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Probability Spaces

A probability space is a triple (Ω,F , P ) where Ω is a set of “outcomes,” F is a set of “events,” and P : F → [0, 1]
is a function that assigns probabilities to events.

Definition. Let Ω be a set. A nonempty collection F of subsets of Ω is called σ-algebra (or field) if

(i) if A ∈ F then Ω\A ∈ F , and

(ii) if A1, A2, · · · ∈ F , then
∞⋃
i=1

Ai ∈ F .

Example. F = {ϕ,Ω} trivial σ−field

F = 2Ω = {A| A ⊂ Ω} : power set =⇒σ−field

Without P , (Ω,F) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an σ-algebra F , a function

µ : F → R is a measure if

(i) µ(A) ≥ µ(ϕ) = 0 for all A ∈ F , and

(iii) For A1, A2, · · · ∈ F with Ai ∩Aj = ϕ for any i ̸= j,

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Definition. (1) µ(Ω) < ∞ =⇒finite measure

(2) µ(Ω) = 1 =⇒probability measure

(3) ∃a partition A1, A2, · · · with
∞⋃
i=1

Ai = Ω and µ(Ai) < ∞ =⇒ σ−finite measure

Theorem ([Durrett(2010), Theorem 1.1.4]). Let µ be a measure on (Ω,F).

(i) Monotonicity. If A ⊂ B then µ(A) ≤ µ(B).

1



(ii) Subadditivity. If A ⊂
∞⋃
i=1

Ai then µ(A) ≤
∞∑
i=1

µ(Ai).

(iii) Continuity from below. An ↑ A ( i.e. A1 ⊂ A2 ⊂ · · · and A =
∞⋃
i=1

Ai) then µ(Ai) ↑ µ(A).

(iv) Continuity from above. An ↓ A ( i.e. A1 ⊃ A2 ⊃ · · · and A =
∞⋂
i=1

Ai) with µ(A1) < ∞ then µ(Ai) ↓ µ(A).

Definition. Let A be a class of subsets of Ω. Then σ(A) denotes the smallest σ−algebra that contains A.

For any any A, such σ(A) exists and is unique: [Durrett(2010), Exercise 1.1.1].

Definition. Borel σ−field on Rd, denoted by Rd, is the smallest σ−field containing all open sets.

Theorem ([Durrett(2010), Theorem 1.1.2]). There is a unique measure µ on (R,R) with

µ((a, b]) = b− a.

Such measure is called Lebesgue measure.

Example ([Durrett(2010), Example 1.1.3]). Product space

(Ωi,Fi,Pi) : sequence of probability spaces

Let Ω = Ω1 × · · · × Ωn = {(ω1, · · · , ωn)| ωi ∈ Ωi}

F = F1 × · · · × Fn =the σ−field generated by A1 × · · · ×An, where Ai ∈ Fi

P = P1 × · · · × Pn (i.e. P (A1 × · · · ×An) = P1(A1) · · ·Pn(An)

Distribution and Random Variables

Definition. Let (Ω,F) and (S,S) are measurable spaces. A mapping X : Ω → S is a measurable map from (Ω,F)

to (S,S) if

for all B ∈ S, X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ F .

If (S,S) = (Rd,B(Rd)) and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 1A of a set A ∈ F :
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1A(ω) =


1 ω ∈ A,

0 ω /∈ A.

If X is a random variable, then X induces a probability measure on R.

Definition. The probability measure µ on (R,B(R)) defined as µ(A) = P (X ∈ A) for all A ∈ B(R) is called the

distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.

Definition. The distribution function F (x) of a random variable X is defined as F (x) = P (X ≤ x).

Theorem ([Durrett(2010), Theorem 1.2.1]). Any distribution function F has the following properties:

(i) F is nondecreasing.

(ii) lim
n→∞

F (x) = 1, lim
n→−∞

F (x) = 0.

(iii) F is right continuous. i.e. lim
y↓x

F (y) = F (x).

