X3be independent random variables with P(X; =0) = P(X; =1) = %
Let Ay = {Xs = X3}, 4y = {X3 =X} and A3 = {X; = Xo}. These events are pairwise independent but not

independent.

Weak laws of large numbers

Various modes of convergence

{X,} and X are random variables defined on (2, F, P)



Definition. X,, — X almost surely (a.s.) ( with probability 1(w.p. 1), almost everywhere(a.e.) ) if P{w : X, (w) —
X(w)p =1

Equivalent definition : Ve, 111}11 Plw: |[Xp(w) = X(w)| <eVn>m} =1

or Ve, liin Plw: | Xp(w) —X(Ww)|>e¥n>m} =0

Definition. X,, — X in probability (in pr, ==) if lim P{|X, — X| > ¢} =0
n—o0

Theorem. X,, — X a.5s. = X, Lo x

Remark. X, 2> X #X,, — X a.s.

Definition. X,, = X in L,, 0 <p < o0

if lim E(|X, — X|?) =0 provided E|X,|? < co, E|X|P < 0.

n—oQ

Theorem. X,, — X in L, — X,, > X

Theorem. (Chebyshev inequality)

P(IX|>¢) < ZXT

Remark. X, 2 X # X,, —» X in L,

Example. Q= [0,1], F = B[0,1], P = Unif[0,1]
X(w)=0, Xp(w)=nl(0<w< 1)
Then P{|X,(w) - X(w)| >} =P{0<w< 1} =1 =0
But E|X,, — X| = E|X,| =1

Theorem. X,, — X and there exists a random variables Z s.t.

| Xn| < Z and E|ZP < 00



Then X, — X in Ly.

Remark. If E|X| < oo, then
lim [, |X|dP — 0 whenever P(A,) — 0

n—roo

2..2.1. L, weak law

Theorem ([Durrett(2010), Theorem 2.2.3]). Let X1, Xa,--- be uncorrelated random variables with EX; = pu and
Var(X;) <C < o
Let S, = > X;. Then

i=1
S'n. . .
2n — pin Ly and so in pr.

Theorem ([Durrett(2010), Theorem 2.2.9]). Weak law of large numbers
Let X1, Xs,- -+ be i.i.d. random variables with F|X;| < oo.
Let S, = X1+ -+ X,and let u=FEX;.

Then Sn—“ — W N pr.

Weak Convergence

Definition. A sequence of distribution function F,, converges weakly to a limit F (F, = F, F, — F)

if F,(y) — F(y) Vy that are continuity points of F.

Definition. A sequence of random variables {X,,} converges weakly or converges in distribution to a limit X
(Xp= X, X, 5 X, X, -5 X)

If the distribution function F;, of X,, converges weakly to the distribution of X.

Example ([Durrett(2010), Example 3.2.1]). Let X7, Xo,--- be iid with P(X; =1) = P(X; = —1) =
Let S, = Xi1 +---+ X,
Then F,(y) = P(Sp/vn<y)— [Y_ \/%e_édx Yy
That is, F,, = N(0,1)



Example ([Durrett(2010), Example 3.2.3]). Let X ~ F and X,, = X + 1
Then F,(z) = P(X, <z)=F(z — 1) = F(z-)
Hence F,(z) — F(z) only when F(z) = F(z—)

(i.e. z is a continuity point of F')

so X, > X

Example ([Durrett(2010), Example 3.2.4]). X, ~ Geo(p) (i.e. P(X, >m) = (1 —p)™~ 1)
Then P(X, > %) = (1 —p)r e Tasp—0

Central Limit Theorem

Theorem ([Durrett(2010), Theorem 3.4.1]). Let X1, Xa,- -+ be iid with EX; = p and Var(X;) = 0 > 0.
IfS,=X1+---+ X, then

(S, — np)/ (Vo) L N(0, 1)

Theorem ([Durrett(2010), Theorem 3.4.9|). Berry-Essen theorem
Let X1, Xo,-++ be i.i.d. with EX; =0, EX? = 0% and E|X1]®> = p <
Let F,(x) be the distribution function of (X1 + -+ X,)/(cv/n) and ®(x) be the standard normal distribution.
Then sup| Fy,(z) — ®(x)| < 3p/(0”v/n)

Stochastic Order Notation

The classical order notation should be familiar to you already.
1. We say that a sequence a,, = o(1) if a,, = 0 as n — oo. Similarly, a,, = o(b,,) if a, /b, = o(1).

