Review on Statistics

김지수 (Jisu KIM)
통계이론세미나 - 위상구조의 통계적 추정, 2023 가을학기

Probability Spaces

A probability space is a triple (Ω, \mathcal{F}, P) where Ω is a set of "outcomes," \mathcal{F} is a set of "events," and $P: \mathcal{F} \rightarrow[0,1]$ is a function that assigns probabilities to events.

Definition. Let Ω be a set. A nonempty collection \mathcal{F} of subsets of Ω is called σ-algebra (or field) if
(i) if $A \in \mathcal{F}$ then $\Omega \backslash A \in \mathcal{F}$, and
(ii) if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

Example. $\mathcal{F}=\{\phi, \Omega\}$ trivial σ-field

$$
\mathcal{F}=2^{\Omega}=\{A \mid A \subset \Omega\}: \text { power set } \Longrightarrow \sigma-\text { field }
$$

Without $P,(\Omega, \mathcal{F})$ is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an σ-algebra \mathcal{F}, a function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ is a measure if
(i) $\mu(A) \geq \mu(\phi)=0$ for all $A \in \mathcal{F}$, and
(iii) For $A_{1}, A_{2}, \cdots \in \mathcal{F}$ with $A_{i} \cap A_{j}=\phi$ for any $i \neq j$,

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) .
$$

Definition. (1) $\mu(\Omega)<\infty \Longrightarrow$ finite measure
(2) $\mu(\Omega)=1 \Longrightarrow$ probability measure
(3) \exists a partition A_{1}, A_{2}, \cdots with $\bigcup_{i=1}^{\infty} A_{i}=\Omega$ and $\mu\left(A_{i}\right)<\infty \Longrightarrow \sigma$-finite measure

Theorem ([Durrett(2010), Theorem 1.1.4]). Let μ be a measure on (Ω, \mathcal{F}).
(i) Monotonicity. If $A \subset B$ then $\mu(A) \leq \mu(B)$.
(ii) Subadditivity. If $A \subset \bigcup_{i=1}^{\infty} A_{i}$ then $\mu(A) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)$.
(iii) Continuity from below. $A_{n} \uparrow A\left(\right.$ i.e. $A_{1} \subset A_{2} \subset \cdots$ and $\left.A=\bigcup_{i=1}^{\infty} A_{i}\right)$ then $\mu\left(A_{i}\right) \uparrow \mu(A)$.
(iv) Continuity from above. $A_{n} \downarrow A$ (i.e. $A_{1} \supset A_{2} \supset \cdots$ and $A=\bigcap_{i=1}^{\infty} A_{i}$) with $\mu\left(A_{1}\right)<\infty$ then $\mu\left(A_{i}\right) \downarrow \mu(A)$.

Definition. Let \mathcal{A} be a class of subsets of Ω. Then $\sigma(\mathcal{A})$ denotes the smallest σ-algebra that contains \mathcal{A}.

For any any \mathcal{A}, such $\sigma(\mathcal{A})$ exists and is unique: [Durrett(2010), Exercise 1.1.1].

Definition. Borel σ-field on \mathbb{R}^{d}, denoted by \mathcal{R}^{d}, is the smallest σ-field containing all open sets.

Theorem ([Durrett(2010), Theorem 1.1.2]). There is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with

$$
\mu((a, b])=b-a .
$$

Such measure is called Lebesgue measure.

Example ([Durrett(2010), Example 1.1.3]). Product space
$\left(\Omega_{i}, \mathcal{F}_{i}, \mathcal{P}_{i}\right)$: sequence of probability spaces
Let $\Omega=\Omega_{1} \times \cdots \times \Omega_{n}=\left\{\left(\omega_{1}, \cdots, \omega_{n}\right) \mid \omega_{i} \in \Omega_{i}\right\}$
$\mathcal{F}=\mathcal{F}_{1} \times \cdots \times \mathcal{F}_{n}=$ the $\sigma-$ field generated by $A_{1} \times \cdots \times A_{n}$, where $A_{i} \in \mathcal{F}_{i}$
$P=P_{1} \times \cdots \times P_{n}$ (i.e. $P\left(A_{1} \times \cdots \times A_{n}\right)=P_{1}\left(A_{1}\right) \cdots P_{n}\left(A_{n}\right)$

Distribution and Random Variables

Definition. Let (Ω, \mathcal{F}) and (S, \mathcal{S}) are measurable spaces. A mapping $X: \Omega \rightarrow S$ is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}) if

$$
\text { for all } B \in \mathcal{S}, X^{-1}(B):=\{\omega \in \Omega: X(\omega) \in B\} \in \mathcal{F}
$$

If $(S, \mathcal{S})=\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ and $d>1$ then X is called a random vector. If $d=1, X$ is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 1_{A} of a set $A \in \mathcal{F}$:

$$
1_{A}(\omega)= \begin{cases}1 & \omega \in A \\ 0 & \omega \notin A\end{cases}
$$

If X is a random variable, then X induces a probability measure on \mathbb{R}.