(iv) P (X < x) = F (x−) = lim
y↑x

F (x).

(v) P (X = x) = F (x)− F (x−).

Theorem ([Durrett(2010), Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [Durrett(2010), Theorem 1.2.1], then it

is the distribution function of some random variable. That is, there exists a triple (Ω,F , P ) and a random variable

X such that F (x) = P (X ≤ x).

Theorem. If F satisfies (i) (ii) (iii), then ∃! probability measure µ on (R,B(R)) such that for all a < b,

µ((a, b]) = F (b)− F (a)

Definition. If X and Y induce the same distribution µ on (R,B(R)), we say X and Y are equal in distribution.

We write

X
d
= Y.
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Definition. When the distribution function F (x) = P (X ≤ x) has the form F (x) =
∫ x

−∞ f(y)dy, then we say X

has the density function f .

Remark. f is not unique, but unique up to Lebesque measure 0.

Theorem ([Durrett(2010), Theorem 1.3.2]). If X : (Ω,F) → (S,S) and f : (S,S) → (T, T ) are measurable maps,

then f(X) is measurable.

Theorem. f : (S,S) → (T, T ) and suppose S = σ(open sets), T = σ(open sets). Then, if f is continuous then f

is measurable.

Theorem ([Durrett(2010), Theorem 1.3.3]). If X1, · · · , Xn are random variables and f : (Rn,Rn) → (R,R) is

measurable, then f(X1, · · · , Xn) is a random variable.

Theorem ([Durrett(2010), Theorem 1.3.4]). If X1, · · · , Xn are random variables then X1 + · · ·+Xn is a random

variable.

Remark. If X,Y are random variables, then

cX (c is scalar), X ± Y, XY, sin(X), X2, · · · ,

are all random variables.

Theorem ([Durrett(2010), Theorem 1.3.5]). inf
n
Xn, sup

n
Xn, lim sup

n
Xn, lim inf

n
Xn are random variables.

Integration

Let µ be a σ-finite measure on (Ω,F).
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Definition. For any predicate Q(ω) defined on Ω, we say Q is true (µ−)almost everywhere (or a.e.) if µ({ω :

Q(ω) is false}) = 0

Step 1.

Definition. φ is a simple function if φ(ω) =
n∑

i=1

ai1Ai
with Ai ∈ F

If φ is a simple function and φ ≥ 0, we let∫
φdµ =

n∑
i=1

aiµ(Ai)

Step 2.

Definition. If f is measurable and f ≥ 0 then we let∫
fdµ = sup{

∫
hdµ : 0 ≤ h ≤ f and h simple}

Step 3.

Definition. We say measurable f is integrable if
∫
|f |dµ < ∞

let f+(x) := f(x) ∨ 0, f−(x) := (−f)(x) ∨ 0 where a ∨ b = max(a, b)

We define the integral of f by∫
fdµ =

∫
f+dµ−

∫
f−dµ

we can also define
∫
fdµ if

∫
f+dµ = ∞ and

∫
f−dµ < ∞, or

∫
f+dµ < ∞ and

∫
f−dµ = ∞

Theorem. (1.4.7) Suppose f and g are integrable.

(i) If f ≥ 0 a.e. then
∫
fdµ ≥ 0

(ii) ∀a ∈ R,
∫
afdµ = a

∫
fdµ

(iii)
∫
f + gdµ =

∫
fdµ+

∫
gdµ

(iv) If g ≤ f a.e. then
∫
gdµ ≤

∫
fdµ

(v) If g = f a.e. then
∫
gdµ =

∫
fdµ

(vi) |
∫
fdµ| ≤

∫
|f |dµ
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Independence

Definition. Let (Ω,F , P ) be probability space. Two events A,B ∈ F are independent if

P (A ∩B) = P (A)× P (B)

Two random variables X and Y are independent if

∀C,D ∈ R, P (X ∈ C, Y ∈ D) = P (X ∈ C)P (Y ∈ D)

Two σ-fields F1 and F2(⊂ F) are independent if

∀A ∈ F1, ∀B ∈ F2, A and B are independent.

