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Topological Spaces, Continuous Functions, and Homeomorphisms

Definition ([2, Section 12]). A topology on a set X is a collection 7 of subsets of X having the following properties:
1. § and X are in 7.
2. If {Usa}taer C T, then J,c; Ua € T.
3. fUy,...,U, €T, then N, U; € T.

Example. Let X be a three-element set, X = {a, b, c}. All the possible topologies are schematically represented in
Figure 1. For example, the diagram in the upper right corner indicates the topology 7 = {X, 0, {a, b}, {b}, {b,c}}.
All the topologies can be obtained by permuting a, b, c.

Definition (|2, Section 13]). If X is a set, a basis for a topology on X is a collection B of subsets of X (called basis
elements) such that ) and X are in 7.

1. For each x € X, there is at least one B € B containing x.

(a) If By, By € B with 2 € By N By, then there is Bs € B containing 2 such that By € By N Bs.

Figure 1: [2, Figure 12.1] Example of topologies of a three-element set.
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Figure 3: [2, Figure 15.1] Product topology.

Example. Let B be the collection of all circular regions (interiors of circles) in the plane R?, as in Figure 2 left,
then B is a basis. Let B’ be the collection of all rectangular regions (interiors of rectangles) in the plane R?, as in
Figure 2 right, then B’ is also a basis. And in fact, two bases B and B’ generate the same topology for R2.

Definition ([2, Section 15]). Let X and Y be topological spaces. The product topology on X x Y is the topology
having the basis as (see Figure 3):

B={UxV CXxY:Uisopenin X, V is open in Y}.

Remark. This definition of the product topology can be naturally extended to a finite product space X7 x --- x X,.
Definition ([2, Section 16]). Let X be a topological space with topology 7. If Y is a subset of X, the collection
Ty ={YnNnU:UeT}

is a topology on Y, called the subspace topology.

Definition (|2, Section 17]). A subset A of a topological space X is said to be closed if the set X\ A is open.
Definition ([2, Section 17]). The closure of A, denoted by A, is the intersection of all closed sets containing A.
Definition ([2, Section 17]). We say U is a neighborhood (neighbor) of z if U is an open set containing .

Definition ([2, Section 17]). If A is a subset of a topological space X, We say z is a limit point of A if every
neighborhood of = intersects A in some point other than z itself.

Theorem. Let A be a subset of a topological space X, and A’ be the set of all limit points of A, then
A=AUA.

Definition (|2, Section 17]). A topological space X is called a Hausdorff space if for each pair z1 # 22 € X, there
exists neighborhoods Uy, Us of x1, @9, respectively, that U; N Uy = ().

Definition (|2, Section 18]). A function f: X — Y is continuous if for each open set V of Y, f=1(V) is an open
subset of X.



Figure 4: 2, Figure 18.1] Homeomorphism.

Remark. Tt suffices to show that the inverse image of every basis element is open.

Theorem ([2, Theorem 18.1]). Let X,Y be topological spaces; let f : X — Y. Then the followings are equivalent:
1. f is continuous.
2. For every closed set B of Y, f~Y(B) is closed in X.

3. For each x € X and each neighborhood V' of f(x), there is an neighborhood U of x such that f(U) C V.

Definition (|2, Section 18]). Let f : X — Y be a bijection. If both the function f and the inverse function
f~1:Y — X are continuous, then f is called a homeomorphism.
X and Y are homeomorphic if such a homeomorphism f exists, and denoted as X =Y.

Remark. Another way to define a homeomorphism is to say that f: X — Y is a bijection such that f(U) is open
if and only if U is open (see Figure 4).

Remark. A homeomorphism gives us a bijective correspondence not only between X and Y but also between the
collections of open sets of X and Y. As a result, any property of X that is entirely expreesed in terms of the topology
of X yields, via f, the property of Y. Such a property of X is called a topological property of X.

Definition ([2, Section 18]). Suppose f: X — Y is an injective continuous, and let Z := f(X) C Y be the image
of f equipped with the subspace topology. If the function f’ : X — Z obtained by restricting the range of f is a
homeomorphism of X with Z, we say that f: X — Y is a topological embedding (imbedding) of X in Y.

Definition ([2, Section 20]). A metric on a set X is a function

d: X xX—=>R
having the following properties:
1. d(z,y) > 0 for all =,y € X; equality holds if and only if z = y.
2. d(z,y) =d(y,z) for all z,y € X.
3. (Triangle inequality) d(x,y) + d(y, z) > d(z, z) for all z,y,z € X.