Definition. The probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined as $\mu(A)=P(X \in A)$ for all $A \in \mathcal{B}(\mathbb{R})$ is called the distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.
Definition. The distribution function $F(x)$ of a random variable X is defined as $F(x)=P(X \leq x)$.

Theorem ([Durrett(2010), Theorem 1.2.1]). Any distribution function F has the following properties:
(i) F is nondecreasing.
(ii) $\lim _{n \rightarrow \infty} F(x)=1, \lim _{n \rightarrow-\infty} F(x)=0$.
(iii) F is right continuous. i.e. $\lim _{y \downarrow x} F(y)=F(x)$.
(iv) $P(X<x)=F(x-)=\lim _{y \uparrow x} F(x)$.
(v) $P(X=x)=F(x)-F(x-)$.

Theorem ([Durrett(2010), Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [Durrett(2010), Theorem 1.2.1], then it is the distribution function of some random variable. That is, there exists a triple (Ω, \mathcal{F}, P) and a random variable X such that $F(x)=P(X \leq x)$.

Theorem. If F satisfies (i) (ii) (iii), then \exists ! probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for all $a<b$,

$$
\mu((a, b])=F(b)-F(a)
$$

Definition. If X and Y induce the same distribution μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we say X and Y are equal in distribution.
We write

$$
X \stackrel{d}{=} Y .
$$

Definition. When the distribution function $F(x)=P(X \leq x)$ has the form $F(x)=\int_{-\infty}^{x} f(y) d y$, then we say X has the density function f.

Remark. f is not unique, but unique up to Lebesque measure 0 .

Theorem ([Durrett(2010), Theorem 1.3.2]). If $X:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ and $f:(S, \mathcal{S}) \rightarrow(T, \mathcal{T})$ are measurable maps, then $f(X)$ is measurable.

Theorem. $f:(S, \mathcal{S}) \rightarrow(T, \mathcal{T})$ and suppose $\mathcal{S}=\sigma($ open sets $), \mathcal{T}=\sigma$ (open sets). Then, if f is continuous then f is measurable.

Theorem ([Durrett(2010), Theorem 1.3.3]). If X_{1}, \cdots, X_{n} are random variables and $f:\left(\mathbb{R}^{n}, \mathcal{R}^{n}\right) \rightarrow(\mathbb{R}, \mathcal{R})$ is measurable, then $f\left(X_{1}, \cdots, X_{n}\right)$ is a random variable.

Theorem ([Durrett(2010), Theorem 1.3.4]). If X_{1}, \cdots, X_{n} are random variables then $X_{1}+\cdots+X_{n}$ is a random variable.

Remark. If X, Y are random variables, then

$$
c X(c \text { is scalar }), X \pm Y, X Y, \sin (X), X^{2}, \cdots
$$

are all random variables.

Theorem ([Durrett(2010), Theorem 1.3.5]). $\inf _{n} X_{n}, \sup _{n} X_{n}, \lim \sup _{n} X_{n}, \lim _{n} \inf _{n} X_{n}$ are random variables.

Integration

Let μ be a σ-finite measure on (Ω, \mathcal{F}).

Definition. For any predicate $Q(\omega)$ defined on Ω, we say Q is true ($\mu-$)almost everywhere (or a.e.) if $\mu(\{\omega$: $Q(\omega)$ is false $\})=0$

Step 1.

Definition. φ is a simple function if $\varphi(\omega)=\sum_{i=1}^{n} a_{i} 1_{A_{i}}$ with $A_{i} \in \mathcal{F}$
If φ is a simple function and $\varphi \geq 0$, we let
$\int \varphi d \mu=\sum_{i=1}^{n} a_{i} \mu\left(A_{i}\right)$

Step 2.

Definition. If f is measurable and $f \geq 0$ then we let
$\int f d \mu=\sup \left\{\int h d \mu: 0 \leq h \leq f\right.$ and h simple $\}$

Step 3.