Remark. An infinite collection of objects (σ−fields, random variables, or sets) is said to be independent if every

finite subcollection is.

Definition. σ−fields F1, · · · ,Fn are independent if

P (
n⋂

i=1

Ai) =
n∏

i=1

P (Ai), ∀Ai ∈ Fi

random variables X1, · · · , Xn are independent if

P (
n⋂

i=1

{Xi ∈ Bi}) =
n∏

i=1

P (Xi ∈ Bi), ∀Bi ∈ R

Sets A1, · · · , An are independent if

P (
⋂
i∈I

Ai) =
∏
i∈I

P (Ai) for all I ⊂ {1, · · · , n}

Remark. the definition of independent events is not enough to assume pairwise independent, which is P (Ai∩Aj) =

P (Ai)P (Aj), i ̸= j. It is clear that indenendent events are pairwise independent, but converse is not true.

Example. Let X1, X2, X3be independent random variables with P (Xi = 0) = P (Xi = 1) = 1
2

Let A1 = {X2 = X3}, A2 = {X3 = X1} and A3 = {X1 = X2}. These events are pairwise independent but not

independent.

Weak laws of large numbers

Various modes of convergence

{Xn} and X are random variables defined on (Ω,F , P )
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Definition. Xn → X almost surely (a.s.) ( with probability 1(w.p. 1), almost everywhere(a.e.) ) if P{ω : Xn(ω) →

X(ω)} = 1

Equivalent definition : ∀ϵ, lim
m→∞

P{ω : |Xn(ω)−X(ω)| ≤ ϵ ∀n ≥ m} = 1

or ∀ϵ, lim
m→∞

P{ω : |Xn(ω)−X(ω)| > ϵ ∀n ≥ m} = 0

Definition. Xn → X in probability (in pr, p−→) if lim
n→∞

P{|Xn −X| > ϵ} = 0

Theorem. Xn → X a.s. =⇒ Xn
p−→ X

Remark. Xn
p−→ X ⇏Xn → X a.s.

Definition. Xn → X in Lp, 0 < p < ∞

if lim
n→∞

E(|Xn −X|p) = 0 provided E|Xn|p < ∞, E|X|p < ∞.

Theorem. Xn → X in Lp =⇒ Xn
p−→ X

Theorem. (Chebyshev inequality)

P (|X| ≥ ϵ) ≤ E|X|p
ϵp

Remark. Xn
p−→ X ⇏ Xn → X in Lp

Example. Ω = [0, 1], F = B[0, 1], P = Unif [0, 1]

X(ω) = 0, Xn(ω) = nI(0 ≤ ω ≤ 1
n )

Then P{|Xn(ω)−X(ω)| > ϵ} = P{0 ≤ ω ≤ 1
n} = 1

n → 0

But E|Xn −X| = E|Xn| = 1

Theorem. Xn
p−→ X and there exists a random variables Z s.t.

|Xn| ≤ Z and E|Z|p < ∞
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Then Xn → X in Lp.

Remark. If E|X| < ∞, then

lim
n→∞

∫
An

|X|dP → 0 whenever P (An) → 0

2..2.1. L2 weak law

Theorem ([Durrett(2010), Theorem 2.2.3]). Let X1, X2, · · · be uncorrelated random variables with EXi = µ and

V ar(Xi) ≤ C < ∞

Let Sn =
n∑

i=1

Xi. Then

Sn

n → µ in L2 and so in pr.

Theorem ([Durrett(2010), Theorem 2.2.9]). Weak law of large numbers

Let X1, X2, · · · be i.i.d. random variables with E|Xi| < ∞.

Let Sn = X1 + · · ·+Xnand let µ = EX1.

Then Sn

n → µ in pr.

Weak Convergence

Definition. A sequence of distribution function Fn converges weakly to a limit F (Fn ⇒ F, Fn
w−→ F )

if Fn(y) → F (y) ∀y that are continuity points of F .