Given a metric d on X, the number d(z,y) is often called the distance between x and y. Given e > 0, consider the
set

By(z,e) ={y: d(z,y) < ¢}
of all points y whose distance from z is less than e. It is called the e-ball centered at x. Sometimes we omit d and
write B(z,€).

Definition ([2, Section 20]). If d is a metric on the set X, then the collection of all e-balls By(x,€), for x € X and
€ > 0, is a basis for a topology on X, called the metric topology induced by d.
A metric space X is a topological space X together with a specific metric d that gives the topology of X.

Example. Given z = (21,...,2,) in R™ and for 1 < p < oo, we define the p-norm of x by

1
Iz, = (2} + -+ aB)"/”

for p € [1,00), and ||z||, = maxi<;<y |;|. And then the induced distance d, on R™ is defined as
dp(z,y) = [z =yl -

All the metrics dp, induce the same topology on R™ for 1 < p < oo, and this is the usual topology on R™. This also
coincides with the product topology on R™ as well.



Figure 5: [2, Figure 22.1] Torus as a quotient space.

Theorem (|2, Theorem 21.1]). Let (X,dx), (Y,dy) be metric spaces and let f : X — Y. Then continuity of f is
equivalent to the requirement that given x € X and € > 0, there exists 6 > 0 such that

dx(2,y) <6 = dy(f(2), f(y)) <e

Definition (|2, Section 22]). Let X and Y be topological spaces; let p: X — Y be a surjective map. The map p is
a quotient map if U C Y is open in Y if and only if p~1(U) is open in X.

Definition ([2, Section 22]). If X is a topological space, A is a set, and p : X — A is a surjective map, then
there exists exactly one topology 7 on A relative to which p is a quotient map; i.e., U C A is open if and only if
p~1(U) C X is open. Tis called the quotient topology induced by p.

Connectedness and Compactness

Definition ([2, Section 23]). Let X be a topological space. A separation of X is a pair U,V of disjoint nonempty
subsets of X whose union is X. The space X is said to be connected if there does not exist a separation of X.

Theorem (|2, Theorem 23.4]). Let A be a connected subspace of X. If A C B C A, then B is also connected.
Theorem ([2, Theorem 23.5]). The image of a connected space under a continuous map is conencted.
Corollary ([2, Corollary 24.2]). The real line R is connected and so are intervals and rays in R.

Definition (]2, Section 24]). Given points x and y of the space X, a path in X from z to y is a continuous map
f :]a,b] = X of some closed interval in the real line into X, such that f(a) = z and f(b) = y. A space X is said to
be path connected if every pair of points of X can be joined by a path in X.

Example (|2, Section 24| Topologist’s sine curve). Let S denote the following subset of the plane
S ={(z,sin(1/x)) : 0 <z < 1}.

The set S = SU{0} x [~1,1] is a classical example in the topology called the topologist’s sine curve (see Figure 6).
The set S is connected but not path connected.

Since S is a continuous image of (0, 1], S is connected, and then S is connected as well. Now we show S is not path
connected. Suppose there is a path v : [a,¢] — S with v(a) = (0,0) and v(c) = (1,sin 1). Since v~ 1({0} x [-1,1]) is
closed in [a, c], it has the largest element b. Then + : [b, ¢ is a path that maps b into the vertical interval {0} x [—1, 1]
and maps (b, ¢] into S. Since + is continuous, there exists § > 0 such that

’Y[bv b+ 5] - de (V(b)v 05)

However, if we write v(t) = (71(t),72(t)), then ~1[b, b+ 4] is a connected subset of [0, 1] containing ~;(b) = 0 and
v (b+d) >0, so
[0,71(b+8)] C Y1[b, b+ 6.

But since v, (t) = sin(1/71(t)) if y1(¢) > 0, so
Ya[b, b+ 8] D sin(1/(0,v1 (b + 9)]) = [-1,1].

This contradicts with [b, b+ 6] C Bg,(y(b),0.5), so such path v cannot exist and S is not path connected.



Figure 6: [2, Figure 24.5] Homeomorphism.

Definition ([2, Section 25]). Given X, define an equivalence relation on X by setting « ~ y if there is a connected
subspace of X containing both x and y. The equivalence classes are called the components (or the “connected
components”) of X.