Definition. We say measurable f is integrable if $\int|f| d \mu<\infty$
let $f^{+}(x):=f(x) \vee 0, f^{-}(x):=(-f)(x) \vee 0$ where $a \vee b=\max (a, b)$
We define the integral of f by
$\int f d \mu=\int f^{+} d \mu-\int f^{-} d \mu$
we can also define $\int f d \mu$ if $\int f^{+} d \mu=\infty$ and $\int f^{-} d \mu<\infty$, or $\int f^{+} d \mu<\infty$ and $\int f^{-} d \mu=\infty$
Theorem. (1.4.7) Suppose f and g are integrable.
(i) If $f \geq 0$ a.e. then $\int f d \mu \geq 0$
(ii) $\forall a \in \mathbb{R}, \int a f d \mu=a \int f d \mu$
(iii) $\int f+g d \mu=\int f d \mu+\int g d \mu$
(iv) If $g \leq f$ a.e. then $\int g d \mu \leq \int f d \mu$
(v) If $g=f$ a.e. then $\int g d \mu=\int f d \mu$
(vi) $\left|\int f d \mu\right| \leq \int|f| d \mu$

Independence

Definition. Let (Ω, \mathcal{F}, P) be probability space. Two events $A, B \in \mathcal{F}$ are independent if
$P(A \cap B)=P(A) \times P(B)$
Two random variables X and Y are independent if
$\forall C, D \in \mathcal{R}, P(X \in C, Y \in D)=P(X \in C) P(Y \in D)$
Two σ-fields \mathcal{F}_{1} and $\mathcal{F}_{2}(\subset \mathcal{F})$ are independent if
$\forall A \in \mathcal{F}_{1}, \forall B \in \mathcal{F}_{2}, A$ and B are independent.

Remark. An infinite collection of objects (σ-fields, random variables, or sets) is said to be independent if every finite subcollection is.

Definition. σ-fields $\mathcal{F}_{1}, \cdots, \mathcal{F}_{n}$ are independent if
$P\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} P\left(A_{i}\right), \forall A_{i} \in \mathcal{F}_{i}$
random variables X_{1}, \cdots, X_{n} are independent if
$P\left(\bigcap_{i=1}^{n}\left\{X_{i} \in B_{i}\right\}\right)=\prod_{i=1}^{n} P\left(X_{i} \in B_{i}\right), \forall B_{i} \in \mathcal{R}$
Sets A_{1}, \cdots, A_{n} are independent if
$P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$ for all $I \subset\{1, \cdots, n\}$

Remark. the definition of independent events is not enough to assume pairwise independent, which is $P\left(A_{i} \cap A_{j}\right)=$ $P\left(A_{i}\right) P\left(A_{j}\right), i \neq j$. It is clear that indenendent events are pairwise independent, but converse is not true.

Example. Let X_{1}, X_{2}, X_{3} be independent random variables with $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=\frac{1}{2}$
Let $A_{1}=\left\{X_{2}=X_{3}\right\}, A_{2}=\left\{X_{3}=X_{1}\right\}$ and $A_{3}=\left\{X_{1}=X_{2}\right\}$. These events are pairwise independent but not independent.

Weak laws of large numbers

Various modes of convergence

$\left\{X_{n}\right\}$ and X are random variables defined on (Ω, \mathcal{F}, P)

Definition. $X_{n} \rightarrow X$ almost surely (a.s.) (with probability 1(w.p. 1), almost everywhere(a.e.)) if $P\left\{\omega: X_{n}(\omega) \rightarrow\right.$ $X(\omega)\}=1$

Equivalent definition : $\forall \epsilon, \lim _{m \rightarrow \infty} P\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right| \leq \epsilon \forall n \geq m\right\}=1$
or $\forall \epsilon, \lim _{m \rightarrow \infty} P\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon \forall n \geq m\right\}=0$

Definition. $X_{n} \rightarrow X$ in probability (in pr, \xrightarrow{p}) if $\lim _{n \rightarrow \infty} P\left\{\left|X_{n}-X\right|>\epsilon\right\}=0$

Theorem. $X_{n} \rightarrow X$ a.s. $\Longrightarrow X_{n} \xrightarrow{p} X$

Remark. $X_{n} \xrightarrow{p} X \nRightarrow X_{n} \rightarrow X$ a.s.

Definition. $X_{n} \rightarrow X$ in $L_{p}, 0<p<\infty$
if $\lim _{n \rightarrow \infty} E\left(\left|X_{n}-X\right|^{p}\right)=0$ provided $E\left|X_{n}\right|^{p}<\infty, E|X|^{p}<\infty$.

Theorem. $X_{n} \rightarrow X$ in $L_{p} \Longrightarrow X_{n} \xrightarrow{p} X$

Theorem. (Chebyshev inequality)
$P(|X| \geq \epsilon) \leq \frac{E|X|^{p}}{\epsilon^{p}}$

Remark. $X_{n} \xrightarrow{p} X \nRightarrow X_{n} \rightarrow X$ in L_{p}

Example. $\Omega=[0,1], \mathcal{F}=\mathcal{B}[0,1], P=\operatorname{Unif}[0,1]$
$X(\omega)=0, X_{n}(\omega)=n I\left(0 \leq \omega \leq \frac{1}{n}\right)$
Then $P\left\{\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}=P\left\{0 \leq \omega \leq \frac{1}{n}\right\}=\frac{1}{n} \rightarrow 0$
But $E\left|X_{n}-X\right|=E\left|X_{n}\right|=1$

Theorem. $X_{n} \xrightarrow{p} X$ and there exists a random variables Z s.t.
$\left|X_{n}\right| \leq Z$ and $E|Z|^{p}<\infty$

Then $X_{n} \rightarrow X$ in L_{p}.