2. We say that a sequence a,, = O(1) if the sequence is eventually bounded, i.e. for all n large, |a,| < C for some
constant C' > 0. Similarly, a,, = O(b,) if a,, /b, = O(1).

3. If a,, = O(by,) and b,, = O(ay,) then we use either a, = O(b,,) or a, =< by,.
When we are dealing with random variables we use stochastic order notation.
1. We say that X,, = op(1) if for every € > 0, as n — oo
P (| Xn| > €) =0,
i.e. X,, converges to zero in probability.
2. We say that X,, = Op(1) if for every € > 0 there is a finite C'(€) > 0 such that, for all n large enough:
P(|Xn| = C(e) <e.



The typical use case: suppose we have X, ..., X, which are i.i.d. and have finite variance, and we define:
- 1yx
p=-2 X
=1
1. i — p =o0p(1) (Weak Law of Large Number)
2. i—p=0p(1/y/n) (Central Limit Theorem)

As with the classical order notation, we can do some simple “calculus” with stochastic order notation and observe
that for instance: op(1) + Op(1) = Op(1), op(1)Op(1) = 0p(1) and so on.

Asymptotic Theory

From here, the lecture note is largely based on [Wasserman(2004)] and his lecture notes.
We suppose that we obtain a sample X,..., X,, ~ P. Let §(P) be a parameter, which is some function of P. Let
0 =0(Xy,...,X,) denote an estimator for #, which is a function of a sample. We are interested in two questions:

1. Consistency: Does the estimator 6 converge in probability to 6, i.e. does 6 2 67 More precisely, can we find
some function f(n) of the sample size n such that d(6,0) = Op(f(n))? This is analogous to the Law of Large
Number.

2. Asymptotic distribution: What can we say about the distribution of \/ﬁ(é — #)? This is analogous to the
Central Limit Theorem.

Confidence Set

Suppose we have a statistical model (i.e. a collection of distributions) P. Let C,,(X1,..., X, ) be a set constructed
using the observed data X7i,...,X,,. This is a random set. C,, is a 1 — « confidence set for a parameter 6 if:

PO € Cy(X1,...,Xn) >1—a, forall P e P.

This means that no matter which distribution in P generated the data, the interval guarantees the coverage property
described above.

Bootstrap

The bootstrap is a method for estimating standard errors and computing confidence intervals. Let X1,..., X, ~ P,
and T,, = g(X1,...,X,) be a statistic, that is, T;, is any function of the data. Suppose we want to know Vp(T},),
the variance of T,,, where the notation Vp emphasizes the dependence on the unknown distribution P. For example,
if T, = X, = 237" | X; then Vp(T,,) = 0?/n where 02 = [(z — p)?dP(z) and p = [xdP(z). Let P, be the
empirical measure that puts mass 1/n at each data point, thus

Po(A) = % i[(xi € A).

The bootstrap idea has two steps:
Step 1: Estimate Vp(T),) with Vp (T7,).
Step 2: Approximate Vp_(T;,) using Monte Carlo.

Monte Carlo

Suppose we draw an iid sample Y7, ..., Yp ~ P, and h is any function with finite mean, i.e., E [h(Y)] < oo, then by
the weak law of large numbers,

1 B P
5 Z h(Y;) = /h(y)dP(y) =E[nY)],

10



as B — oo. In particular,

1 1 1
Y. — V)2 y2 Y.
B E ( Jj— ) - B E i B J
j=1 =1

£ / dP(y) — < / ydP(y))2 = Vp(Y).