Definition. A sequence of random variables {Xn} converges weakly or converges in distribution to a limit X

(Xn ⇒ X, Xn
w−→ X, Xn

d−→ X)

If the distribution function Fn of Xn converges weakly to the distribution of X.

Example ([Durrett(2010), Example 3.2.1]). Let X1, X2, · · · be iid with P (X1 = 1) = P (X1 = −1) = 1
2 .

Let Sn = X1 + · · ·+Xn.

Then Fn(y) = P (Sn/
√
n ≤ y) →

∫ y

−∞
1√
2π

e−
x2

2 dx ∀y

That is, Fn ⇒ N(0, 1)
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Example ([Durrett(2010), Example 3.2.3]). Let X ∼ F and Xn = X + 1
n

Then Fn(x) = P (Xn ≤ x) = F (x− 1
n ) → F (x−)

Hence Fn(x) → F (x) only when F (x) = F (x−)

(i.e. x is a continuity point of F )

so Xn → X

Example ([Durrett(2010), Example 3.2.4]). Xp ∼ Geo(p) (i.e. P (Xp ≥ m) = (1− p)m−1)

Then P (Xp > x
p ) = (1− p)

x
p → e−x as p → 0

Central Limit Theorem

Theorem ([Durrett(2010), Theorem 3.4.1]). Let X1, X2, · · · be iid with EXi = µ and V ar(Xi) = σ2 > 0.

If Sn = X1 + · · ·+Xn, then

(Sn − nµ)/(
√
nσ)

d−→ N(0, 1)

Theorem ([Durrett(2010), Theorem 3.4.9]). Berry-Essen theorem

Let X1, X2, · · · be i.i.d. with EXi = 0, EX2
i = σ2 and E|X1|3 = ρ < ∞

Let Fn(x) be the distribution function of (X1 + · · ·+Xn)/(σ
√
n) and Φ(x) be the standard normal distribution.

Then sup
x
|Fn(x)− Φ(x)| ≤ 3ρ/(σ3

√
n)

Stochastic Order Notation
The classical order notation should be familiar to you already.

1. We say that a sequence an = o(1) if an → 0 as n → ∞. Similarly, an = o(bn) if an/bn = o(1).

2. We say that a sequence an = O(1) if the sequence is eventually bounded, i.e. for all n large, |an| ≤ C for some
constant C ≥ 0. Similarly, an = O(bn) if an/bn = O(1).

3. If an = O(bn) and bn = O(an) then we use either an = Θ(bn) or an ≍ bn.

When we are dealing with random variables we use stochastic order notation.

1. We say that Xn = oP (1) if for every ϵ > 0, as n → ∞

P (|Xn| ≥ ϵ) → 0,

i.e. Xn converges to zero in probability.

2. We say that Xn = OP (1) if for every ϵ > 0 there is a finite C(ϵ) > 0 such that, for all n large enough:

P (|Xn| ≥ C(ϵ)) ≤ ϵ.
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The typical use case: suppose we have X1, . . . , Xn which are i.i.d. and have finite variance, and we define:

µ̂ =
1

n

n∑
i=1

Xi.

1. µ̂− µ = oP (1) (Weak Law of Large Number)

2. µ̂− µ = OP (1/
√
n) (Central Limit Theorem)

As with the classical order notation, we can do some simple “calculus” with stochastic order notation and observe
that for instance: oP (1) +OP (1) = OP (1), oP (1)OP (1) = oP (1) and so on.

Asymptotic Theory
From here, the lecture note is largely based on [Wasserman(2004)] and his lecture notes.

We suppose that we obtain a sample X1, . . . , Xn ∼ P . Let θ(P ) be a parameter, which is some function of P . Let
θ̂ = θ̂(X1, . . . , Xn) denote an estimator for θ̂, which is a function of a sample. We are interested in two questions:

1. Consistency: Does the estimator θ̂ converge in probability to θ, i.e. does θ̂
P→ θ? More precisely, can we find

some function f(n) of the sample size n such that d(θ̂, θ) = OP (f(n))? This is analogous to the Law of Large
Number.