Remark. If $E|X|<\infty$, then
$\lim _{n \rightarrow \infty} \int_{A_{n}}|X| d P \rightarrow 0$ whenever $P\left(A_{n}\right) \rightarrow 0$

2..2.1. L_{2} weak law

Theorem ([Durrett(2010), Theorem 2.2.3]). Let X_{1}, X_{2}, \cdots be uncorrelated random variables with $E X_{i}=\mu$ and $\operatorname{Var}\left(X_{i}\right) \leq C<\infty$

Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then
$\frac{S_{n}}{n} \rightarrow \mu$ in L_{2} and so in pr.

Theorem ([Durrett(2010), Theorem 2.2.9]). Weak law of large numbers
Let X_{1}, X_{2}, \cdots be i.i.d. random variables with $E\left|X_{i}\right|<\infty$.
Let $S_{n}=X_{1}+\cdots+X_{n}$ and let $\mu=E X_{1}$.
Then $\frac{S_{n}}{n} \rightarrow \mu$ in pr.

Weak Convergence

Definition. A sequence of distribution function F_{n} converges weakly to a limit $F\left(F_{n} \Rightarrow F, F_{n} \xrightarrow{w} F\right)$
if $F_{n}(y) \rightarrow F(y) \forall y$ that are continuity points of F.

Definition. A sequence of random variables $\left\{X_{n}\right\}$ converges weakly or converges in distribution to a limit X $\left(X_{n} \Rightarrow X, X_{n} \xrightarrow{w} X, X_{n} \xrightarrow{d} X\right)$

If the distribution function F_{n} of X_{n} converges weakly to the distribution of X.

Example ([Durrett(2010), Example 3.2.1]). Let X_{1}, X_{2}, \cdots be iid with $P\left(X_{1}=1\right)=P\left(X_{1}=-1\right)=\frac{1}{2}$.
Let $S_{n}=X_{1}+\cdots+X_{n}$.
Then $F_{n}(y)=P\left(S_{n} / \sqrt{n} \leq y\right) \rightarrow \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \forall y$
That is, $F_{n} \Rightarrow N(0,1)$

Example ([Durrett(2010), Example 3.2.3]). Let $X \sim F$ and $X_{n}=X+\frac{1}{n}$
Then $F_{n}(x)=P\left(X_{n} \leq x\right)=F\left(x-\frac{1}{n}\right) \rightarrow F(x-)$
Hence $F_{n}(x) \rightarrow F(x)$ only when $F(x)=F(x-)$
(i.e. x is a continuity point of F)
so $X_{n} \rightarrow X$

Example ([Durrett(2010), Example 3.2.4]). $X_{p} \sim \operatorname{Geo}(p)$ (i.e. $\left.P\left(X_{p} \geq m\right)=(1-p)^{m-1}\right)$
Then $P\left(X_{p}>\frac{x}{p}\right)=(1-p)^{\frac{x}{p}} \rightarrow e^{-x}$ as $p \rightarrow 0$

Central Limit Theorem

Theorem ([Durrett(2010), Theorem 3.4.1]). Let X_{1}, X_{2}, \cdots be iid with $E X_{i}=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}>0$.
If $S_{n}=X_{1}+\cdots+X_{n}$, then
$\left(S_{n}-n \mu\right) /(\sqrt{n} \sigma) \xrightarrow{d} N(0,1)$

Theorem ([Durrett(2010), Theorem 3.4.9]). Berry-Essen theorem
Let X_{1}, X_{2}, \cdots be i.i.d. with $E X_{i}=0, E X_{i}^{2}=\sigma^{2}$ and $E\left|X_{1}\right|^{3}=\rho<\infty$
Let $F_{n}(x)$ be the distribution function of $\left(X_{1}+\cdots+X_{n}\right) /(\sigma \sqrt{n})$ and $\Phi(x)$ be the standard normal distribution.
Then $\sup _{x}\left|F_{n}(x)-\Phi(x)\right| \leq 3 \rho /\left(\sigma^{3} \sqrt{n}\right)$

Stochastic Order Notation

The classical order notation should be familiar to you already.

