
Backwards Martingales and Exchangeability

김지수 (Jisu KIM)

확률론 2 (Probability Theory 2), 2025 2nd semester (fall)

Some parts of this lecture note are from the lecture notes from Prof. Alessandro Rianldo’s “Advanced Probability
Overview”.

Backwards Martingales

A backwards martingale (some authors call them reversed) is a martingale indexed by the negative integers, i.e.
Xn, n ≤ 0, adapted to an increasing sequence of σ-fields Fn with

E[Xn+1 | Fn] = Xn, n ≤ −1.

Because the σ-fields decrease as n ↓ −∞, the convergence theory for backwards martingales is particularly simple.

Theorem ([2, Theorem 4.7.1]). X−∞ = limn→−∞ Xn exists a.s. and in L1.

Proof. Let Un be the number of upcrossings of [a, b] by X−n, . . . , X0. The upcrossing inequality [2, Theorem 4.2.10]
implies

(b− a)EUn ≤ E(X0 − a)+.

Letting n → ∞ and using the monotone convergence theorem, we have EU∞ < ∞, so by the remark after [2,
Theorem 4.2.11], the limit X−∞ exists a.s.. The martingale property implies Xn = E[X0 | Fn], so [2, Theorem 4.6.1]
implies Xn is uniformly integrable and [2, Theorem 4.6.3] tells us that the convergence occurs in L1.

The next result identifies the limit in [2, Theorem 4.7.1].

Theorem ([2, Theorem 4.7.2]). If X−∞ = limn→−∞ Xn and F−∞ =
⋂

n Fn, then

X−∞ = E[X0 | F−∞].

Proof. Clearly X−∞ ∈ F−∞. Since Xn = E[X0 | Fn], for A ∈ F−∞ ⊂ Fn,∫
A

Xn dP =

∫
A

X0 dP.

[2, Theorem 4.7.1] and [2, Lemma 4.6.5] imply E[Xn;A] → E[X−∞;A], so∫
A

X−∞ dP =

∫
A

X0 dP,

for all A ∈ F−∞, proving the claim.

The next result is [2, Theorem 4.6.8] backwards
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Theorem ([2, Theorem 4.7.3]). If Fn ↓ F−∞ as n ↓ −∞ (i.e. F−∞ =
⋂

n Fn), then

E[Y | Fn] → E[Y | F−∞] a.s. and in L1.

Proof. Xn = E[Y | Fn] is a backwards martingale, so [2, Theorem 4.7.1]-[2, Theorem 4.7.2] imply that as n ↓ −∞,
Xn → X−∞ a.s. and in L1, where

X−∞ = E[X0 | F−∞] = E [E[Y | F0] | F−∞] = E[Y | F−∞].

Exchangeability

Even though the convergence theory for backwards martingales is easy, there are some nice applications, in particular
for exchangeable random variables.

Definition. A sequence of random quantities {Xn}∞n=1 is exchangeable if, for every n and all distinct j1, . . . , jn,
(Xj1 , . . . , Xjn) and (X1, . . . , Xn) have the same joint distribution.

Remark ([2, Example 4.7.8]). This definition is equivalent to that, for every n and any permutation π of {1, . . . , n},
(X1, . . . , Xn) and (Xπ(1), . . . , Xπ(n)) have the same joint distribution.

Example (Conditionally iid random quantities). Let {Xn}∞n=1 be conditionally iid given a σ–field F . Then {Xn}∞n=1

is an exchangeable sequence. The result follows easily from the fact that

µXj1
,...,Xjn |F = µX1,...,Xn|F a.s..

To analyze an exchangeable sequence of random variables, we return to the special space utilized for Hewitt-
Savage 0-1 law in Section 2,5. That is, we suppose

Ω = {(ω1, ω2, . . . ) : ωi ∈ S}, F = S × S × · · · , Xn(ω) = ωn.

Let En be the σ-field generated by events that are invariant under permutations leaving n+ 1, n+ 2, . . . fixed, and
let E =

⋂
n En be the exchangeable σ-field.

We recall Hewitt-Savage 0-1 law, which is a generalization of Kolmogorov’s 0-1 law. We provide martingale proof
of this at Appendix.

Theorem ([2, Theorem 2.5.4, Example 4.7.6]). Hewitt–Savage 0–1 law. If X1, X2, . . . are i.i.d. and A ∈ E then
P (A) ∈ {0, 1}.