2. Asymptotic distribution: What can we say about the distribution of
√
n(θ̂ − θ)? This is analogous to the

Central Limit Theorem.

Confidence Set
Suppose we have a statistical model (i.e. a collection of distributions) P. Let Cn(X1, . . . , Xn) be a set constructed
using the observed data X1, . . . , Xn. This is a random set. Cn is a 1− α confidence set for a parameter θ if:

P (θ ∈ Cn(X1, . . . , Xn)) ≥ 1− α, for all P ∈ P.

This means that no matter which distribution in P generated the data, the interval guarantees the coverage property
described above.

Bootstrap
The bootstrap is a method for estimating standard errors and computing confidence intervals. Let X1, . . . , Xn ∼ P ,
and Tn = g(X1, . . . , Xn) be a statistic, that is, Tn is any function of the data. Suppose we want to know VP (Tn),
the variance of Tn, where the notation VP emphasizes the dependence on the unknown distribution P . For example,
if Tn = X̄n = 1

n

∑n
i=1 Xi then VP (Tn) = σ2/n where σ2 =

∫
(x − µ)2dP (x) and µ =

∫
xdP (x). Let Pn be the

empirical measure that puts mass 1/n at each data point, thus

Pn(A) =
1

n

n∑
i=1

I(Xi ∈ A).

The bootstrap idea has two steps:
Step 1: Estimate VP (Tn) with VPn

(Tn).
Step 2: Approximate VPn(Tn) using Monte Carlo.

Monte Carlo
Suppose we draw an iid sample Y1, . . . , YB ∼ P , and h is any function with finite mean, i.e., E [h(Y )] < ∞, then by
the weak law of large numbers,

1

B

B∑
j=1

h(Yj)
P→
∫

h(y)dP (y) = E [h(Y )] ,
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as B → ∞. In particular,

1

B

B∑
j=1

(Yj − Ȳ )2 =
1

B

B∑
j=1

Y 2
j −

 1

B

B∑
j=1

Yj

2

P→
∫

y2dP (y)−
(∫

ydP (y)

)2

= VP (Y ).

Hence, we can use the sample variance of the simulated values to approximate VP (Y ).

Bootstrap Variance Estimation
Now, VPn(Tn) means “the variance of Tn if the distribution of the data is Pn”. To compute this, we simulate
X∗

1 , . . . , X
∗
n from Pn and then compute T ∗

n = g(X∗
1 , . . . , X

∗
n). This constitutes one draw from the distribution of Tn.

The idea is illustrated in the following diagram:

Real world P ⇒ X1, . . . , Xn ⇒ Tn = g(X1, . . . , Xn)
Bootstrap world Pn ⇒ X∗

1 , . . . , X
∗
n ⇒ T ∗

n = g(X∗
1 , . . . , X

∗
n)

How do we simulate X∗
1 , . . . , X

∗
n from Pn? Notice that Pn puts mass 1/n at each data point X1, . . . , Xn. Therefore

drawing an observation from Pn is equivalent to drawing one point at random from the original data set.

Thus, to simulate X∗
1 , . . . , X

∗
n ∼ Pn, it suffices to draw n observations with replacement from X1, . . . , Xn. The

algorithm for bootstrap variance estimation is below:

1. Draw X∗
1 , . . . , X

∗
n ∼ Pn.

2. Compute T ∗
n = g(X∗

1 , . . . , X
∗
n).

3. Repeat step 1 and 2, B times, to get T ∗
n,1, . . . , T

∗
n,B .

4. Let

vboot =
1

B

B∑
b=1

(
T ∗
n,b −

1

B

B∑
r=1

T ∗
n,r

)2

.

Notice that we are using two approximations:

VP (Tn)
not so samll

≈ VPn
(Tn)

small
≈ vboot.