1. We say that a sequence $a_{n}=o(1)$ if $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Similarly, $a_{n}=o\left(b_{n}\right)$ if $a_{n} / b_{n}=o(1)$.
2. We say that a sequence $a_{n}=O(1)$ if the sequence is eventually bounded, i.e. for all n large, $\left|a_{n}\right| \leq C$ for some constant $C \geq 0$. Similarly, $a_{n}=O\left(b_{n}\right)$ if $a_{n} / b_{n}=O(1)$.
3. If $a_{n}=O\left(b_{n}\right)$ and $b_{n}=O\left(a_{n}\right)$ then we use either $a_{n}=\Theta\left(b_{n}\right)$ or $a_{n} \asymp b_{n}$.

When we are dealing with random variables we use stochastic order notation.

1. We say that $X_{n}=o_{P}(1)$ if for every $\epsilon>0$, as $n \rightarrow \infty$

$$
\mathbb{P}\left(\left|X_{n}\right| \geq \epsilon\right) \rightarrow 0
$$

i.e. X_{n} converges to zero in probability.
2. We say that $X_{n}=O_{P}(1)$ if for every $\epsilon>0$ there is a finite $C(\epsilon)>0$ such that, for all n large enough:

$$
\mathbb{P}\left(\left|X_{n}\right| \geq C(\epsilon)\right) \leq \epsilon
$$

The typical use case: suppose we have X_{1}, \ldots, X_{n} which are i.i.d. and have finite variance, and we define:

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

1. $\hat{\mu}-\mu=o_{P}(1)$ (Weak Law of Large Number)
2. $\hat{\mu}-\mu=O_{P}(1 / \sqrt{n})$ (Central Limit Theorem)

As with the classical order notation, we can do some simple "calculus" with stochastic order notation and observe that for instance: $o_{P}(1)+O_{P}(1)=O_{P}(1), o_{P}(1) O_{P}(1)=o_{P}(1)$ and so on.

Asymptotic Theory

From here, the lecture note is largely based on [Wasserman(2004)] and his lecture notes.
We suppose that we obtain a sample $X_{1}, \ldots, X_{n} \sim P$. Let $\theta(P)$ be a parameter, which is some function of P. Let $\hat{\theta}=\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ denote an estimator for $\hat{\theta}$, which is a function of a sample. We are interested in two questions:

1. Consistency: Does the estimator $\hat{\theta}$ converge in probability to θ, i.e. does $\hat{\theta} \xrightarrow{P} \theta$? More precisely, can we find some function $f(n)$ of the sample size n such that $d(\hat{\theta}, \theta)=O_{P}(f(n))$? This is analogous to the Law of Large Number.
2. Asymptotic distribution: What can we say about the distribution of $\sqrt{n}(\hat{\theta}-\theta)$? This is analogous to the Central Limit Theorem.

Confidence Set

Suppose we have a statistical model (i.e. a collection of distributions) \mathcal{P}. Let $C_{n}\left(X_{1}, \ldots, X_{n}\right)$ be a set constructed using the observed data X_{1}, \ldots, X_{n}. This is a random set. C_{n} is a $1-\alpha$ confidence set for a parameter θ if:

$$
P\left(\theta \in C_{n}\left(X_{1}, \ldots, X_{n}\right)\right) \geq 1-\alpha, \text { for all } P \in \mathcal{P}
$$

This means that no matter which distribution in \mathcal{P} generated the data, the interval guarantees the coverage property described above.

Bootstrap

The bootstrap is a method for estimating standard errors and computing confidence intervals. Let $X_{1}, \ldots, X_{n} \sim P$, and $T_{n}=g\left(X_{1}, \ldots, X_{n}\right)$ be a statistic, that is, T_{n} is any function of the data. Suppose we want to know $\mathbb{V}_{P}\left(T_{n}\right)$, the variance of T_{n}, where the notation \mathbb{V}_{P} emphasizes the dependence on the unknown distribution P. For example, if $T_{n}=\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ then $\mathbb{V}_{P}\left(T_{n}\right)=\sigma^{2} / n$ where $\sigma^{2}=\int(x-\mu)^{2} d P(x)$ and $\mu=\int x d P(x)$. Let P_{n} be the empirical measure that puts mass $1 / n$ at each data point, thus

$$
P_{n}(A)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \in A\right)
$$

The bootstrap idea has two steps:
Step 1: Estimate $\mathbb{V}_{P}\left(T_{n}\right)$ with $\mathbb{V}_{P_{n}}\left(T_{n}\right)$.
Step 2: Approximate $\mathbb{V}_{P_{n}}\left(T_{n}\right)$ using Monte Carlo.