Theorem ([2, Theorem 25.1]). The components of X are connected disjoint subspaces of X whose union is X,
such that each nonempty conencted subspaces of X intersects only one of them.

Definition (|2, Section 25]). Given X, define an equivalence relation on X by setting x ~ y if there is a path in X
from z to y. The equivalence classes are called the path components of X.

Theorem ([2, Theorem 25.2]). The path components of X are path connected disjoint subspaces of X whose union
1s X, such that each nonempty path conencted subspaces of X intersects only one of them.

Definition (|2, Section 25]). A space X is said to be locally connected at z if for every neighborhood U of x, there
is a connected neighborhood V of = contained in U. X is locally connected if it is locally connected at each of its
points. Similarly, a space X is said to be locally path connected at z if for every neighborhood U of x, there is a
path connected neighborhood V' of z contained in U. X is locally path connected if it is locally path connected at
each of its points.

Theorem ([2, Theorem 25.5]). If X is a topological space, then each path component of X lies in a component of
X. If X is locally path connected, then the components and the path components of X are the same.

Definition ([2, Section 26]). A collection A of subsets of a space X is said to cover X, or to be a covering of X, if
the union of the elements of A is equal to X. It is called an open covering of X if its elements are open subsets of
X.

Definition (|2, Section 26]). A space X is said to be compact if every open covering A of X contains a finite
subcollection that also covers X.

Theorem ([2, Theorem 26.2]). Every closed subspace of a compact space is compact.
Theorem ([2, Theorem 26.3]). Every compact subspace of a Hausdorff space is closed.
Theorem ([2, Theorem 26.5]). The image of a compact space under a continuous map is compact.

Theorem ([2, Theorem 27]). A subspace A of R™ is compact if and only if it is closed and is bounded in the metric
induced by p-norm |||,

Theorem ([2, Theorem 27] Extreme value theorem). Let f : X — R be continuous. If X is compact, then there
exists points ¢ and d in X such that f(c) < f(x) < f(d) for every x € X.

Definition (|2, Section 41]). Let {U,} be an indexed open covering of X. An indexed family of continuous functions
Po s X — [0,1]
is said to be a partition of unity on X, dominated by (or subordinate to) {U,}, if:
1. (support po) C U, for each o, i.e., {x : po(z) # 0} C U,.
2. The indexed family {support p,} is locally finite, that is, Vz € X, there is only finite p,’s such that p,(z) > 0.
3. > palr) =1 for each x € X.



Figure 7: [1, Section 0] Example of a deformation retract.

Homotopy

Definition ([1, Chapter 0]). Let fo, f1 : X — Y. A homotopy between fy and f; is a continuous function F :
X x [0,1] = Y such that for all z € X, F(x,0) = fo(z) and F(z,1) = f1(x). Two functions fy, f1 are homotopic if
such F exists, and we write fo ~ f1.

Definition ([1, Chapter 0]). A map f: X — Y is called a homotopy equivalence if there is a map ¢g : ¥ — X such
that fog ~ idy and go f ~ idyxy. The space X and Y are said to be homotopy equivalent or to have the same
homotopy type, and write X ~ Y, if such homotopy equivalence f : X — Y exists.

Definition (|1, Chapter 0]). Let A C X. Then A is a deformation retract of X if there exists a continuous function
F: X x[0,1] = Y such that for all z € X and a € A, F(z,0) =z, F(z,1) € A, and F(a,1) = a. In other words, A
is a deformation retract of X if there exists r : X — A with r|4 = id4 and r and idx : X — X are homotopic. We
additionally say A is a strong deformation retract of X if F also satisfies F(a,t) = a for all a € A and t € [0,1].

Example. See Figure 7. The left figure shows a (strong) deformation retract of a Mobius band onto its core circle.
The three figures on the right show deformations in which a disk with two smaller open subdisks removed shrinks
to three different subspaces. Also note that these three different subspaces are homotopy equivalent to each other
but not homeomorphic.

Definition ([1, Chapter 0]). A space X is called contractible if it is homotopy equivalent to a point. This is
equivalent to saying that the identity map idx : X — X is nullhomotopic, that is, homotopic to a constant map.

Remark. The relationship between different equivalences of topology is as follows:

X and Y are isometric

X and Y are homeomorphic (X YY) Y is a deformation retract of X

X and Y are homotopic (X ~Y)

X and Y have the same homology (H.(X) = H.(Y))
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n [1], strong deformation retract is taken as the definition of deformation retract.