Hence, we can use the sample variance of the simulated values to approximate Vp(Y).

Bootstrap Variance Estimation

Now, Vp, (T},) means “the variance of T, if the distribution of the data is P,”. To compute this, we simulate
X7,..., X} from P, and then compute T} = g(X7,...,X). This constitutes one draw from the distribution of T,,.
The idea is illustrated in the following diagram:

Real world P = Xp,..,X, = T,=¢9X1,....,X,)
Bootstrap world P, = X{,.... X} = Tr=g9(X7,....X})

How do we simulate X7, ..., X from P, ? Notice that P, puts mass 1/n at each data point X1, ..., X,,. Therefore
drawing an observation from P, is equivalent to drawing one point at random from the original data set.

Thus, to simulate X7,..., X} ~ P,, it suffices to draw n observations with replacement from X,...,X,. The
algorithm for bootstrap variance estimation is below:

1. Draw X7{,..., X} ~ P,.

2. Compute T = g(X7,..., X}).

3. Repeat step 1 and 2, B times, to get 7)) ,,..., T} 5.
4. Let

18 1< ’
I * - *
Uboot = B E ( b B E Tn,r) .
b=1 r=1
Notice that we are using two approximations:

not so samll small
VP( n) ~ P,,,( n) =~ Vboot-

Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence intervals. We suggest one way here, Pivotal Intervals.

Let § = T(P) and 0, = T(P,) and define the pivot R, = 0, —0.Let 0% ,,..., 0 5 denote bootstrap replications

n,l»
of 0,.Let H (r) denote the cdf of the pivot:
H(r)=P(R, <7).

Define

Then it follows that

p(n o (S) <0< m (1-9))
- (H’1<%)S3n§ 71(1_%»

11



Hence, C7 is an exact 1 — a confidence interval for 6. Unfortunately, computing C; depends on the unknown
distribution H but we can form a bootstrap estimate of H:

where R} , = é:b —0,. Let 7% denote the 8 sample quantile of (R}, ;,..., R}, p). It follows that the 1 —a bootstrap
confidence interval is

C, = (én — rf,a/g,én - 7”2/2) .

Minimax

When solving a statistical learning problem, there are often many procedures to choose from. This leads to
the following question: how can we tell if one statistical learning procedure is better than another? One answer
is provided by minimax theory which is a set of techniques for finding the minimum, worst case behavior of a

procedure.
Definition. Let P be a set of distributions and let X1,..., X, be a sample from some distribution P € P. Let
6(P) be a parameter, which is some function of P. Let § = (X1, ..., X,,) denote an estimator, which is a function

of a sample. Given a metric d, the minimaz risk is

Ry = F,(P) = inf sup Ep[d(6.6(P)) (1)

where the infimum is over all estimators.

For example, §(P) could be the mean of P, the variance of P or the density of P. (X1, ..., X,) can be the
sample mean X = 1 3" | X, the sample variance 02 = L 3" (X, — X)?, the kernel density estimator py,, etc.

Definition. (i) An estimator 0 is a minimax estimator if suppep Ep [d(0,0(P))] = Ry.
(ii) An estimator 0 is a (asymptotic) minimax estimator if suppep Ep [d(0,0(P))] = O(R,).

Example. Suppose that P = {N(6,1) : 6 € R} where N(,1) denotes a Gaussian with mean 6 and variance 1.
Consider estimating 6 with the metric d(a,b) = (a — b)?. The minimax risk is

R, = inf sup Ep( - 0)2] (2)
6 PepP

In this example, @ is a scalar.
The minimax risk is R, = 1/n and X,, is a minimax estimator.