Monte Carlo

Suppose we draw an iid sample $Y_{1}, \ldots, Y_{B} \sim P$, and h is any function with finite mean, i.e., $\mathbb{E}[h(Y)]<\infty$, then by the weak law of large numbers,

$$
\frac{1}{B} \sum_{j=1}^{B} h\left(Y_{j}\right) \xrightarrow{P} \int h(y) d P(y)=\mathbb{E}[h(Y)],
$$

as $B \rightarrow \infty$. In particular,

$$
\begin{aligned}
\frac{1}{B} \sum_{j=1}^{B}\left(Y_{j}-\bar{Y}\right)^{2} & =\frac{1}{B} \sum_{j=1}^{B} Y_{j}^{2}-\left(\frac{1}{B} \sum_{j=1}^{B} Y_{j}\right)^{2} \\
& \xrightarrow{P} \int y^{2} d P(y)-\left(\int y d P(y)\right)^{2}=\mathbb{V}_{P}(Y)
\end{aligned}
$$

Hence, we can use the sample variance of the simulated values to approximate $\mathbb{V}_{P}(Y)$.

Bootstrap Variance Estimation

Now, $\mathbb{V}_{P_{n}}\left(T_{n}\right)$ means "the variance of T_{n} if the distribution of the data is P_{n} ". To compute this, we simulate $X_{1}^{*}, \ldots, X_{n}^{*}$ from P_{n} and then compute $T_{n}^{*}=g\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$. This constitutes one draw from the distribution of T_{n}. The idea is illustrated in the following diagram:

$$
\begin{array}{cccc}
\text { Real world } P & \Rightarrow & X_{1}, \ldots, X_{n} & \Rightarrow \\
T_{n}=g\left(X_{1}, \ldots, X_{n}\right) \\
\text { Bootstrap world } P_{n} & \Rightarrow & X_{1}^{*}, \ldots, X_{n}^{*} & \Rightarrow \\
T_{n}^{*}=g\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)
\end{array}
$$

How do we simulate $X_{1}^{*}, \ldots, X_{n}^{*}$ from P_{n} ? Notice that P_{n} puts mass $1 / n$ at each data point X_{1}, \ldots, X_{n}. Therefore drawing an observation from P_{n} is equivalent to drawing one point at random from the original data set.

Thus, to simulate $X_{1}^{*}, \ldots, X_{n}^{*} \sim P_{n}$, it suffices to draw n observations with replacement from X_{1}, \ldots, X_{n}. The algorithm for bootstrap variance estimation is below:

1. Draw $X_{1}^{*}, \ldots, X_{n}^{*} \sim P_{n}$.
2. Compute $T_{n}^{*}=g\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$.
3. Repeat step 1 and $2, B$ times, to get $T_{n, 1}^{*}, \ldots, T_{n, B}^{*}$.
4. Let

$$
v_{\text {boot }}=\frac{1}{B} \sum_{b=1}^{B}\left(T_{n, b}^{*}-\frac{1}{B} \sum_{r=1}^{B} T_{n, r}^{*}\right)^{2}
$$

Notice that we are using two approximations:

$$
\mathbb{V}_{P}\left(T_{n}\right) \stackrel{\text { not so samll }}{\approx} \mathbb{V}_{P_{n}}\left(T_{n}\right) \stackrel{\text { small }}{\approx} v_{\text {boot }}
$$

Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence intervals. We suggest one way here, Pivotal Intervals.
Let $\theta=T(P)$ and $\hat{\theta}_{n}=T\left(P_{n}\right)$ and define the pivot $R_{n}=\hat{\theta}_{n}-\theta$. Let $\hat{\theta}_{n, 1}^{*}, \ldots, \hat{\theta}_{n, B}^{*}$ denote bootstrap replications of $\hat{\theta}_{n}$. Let $H(r)$ denote the cdf of the pivot:

$$
H(r)=\mathbb{P}\left(R_{n} \leq r\right)
$$

Define

$$
C_{n}^{*}=\left(\hat{\theta}_{n}-H^{-1}\left(1-\frac{\alpha}{2}\right), \hat{\theta}_{n}-H^{-1}\left(\frac{\alpha}{2}\right)\right)
$$

Then it follows that

$$
\begin{aligned}
\mathbb{P}\left(\theta \in C_{n}^{*}\right) & =\mathbb{P}\left(\hat{\theta}_{n}-H^{-1}\left(1-\frac{\alpha}{2}\right) \leq \theta \leq \hat{\theta}_{n}-H^{-1}\left(\frac{\alpha}{2}\right)\right) \\
& =\mathbb{P}\left(H^{-1}\left(\frac{\alpha}{2}\right) \leq \hat{\theta}_{n}-\theta \leq H^{-1}\left(1-\frac{\alpha}{2}\right)\right) \\
& =\mathbb{P}\left(H^{-1}\left(\frac{\alpha}{2}\right) \leq R_{n} \leq H^{-1}\left(1-\frac{\alpha}{2}\right)\right) \\
& =H\left(H^{-1}\left(1-\frac{\alpha}{2}\right)\right)-H\left(H^{-1}\left(\frac{\alpha}{2}\right)\right) \\
& =1-\alpha
\end{aligned}
$$