Bootstrap Confidence Intervals
There are several ways to construct bootstrap confidence intervals. We suggest one way here, Pivotal Intervals.

Let θ = T (P ) and θ̂n = T (Pn) and define the pivot Rn = θ̂n−θ. Let θ̂∗n,1, . . . , θ̂∗n,B denote bootstrap replications
of θ̂n.Let H(r) denote the cdf of the pivot:

H(r) = P(Rn ≤ r).

Define
C∗

n =
(
θ̂n −H−1

(
1− α

2

)
, θ̂n −H−1

(α
2

))
.

Then it follows that

P (θ ∈ C∗
n) = P

(
θ̂n −H−1

(
1− α

2

)
≤ θ ≤ θ̂n −H−1

(α
2

))
= P

(
H−1

(α
2

)
≤ θ̂n − θ ≤ H−1

(
1− α

2

))
= P

(
H−1

(α
2

)
≤ Rn ≤ H−1

(
1− α

2

))
= H

(
H−1

(
1− α

2

))
−H

(
H−1

(α
2

))
= 1− α.
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Hence, C∗
n is an exact 1 − α confidence interval for θ. Unfortunately, computing C∗

n depends on the unknown
distribution H but we can form a bootstrap estimate of H:

Ĥ(r) =
1

n

B∑
b=1

I(R∗
n,b ≤ r),

where R∗
n,b = θ̂∗n,b− θ̂n. Let r∗β denote the β sample quantile of (R∗

n,1, . . . , R
∗
n,B). It follows that the 1−α bootstrap

confidence interval is
Cn =

(
θ̂n − r∗1−α/2, θ̂n − r∗α/2

)
.

Minimax

When solving a statistical learning problem, there are often many procedures to choose from. This leads to
the following question: how can we tell if one statistical learning procedure is better than another? One answer
is provided by minimax theory which is a set of techniques for finding the minimum, worst case behavior of a
procedure.
Definition. Let P be a set of distributions and let X1, . . . , Xn be a sample from some distribution P ∈ P. Let
θ(P ) be a parameter, which is some function of P . Let θ̂ = θ̂(X1, . . . , Xn) denote an estimator, which is a function
of a sample. Given a metric d, the minimax risk is

Rn ≡ Rn(P) = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] (1)

where the infimum is over all estimators.

For example, θ(P ) could be the mean of P , the variance of P or the density of P . θ̂(X1, . . . , Xn) can be the
sample mean X̄ = 1

n

∑n
i=1 Xi, the sample variance σ̂2 = 1

n

∑n
i=1(Xi − X̄)2, the kernel density estimator p̂h, etc.

Definition. (i) An estimator θ̂ is a minimax estimator if supP∈P EP [d(θ̂, θ(P ))] = Rn.
(ii) An estimator θ̂ is a (asymptotic) minimax estimator if supP∈P EP [d(θ̂, θ(P ))] = O(Rn).

Example. Suppose that P = {N(θ, 1) : θ ∈ R} where N(θ, 1) denotes a Gaussian with mean θ and variance 1.
Consider estimating θ with the metric d(a, b) = (a− b)2. The minimax risk is

Rn = inf
θ̂

sup
P∈P

EP [(θ̂ − θ)2]. (2)

In this example, θ is a scalar.
The minimax risk is Rn = 1/n and X̄n is a minimax estimator.

Example. Suppose that P is the set of densities with uniformly bounded second derivatives. Let (X1, Y1), . . . , (Xn, Yn)
be a sample from a distribution P . Let m(x) = EP (Y |X = x) =

∫
y dP (y|X = x) be the regression function. In

this case, we might use the metric d(m1,m2) =
∫
(m1(x)−m2(x))

2dx in which case the minimax risk is

Rn = inf
m̂

sup
P∈P

EP

[∫
(m̂(x)−m(x))2

]
. (3)

In this example, θ is a function.
The minimax risk is Rn = Θ

(
n−4/(4+d)

)
and the kernel density estimator is a minimax estimator.

