
Review on Topology

김지수 (Jisu KIM)

통계이론세미나 - 위상구조의 통계적 추정, 2023 가을학기

[4] 우리의 철학I. 같은 것은 같도다. (Isomorphism 의 철학)

우리의 철학II. 같은 것은 정말 똑같다. (Identification 의 철학)

Definition. [3, Section 3.1] 함수 f : X → Y와 x0 ∈ X가 주어져 있을 때, 임의의 ϵ > 0 에 대하여 다음의 성질

x ∈ X, ∥x− x0∥ < δ =⇒ ∥f(x)− y0∥ < ϵ

이 성립하는 δ > 0가 존재하면, 함수 f가 점 x0에서 연속이라 한다.
만일집합 A ⊂ X의모든점에서 f가연속이면 A위에서연속이라하고,정의역위에서연속인함수를연속함수라고

한다.

Topological Spaces, Continuous Functions, and Homeomorphisms
Definition ([2, Section 12]). A topology on a set X is a collection T of subsets of X having the following properties:

1. ∅ and X are in T .

2. If {Uα}α∈I ⊂ T , then
⋃

α∈I Uα ∈ T .

3. If U1, . . . , Un ∈ T , then
⋂n

i=1 Ui ∈ T .

Example. Let X be a three-element set, X = {a, b, c}. All the possible topologies are schematically represented in
Figure 1. For example, the diagram in the upper right corner indicates the topology T = {X, ∅, {a, b}, {b}, {b, c}}.
All the topologies can be obtained by permuting a, b, c.

Definition ([2, Section 13]). If X is a set, a basis for a topology on X is a collection B of subsets of X (called basis
elements) such that ∅ and X are in T .

1. For each x ∈ X, there is at least one B ∈ B containing x.

(a) If B1, B2 ∈ B with x ∈ B1 ∩B2, then there is B3 ∈ B containing x such that B3 ∈ B1 ∩B2.

Figure 1: [2, Figure 12.1] Example of topologies of a three-element set.
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Figure 2: [2, Figure 13.1, 13.2] Example of bases of circular regions or rectangular regions.

Figure 3: [2, Figure 15.1] Product topology.

Example. Let B be the collection of all circular regions (interiors of circles) in the plane R2, as in Figure 2 left,
then B is a basis. Let B′ be the collection of all rectangular regions (interiors of rectangles) in the plane R2, as in
Figure 2 right, then B′ is also a basis. And in fact, two bases B and B′ generate the same topology for R2.

Definition ([2, Section 15]). Let X and Y be topological spaces. The product topology on X × Y is the topology
having the basis as (see Figure 3):

B = {U × V ⊂ X × Y : U is open in X, V is open in Y }.

Remark. This definition of the product topology can be naturally extended to a finite product space X1×· · ·×Xn.

Definition ([2, Section 16]). Let X be a topological space with topology T . If Y is a subset of X, the collection

TY = {Y ∩ U : U ∈ T }

is a topology on Y , called the subspace topology.

Definition ([2, Section 17]). A subset A of a topological space X is said to be closed if the set X\A is open.

Definition ([2, Section 17]). The closure of A, denoted by Ā, is the intersection of all closed sets containing A.

Definition ([2, Section 17]). We say U is a neighborhood (neighbor) of x if U is an open set containing x.

Definition ([2, Section 17]). If A is a subset of a topological space X, We say x is a limit point of A if every
neighborhood of x intersects A in some point other than x itself.

Theorem. Let A be a subset of a topological space X, and A′ be the set of all limit points of A, then

Ā = A ∪A′.

Definition ([2, Section 17]). A topological space X is called a Hausdorff space if for each pair x1 ̸= x2 ∈ X, there
exists neighborhoods U1, U2 of x1, x2, respectively, that U1 ∩ U2 = ∅.

Definition ([2, Section 18]). A function f : X → Y is continuous if for each open set V of Y , f−1(V ) is an open
subset of X.
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Figure 4: [2, Figure 18.1] Homeomorphism.

Remark. It suffices to show that the inverse image of every basis element is open.

Theorem ([2, Theorem 18.1]). Let X,Y be topological spaces; let f : X → Y . Then the followings are equivalent:

1. f is continuous.

2. For every closed set B of Y , f−1(B) is closed in X.

3. For each x ∈ X and each neighborhood V of f(x), there is an neighborhood U of x such that f(U) ⊂ V .

Definition ([2, Section 18]). Let f : X → Y be a bijection. If both the function f and the inverse function
f−1 : Y → X are continuous, then f is called a homeomorphism.

X and Y are homeomorphic if such a homeomorphism f exists, and denoted as X ∼= Y .

Remark. Another way to define a homeomorphism is to say that f : X → Y is a bijection such that f(U) is open
if and only if U is open (see Figure 4).

Remark. A homeomorphism gives us a bijective correspondence not only between X and Y but also between the
collections of open sets of X and Y . As a result, any property of X that is entirely expreesed in terms of the topology
of X yields, via f , the property of Y . Such a property of X is called a topological property of X.