Hence, C_{n}^{*} is an exact $1-\alpha$ confidence interval for θ. Unfortunately, computing C_{n}^{*} depends on the unknown distribution H but we can form a bootstrap estimate of H :

$$
\hat{H}(r)=\frac{1}{n} \sum_{b=1}^{B} I\left(R_{n, b}^{*} \leq r\right)
$$

where $R_{n, b}^{*}=\hat{\theta}_{n, b}^{*}-\hat{\theta}_{n}$. Let r_{β}^{*} denote the β sample quantile of $\left(R_{n, 1}^{*}, \ldots, R_{n, B}^{*}\right)$. It follows that the $1-\alpha$ bootstrap confidence interval is

$$
C_{n}=\left(\hat{\theta}_{n}-r_{1-\alpha / 2}^{*}, \hat{\theta}_{n}-r_{\alpha / 2}^{*}\right)
$$

Minimax

When solving a statistical learning problem, there are often many procedures to choose from. This leads to the following question: how can we tell if one statistical learning procedure is better than another? One answer is provided by minimax theory which is a set of techniques for finding the minimum, worst case behavior of a procedure.
Definition. Let \mathcal{P} be a set of distributions and let X_{1}, \ldots, X_{n} be a sample from some distribution $P \in \mathcal{P}$. Let $\theta(P)$ be a parameter, which is some function of P. Let $\hat{\theta}=\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ denote an estimator, which is a function of a sample. Given a metric d, the minimax risk is

$$
\begin{equation*}
R_{n} \equiv R_{n}(\mathcal{P})=\inf _{\hat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P}[d(\hat{\theta}, \theta(P))] \tag{1}
\end{equation*}
$$

where the infimum is over all estimators.
For example, $\theta(P)$ could be the mean of P, the variance of P or the density of $P . \hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ can be the sample mean $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, the sample variance $\hat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$, the kernel density estimator \hat{p}_{h}, etc.

Definition. (i) An estimator $\hat{\theta}$ is a minimax estimator if $\sup _{P \in \mathcal{P}} \mathbb{E}_{P}[d(\hat{\theta}, \theta(P))]=R_{n}$.
(ii) An estimator $\hat{\theta}$ is a (asymptotic) minimax estimator if $\sup _{P \in \mathcal{P}} \mathbb{E}_{P}[d(\hat{\theta}, \theta(P))]=O\left(R_{n}\right)$.

Example. Suppose that $\mathcal{P}=\{N(\theta, 1): \theta \in \mathbb{R}\}$ where $N(\theta, 1)$ denotes a Gaussian with mean θ and variance 1. Consider estimating θ with the metric $d(a, b)=(a-b)^{2}$. The minimax risk is

$$
\begin{equation*}
R_{n}=\inf _{\hat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P}\left[(\hat{\theta}-\theta)^{2}\right] \tag{2}
\end{equation*}
$$

In this example, θ is a scalar.
The minimax risk is $R_{n}=1 / n$ and \bar{X}_{n} is a minimax estimator.
Example. Suppose that \mathcal{P} is the set of densities with uniformly bounded second derivatives. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be a sample from a distribution P. Let $m(x)=\mathbb{E}_{P}(Y \mid X=x)=\int y d P(y \mid X=x)$ be the regression function. In this case, we might use the metric $d\left(m_{1}, m_{2}\right)=\int\left(m_{1}(x)-m_{2}(x)\right)^{2} d x$ in which case the minimax risk is

$$
\begin{equation*}
R_{n}=\inf _{\hat{m}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P}\left[\int(\hat{m}(x)-m(x))^{2}\right] \tag{3}
\end{equation*}
$$

In this example, θ is a function.
The minimax risk is $R_{n}=\Theta\left(n^{-4 /(4+d)}\right)$ and the kernel density estimator is a minimax estimator.

Kernel Density Estimation

Definition. A kernel function $K: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a function satisfying $\int K(x) d x=1$.

Remark. It is usually assumed that $K(x) \geq 0$ for all $x \in \mathbb{R}^{d}$, i.e., nonnegative, which makes the computation much cleaner. However, for faster rate of convergence, it is inevitable to allow negative values to the kernel function.

For 1-dimension, some commonly used kernels are the following:

$$
\begin{array}{llll}
\text { Boxcar: } & K(x)=\frac{1}{2} I(x) & \text { Gaussian: } & K(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
\text { Epanechnikov: } & K(x)=\frac{3}{4}\left(1-x^{2}\right) I(x) & \text { Tricube: } & K(x)=\frac{70}{81}\left(1-|x|^{3}\right)^{3} I(x)
\end{array}
$$

where $I(x)=1$ if $|x| \leq 1$ and $I(x)=0$ otherwise. These kernels are plotted in Figure 1 . Two commonly used multivariate kernels are $\prod_{j=1}^{d} K\left(x_{j}\right)$ and $K(\|x\|)$.