Kernel Density Estimation

Definition. A kernel function K : Rd → R is a function satisfying
∫
K(x)dx = 1.
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Remark. It is usually assumed that K(x) ≥ 0 for all x ∈ Rd, i.e., nonnegative, which makes the computation much
cleaner. However, for faster rate of convergence, it is inevitable to allow negative values to the kernel function.

For 1-dimension, some commonly used kernels are the following:

Boxcar: K(x) = 1
2I(x) Gaussian: K(x) = 1√

2π
e−x2/2

Epanechnikov: K(x) = 3
4 (1− x2)I(x) Tricube: K(x) = 70

81 (1− |x|3)3I(x)

where I(x) = 1 if |x| ≤ 1 and I(x) = 0 otherwise. These kernels are plotted in Figure 1. Two commonly used
multivariate kernels are

∏d
j=1 K(xj) and K(∥x∥).

−3 0 3 −3 0 3

−3 0 3 −3 0 3

Figure 1: Examples of smoothing kernels: boxcar (top left), Gaussian (top right), Epanechnikov (bottom left), and
tricube (bottom right).

Definition. Suppose that X1, . . . , Xn ∈ Rd. Given a kernel K and a positive number h, called the bandwidth, the
kernel density estimator is defined to be

p̂(x) =
1

n

n∑
i=1

1

hd
K

(
∥x−Xi∥

h

)
. (4)

More generally, we define

p̂H(x) =
1

n

n∑
i=1

KH(x−Xi),

where H is a positive definite bandwidth matrix and KH(x) = |H|−1/2K(H−1/2x).

For simplicity, we will take H = h2I and we get back the previous formula.
Sometimes we write the estimator as p̂h to emphasize the dependence on h. In the multivariate case the co-

ordinates of Xi should be standardized so that each has the same variance, since the norm ∥x − Xi∥ treats all
coordinates as if they are on the same scale.

The kernel estimator places a smoothed out lump of mass of size 1/n over each data point Xi; see Figure 2. The
choice of kernel K is not crucial, but the choice of bandwidth h is important. Small bandwidths give very rough
estimates while larger bandwidths give smoother estimates.

0.1 Confidence Bands
To get a confidence band we use the bootstrap. Let Pn be the empirical distribution of X1, . . . , Xn. The idea is to
estimate the distribution

Fn(t) = P
(√

nhd||p̂h(x)− ph(x)||∞ ≤ t
)
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Figure 2: A kernel density estimator p̂. At each point x, p̂(x) is the average of the kernels centered over the data
points Xi. The data points are indicated by short vertical bars. The kernels are not drawn to scale.

with the bootstrap estimator

F̂n(t) = P
(√

nhd||p̂∗h(x)− p̂h(x)||∞ ≤ t
∣∣∣ X1, . . . , Xn

)
where p̂∗h is constructed from the bootstrap sample X∗

1 , . . . , X
∗
n ∼ Pn. Then

sup
t

|Fn(t)− F̂n(t)|
P→ 0.

Here is the algorithm.

1. Let Pn be the empirical distribution that puts mass 1/n at each data point Xi.

2. Draw X∗
1 , . . . , X

∗
n ∼ Pn. This is called a bootstrap sample.

3. Compute the density estimator p̂∗h based on the bootstrap sample.

4. Compute R = supx
√
nhd||p̂∗h − p̂h||∞.

5. Repeat steps 2-4 B times. This gives R1, . . . , RB .

6. Let zα be the upper α quantile of the Rj ’s. Thus

1

B

B∑
j=1

I(Rj > zα) ≈ α.

7. Let
ℓn(x) = p̂h(x)−

zα√
nhd

, un(x) = p̂h(x) +
zα√
nhd

.

Theorem. Under appropriate (very weak) conditions, we have

lim inf
n→∞

P
(
ℓn(x) ≤ ph(x) ≤ u(x) for all x

)
≥ 1− α.

See Figure 3.
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Figure 3: 95 percent bootstrap confidence bands using various bandwidths.
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