Definition ([2, Section 18]). Suppose f : X → Y is an injective continuous, and let Z := f(X) ⊂ Y be the image
of f equipped with the subspace topology. If the function f ′ : X → Z obtained by restricting the range of f is a
homeomorphism of X with Z, we say that f : X → Y is a topological embedding (imbedding) of X in Y .

Definition ([2, Section 20]). A metric on a set X is a function

d : X ×X → R

having the following properties:

1. d(x, y) ≥ 0 for all x, y ∈ X; equality holds if and only if x = y.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

Given a metric d on X, the number d(x, y) is often called the distance between x and y. Given ϵ > 0, consider the
set

Bd(x, ϵ) = {y : d(x, y) < ϵ}
of all points y whose distance from x is less than ϵ. It is called the ϵ-ball centered at x. Sometimes we omit d and
write B(x, ϵ).

Definition ([2, Section 20]). If d is a metric on the set X, then the collection of all ϵ-balls Bd(x, ϵ), for x ∈ X and
ϵ > 0, is a basis for a topology on X, called the metric topology induced by d.

A metric space X is a topological space X together with a specific metric d that gives the topology of X.

Example. Given x = (x1, . . . , xn) in Rn and for 1 ≤ p ≤ ∞, we define the p-norm of x by

∥x∥p := (xp
1 + · · ·+ xp

n)
1/p

for p ∈ [1,∞), and ∥x∥∞ := max1≤i≤n |xi|. And then the induced distance dp on Rn is defined as

dp(x, y) = ∥x− y∥p .

All the metrics dp induce the same topology on Rn for 1 ≤ p ≤ ∞, and this is the usual topology on Rn. This also
coincides with the product topology on Rn as well.
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Figure 5: [2, Figure 22.1] Torus as a quotient space.

Theorem ([2, Theorem 21.1]). Let (X, dX), (Y, dY ) be metric spaces and let f : X → Y . Then continuity of f is
equivalent to the requirement that given x ∈ X and ϵ > 0, there exists δ > 0 such that

dX(x, y) < δ =⇒ dY (f(x), f(y)) < ϵ.

Definition ([2, Section 22]). Let X and Y be topological spaces; let p : X → Y be a surjective map. The map p is
a quotient map if U ⊂ Y is open in Y if and only if p−1(U) is open in X.

Definition ([2, Section 22]). If X is a topological space, A is a set, and p : X → A is a surjective map, then
there exists exactly one topology T on A relative to which p is a quotient map; i.e., U ⊂ A is open if and only if
p−1(U) ⊂ X is open. T is called the quotient topology induced by p.

Connectedness and Compactness
Definition ([2, Section 23]). Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty
subsets of X whose union is X. The space X is said to be connected if there does not exist a separation of X.

Theorem ([2, Theorem 23.4]). Let A be a connected subspace of X. If A ⊂ B ⊂ Ā, then B is also connected.

Theorem ([2, Theorem 23.5]). The image of a connected space under a continuous map is conencted.

Corollary ([2, Corollary 24.2]). The real line R is connected and so are intervals and rays in R.

Definition ([2, Section 24]). Given points x and y of the space X, a path in X from x to y is a continuous map
f : [a, b] → X of some closed interval in the real line into X, such that f(a) = x and f(b) = y. A space X is said to
be path connected if every pair of points of X can be joined by a path in X.

Example ([2, Section 24] Topologist’s sine curve). Let S denote the following subset of the plane

S = {(x, sin(1/x)) : 0 < x ≤ 1} .

The set S̄ = S ∪{0}× [−1, 1] is a classical example in the topology called the topologist’s sine curve (see Figure 6).
The set S̄ is connected but not path connected.

Since S is a continuous image of (0, 1], S is connected, and then S̄ is connected as well. Now we show S̄ is not path
connected. Suppose there is a path γ : [a, c] → S̄ with γ(a) = (0, 0) and γ(c) = (1, sin 1). Since γ−1({0}× [−1, 1]) is
closed in [a, c], it has the largest element b. Then γ : [b, c] is a path that maps b into the vertical interval {0}× [−1, 1]
and maps (b, c] into S. Since γ is continuous, there exists δ > 0 such that

γ[b, b+ δ] ⊂ Bd2
(γ(b), 0.5).

However, if we write γ(t) = (γ1(t), γ2(t)), then γ1[b, b + δ] is a connected subset of [0, 1] containing γ1(b) = 0 and
γ1(b+ δ) > 0, so

[0, γ1(b+ δ)] ⊂ γ1[b, b+ δ].

But since γ2(t) = sin(1/γ1(t)) if γ1(t) > 0, so

γ2[b, b+ δ] ⊃ sin(1/(0, γ1(b+ δ)]) = [−1, 1].

This contradicts with γ[b, b+ δ] ⊂ Bd2(γ(b), 0.5), so such path γ cannot exist and S̄ is not path connected.
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Figure 6: [2, Figure 24.5] Homeomorphism.