Example. Suppose that P is the set of densities with uniformly bounded second derivatives. Let (X1, Y1), ..., (X, Ys)
be a sample from a distribution P. Let m(z) = Ep(Y|X = z) = [ydP(y|X = z) be the regression function. In
this case, we might use the metric d(my,m2) = [(mi(z) — ma(z))?dz in which case the minimax risk is

R =it sup B | [ (o)~ m(a)?] 3)

™ pep

In this example, 6 is a function.
The minimax risk is R, = © (n*4/ (4+d)) and the kernel density estimator is a minimax estimator.

Kernel Density Estimation

Definition. A kernel function K : R? — R is a function satisfying [ K (z)dz = 1.

12



Remark. Tt is usually assumed that K (x) > 0 for all 2 € R?, i.e., nonnegative, which makes the computation much
cleaner. However, for faster rate of convergence, it is inevitable to allow negative values to the kernel function.

For 1-dimension, some commonly used kernels are the following;:

Boxcar: K(z) = 1I(x) Gaussian: K(x)z%ﬂe‘””z/z

1
2
Epanechnikov: K(z) = 3(1—2%)I(z) Tricube: K(z) =201 — [z*)*I(z)

where I(xz) = 1 if || < 1 and I(z) = 0 otherwise. These kernels are plotted in Figure 1. Two commonly used
multivariate kernels are H?Zl K(z;) and K(||z)).

-3 0 3 -3 0 3

Figure 1: Examples of smoothing kernels: boxcar (top left), Gaussian (top right), Epanechnikov (bottom left), and
tricube (bottom right).

Definition. Suppose that Xi,..., X, € R% Given a kernel K and a positive number h, called the bandwidth, the
kernel density estimator is defined to be

[l — Xl
N @
More generally, we define
1 n
=-Y Kpy(r-X;
"=

where H is a positive definite bandwidth matrix and Ky (z) = |H|"Y2K(H~/%z).

For simplicity, we will take H = h2I and we get back the previous formula.

Sometimes we write the estimator as p; to emphasize the dependence on h. In the multivariate case the co-
ordinates of X; should be standardized so that each has the same variance, since the norm |z — X;|| treats all
coordinates as if they are on the same scale.

The kernel estimator places a smoothed out lump of mass of size 1/n over each data point X;; see Figure 2. The
choice of kernel K is not crucial, but the choice of bandwidth h is important. Small bandwidths give very rough
estimates while larger bandwidths give smoother estimates.

0.1 Confidence Bands
To get a confidence band we use the bootstrap. Let P, be the empirical distribution of X,...,X,. The idea is to

estimate the distribution
Fu(t) = P(Vnhd|[p() = pn(@) | < )

13



Figure 2: A kernel density estimator p. At each point x, p(x) is the average of the kernels centered over the data
points X;. The data points are indicated by short vertical bars. The kernels are not drawn to scale.

with the bootstrap estimator
Fu(t) = P(Vahd|[3; (@) = pu(@)lloe <t | X1, X))

where p; is constructed from the bootstrap sample X{,..., X} ~ P,,. Then

sup |F(t) — Fu(t)] 5 0.
t

Here is the algorithm.

1. Let P, be the empirical distribution that puts mass 1/n at each data point X;.
2. Draw X7,..., X ~ P,. This is called a bootstrap sample.

3. Compute the density estimator p; based on the bootstrap sample.

4. Compute R = sup, Vnhd||pf — pnl]oo-

5. Repeat steps 2-4 B times. This gives Ry,..., Rp.

6. Let z, be the upper o quantile of the R;’s. Thus

1 B
EZI(R]- > 2q) R Q.
j=1
7. Let . .
En(l‘) = ph(l‘) — nhd, ’U,n(x) = ph($) + nhd

Theorem. Under appropriate (very weak) conditions, we have

liminf P(¢,(z) < pp(z) <u(z) forall z) >1— o

n—oo

See Figure 3.
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h=2 h=3

Figure 3: 95 percent bootstrap confidence bands using various bandwidths.
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