Figure 1: Examples of smoothing kernels: boxcar (top left), Gaussian (top right), Epanechnikov (bottom left), and tricube (bottom right).

Definition. Suppose that $X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}$. Given a kernel K and a positive number h, called the bandwidth, the kernel density estimator is defined to be

$$
\begin{equation*}
\hat{p}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^{d}} K\left(\frac{\left\|x-X_{i}\right\|}{h}\right) \tag{4}
\end{equation*}
$$

More generally, we define

$$
\hat{p}_{H}(x)=\frac{1}{n} \sum_{i=1}^{n} K_{H}\left(x-X_{i}\right)
$$

where H is a positive definite bandwidth matrix and $K_{H}(x)=|H|^{-1 / 2} K\left(H^{-1 / 2} x\right)$.
For simplicity, we will take $H=h^{2} I$ and we get back the previous formula.
Sometimes we write the estimator as \hat{p}_{h} to emphasize the dependence on h. In the multivariate case the coordinates of X_{i} should be standardized so that each has the same variance, since the norm $\left\|x-X_{i}\right\|$ treats all coordinates as if they are on the same scale.

The kernel estimator places a smoothed out lump of mass of size $1 / n$ over each data point X_{i}; see Figure 2. The choice of kernel K is not crucial, but the choice of bandwidth h is important. Small bandwidths give very rough estimates while larger bandwidths give smoother estimates.

0.1 Confidence Bands

To get a confidence band we use the bootstrap. Let P_{n} be the empirical distribution of X_{1}, \ldots, X_{n}. The idea is to estimate the distribution

$$
F_{n}(t)=\mathbb{P}\left(\sqrt{n h^{d}} \mid \hat{p}_{h}(x)-p_{h}(x) \|_{\infty} \leq t\right)
$$

Figure 2: A kernel density estimator \hat{p}. At each point $x, \hat{p}(x)$ is the average of the kernels centered over the data points X_{i}. The data points are indicated by short vertical bars. The kernels are not drawn to scale.
with the bootstrap estimator

$$
\hat{F}_{n}(t)=\mathbb{P}\left(\sqrt{n h^{d}}\left\|\hat{p}_{h}^{*}(x)-\hat{p}_{h}(x)\right\|_{\infty} \leq t \mid X_{1}, \ldots, X_{n}\right)
$$

where \hat{p}_{h}^{*} is constructed from the bootstrap sample $X_{1}^{*}, \ldots, X_{n}^{*} \sim P_{n}$. Then

$$
\sup _{t}\left|F_{n}(t)-\hat{F}_{n}(t)\right| \xrightarrow{P} 0 .
$$

Here is the algorithm.

1. Let P_{n} be the empirical distribution that puts mass $1 / n$ at each data point X_{i}.
2. Draw $X_{1}^{*}, \ldots, X_{n}^{*} \sim P_{n}$. This is called a bootstrap sample.
3. Compute the density estimator \hat{p}_{h}^{*} based on the bootstrap sample.
4. Compute $R=\sup _{x} \sqrt{n h^{d}}\left\|\hat{p}_{h}^{*}-\hat{p}_{h}\right\|_{\infty}$.
5. Repeat steps 2-4 B times. This gives R_{1}, \ldots, R_{B}.
6. Let z_{α} be the upper α quantile of the R_{j} 's. Thus

$$
\frac{1}{B} \sum_{j=1}^{B} I\left(R_{j}>z_{\alpha}\right) \approx \alpha
$$

7. Let

$$
\ell_{n}(x)=\hat{p}_{h}(x)-\frac{z_{\alpha}}{\sqrt{n h^{d}}}, \quad u_{n}(x)=\hat{p}_{h}(x)+\frac{z_{\alpha}}{\sqrt{n h^{d}}}
$$

Theorem. Under appropriate (very weak) conditions, we have

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(\ell_{n}(x) \leq p_{h}(x) \leq u(x) \quad \text { for all } x\right) \geq 1-\alpha
$$

See Figure 3.

Figure 3: 95 percent bootstrap confidence bands using various bandwidths.

References

[Durrett(2010)] Rick Durrett. Probability: theory and examples, volume 31 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010. ISBN 978-0-521-76539-8. doi: 10.1017/CBO9780511779398. URL https://doi.org/10.1017/CB09780511779398.
[Wasserman(2004)] Larry Wasserman. All of statistics. Springer Texts in Statistics. SpringerVerlag, New York, 2004. ISBN 0-387-40272-1. doi: 10.1007/978-0-387-21736-9. URL https://doi.org/10.1007/978-0-387-21736-9. A concise course in statistical inference.