Definition ([2, Section 25]). Given X, define an equivalence relation on X by setting x ∼ y if there is a connected
subspace of X containing both x and y. The equivalence classes are called the components (or the “connected
components”) of X.

Theorem ([2, Theorem 25.1]). The components of X are connected disjoint subspaces of X whose union is X,
such that each nonempty conencted subspaces of X intersects only one of them.

Definition ([2, Section 25]). Given X, define an equivalence relation on X by setting x ∼ y if there is a path in X
from x to y. The equivalence classes are called the path components of X.

Theorem ([2, Theorem 25.2]). The path components of X are path connected disjoint subspaces of X whose union
is X, such that each nonempty path conencted subspaces of X intersects only one of them.

Definition ([2, Section 25]). A space X is said to be locally connected at x if for every neighborhood U of x, there
is a connected neighborhood V of x contained in U . X is locally connected if it is locally connected at each of its
points. Similarly, a space X is said to be locally path connected at x if for every neighborhood U of x, there is a
path connected neighborhood V of x contained in U . X is locally path connected if it is locally path connected at
each of its points.

Theorem ([2, Theorem 25.5]). If X is a topological space, then each path component of X lies in a component of
X. If X is locally path connected, then the components and the path components of X are the same.

Definition ([2, Section 26]). A collection A of subsets of a space X is said to cover X, or to be a covering of X, if
the union of the elements of A is equal to X. It is called an open covering of X if its elements are open subsets of
X.

Definition ([2, Section 26]). A space X is said to be compact if every open covering A of X contains a finite
subcollection that also covers X.

Theorem ([2, Theorem 26.2]). Every closed subspace of a compact space is compact.

Theorem ([2, Theorem 26.3]). Every compact subspace of a Hausdorff space is closed.

Theorem ([2, Theorem 26.5]). The image of a compact space under a continuous map is compact.

Theorem ([2, Theorem 27]). A subspace A of Rn is compact if and only if it is closed and is bounded in the metric
induced by p-norm ∥·∥p.

Theorem ([2, Theorem 27] Extreme value theorem). Let f : X → R be continuous. If X is compact, then there
exists points c and d in X such that f(c) ≤ f(x) ≤ f(d) for every x ∈ X.

Definition ([2, Section 41]). Let {Uα} be an indexed open covering of X. An indexed family of continuous functions

ρα : X → [0, 1]

is said to be a partition of unity on X, dominated by (or subordinate to) {Uα}, if:

1. (support ρα) ⊂ Uα for each α, i.e., {x : ρα(x) ̸= 0} ⊂ Uα.

2. The indexed family {support ρα} is locally finite, that is, ∀x ∈ X, there is only finite ρα’s such that ρα(x) > 0.

3.
∑

ρα(x) = 1 for each x ∈ X.
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Figure 7: [1, Section 0] Example of a deformation retract.

Homotopy
Definition ([1, Chapter 0]). Let f0, f1 : X → Y . A homotopy between f0 and f1 is a continuous function F :
X × [0, 1] → Y such that for all x ∈ X, F (x, 0) = f0(x) and F (x, 1) = f1(x). Two functions f0, f1 are homotopic if
such F exists, and we write f0 ≃ f1.

Definition ([1, Chapter 0]). A map f : X → Y is called a homotopy equivalence if there is a map g : Y → X such
that f ◦ g ≃ idY and g ◦ f ≃ idX . The space X and Y are said to be homotopy equivalent or to have the same
homotopy type, and write X ≃ Y , if such homotopy equivalence f : X → Y exists.

Definition ([1, Chapter 0]). Let A ⊂ X. Then A is a deformation retract of X if there exists a continuous function
F : X × [0, 1] → Y such that for all x ∈ X and a ∈ A, F (x, 0) = x, F (x, 1) ∈ A, and F (a, 1) = a. In other words, A
is a deformation retract of X if there exists r : X → A with r|A = idA and r and idX : X → X are homotopic. We
additionally say A is a strong deformation retract of X if F also satisfies F (a, t) = a for all a ∈ A and t ∈ [0, 1].1

Example. See Figure 7. The left figure shows a (strong) deformation retract of a Möbius band onto its core circle.
The three figures on the right show deformations in which a disk with two smaller open subdisks removed shrinks
to three different subspaces. Also note that these three different subspaces are homotopy equivalent to each other
but not homeomorphic.

Definition ([1, Chapter 0]). A space X is called contractible if it is homotopy equivalent to a point. This is
equivalent to saying that the identity map idX : X → X is nullhomotopic, that is, homotopic to a constant map.

Remark. The relationship between different equivalences of topology is as follows:

X and Y are isometric

��
X and Y are homeomorphic (X ∼= Y )

��

Y is a deformation retract of X

nv
X and Y are homotopic (X ≃ Y )

��
X and Y have the same homology (H∗(X) = H∗(Y ))
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