Theorem. Strong Law of Large Numbers. Let {Xn}∞n=1 be an exchangeable sequence of random variables with
E|Xi| < ∞. Let Sn = ξ1 + · · · + ξn. Then limn→∞ Sn/n exists a.s. and has mean equal to E[X1]. If the Xj’s are
independent, then the limit equals E[X1] a.s.

Proof. Let Y−n = Sn/n, and let {F−n}n≥0 be defined as

F−n = σ(Sn, Sn+1, Sn+2, . . . ) = σ(Sn, Xn+1, Xn+2, . . . ).

To compute E[Y−n | F−n−1], note that if j, k ≤ n + 1, symmetry (specifically, HW#1 Problem 7) implies E[Xj |
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F−n−1] = E[Xk | F−n−1], so

E[Xn+1 | F−n−1] =
1

n+ 1

n+1∑
k=1

E[Xk | F−n−1] =
1

n+ 1
E[Sn+1 | F−n−1] =

Sn+1

n+ 1
.

Since Y−n = (Sn+1 −Xn+1)/n, it follows that

E[Y−n | F−n−1] = E[Sn+1/n | F−n−1]− E[Xn+1/n | F−n−1] =
Sn+1

n+ 1
= Y−n−1.

Thus Y−n is a backwards martingale adapted to {F−n}n≥0, so by [2, Theorem 4.7.1]-[2, Theorem 4.7.2],

lim
n→∞

Y−n = lim
n→∞

Sn/n = E[Y−1 | F−∞] = E[X1 | F−∞].

In particular,
E
[
lim
n→∞

Y−n

]
= E [E[X1 | F−∞]] = E[X1].

Suppose further that Xj ’s are independent. Since F−n ⊂ En, F−∞ ⊂ E . The Hewitt–Savage 0–1 law [2, Theorem
2.5.4, Example 4.7.6] says E is trivial, so

lim
n→∞

Sn/n = E[X−1] a.s.

Example. Let {Xn}∞n=1 be Bernoulli random variables such that

P (X1 = x1, . . . , Xn = xn) =
1

(n+ 1)
(
n
y

) ,
where y =

∑n
j=1 xj . One can show that this specifies consistent joint distributions. One can also check that the

Xn’s are not independent:
P (X1 = 1) = 1

2 , P (X1 = 1, X2 = 1) = 1
3 ̸=

(
1
2

)2
.

From Strong law of large number, we know that Y−n := Sn/n converges a.s., hence it converges in distribution.
We can compute the exact distribution:

P (Y−n = k/n) =
1

n+ 1
, k = 0, 1, . . . , n.

Hence Y−n converges in distribution to Uniform[0, 1], which must be the distribution of the limit. The limit is not
a.s. constant.

De Finetti’s theorem says that a sequence of random quantities is exchangeable if and only if it is conditionally
iid given exchangeable σ-field. That is, the Conditionally iid example is essentially the only example of exchangeable
sequences. We provide the proof at Appendix.

Theorem ([2, Theorem 4.7.9]). de Finetti’s Theorem. X1, X2, . . . are exchangeable if and only if, conditional on
E, X1, X2, . . . are independent and identically distributed.

When the Xi take values in a nice space, there is a regular conditional distribution for (X1, X2, . . . ) given E ,
and the sequence can be represented as a mixture of i.i.d. sequences. [4] call the sequence presentable in this case.
For general measurable spaces the result may fail; see [1] and [3] for counterexamples.
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Appendix

The key to the martingale proof for Hewitt-Savage 0-1 law and de Finetti’s Theorem is:

Lemma ([2, Lemma 4.7.7]). Suppose X1, X2, . . . are i.i.d. and let

An(φ) =
1

(n)k

∑
i

φ(Xi1 , . . . , Xik),

where the sum is over all sequences of distinct integers 1 ≤ i1, . . . , ik ≤ n, and

(n)k = n(n− 1) · · · (n− k + 1)

is the number of such sequences. If φ is bounded, An(φ) → Eφ(X1, . . . , Xk) a.s..

Proof. An(φ) ∈ En, so

An(φ) = E(An(φ) | En) =
1

(n)k

∑
i

E(φ(Xi1 , . . . , Xik) | En) = E(φ(X1, . . . , Xk) | En),

since all the terms in the sum are the same. [2, Theorem 4.7.3] with F−m = Em for m ≥ 1 implies that

E(φ(X1, . . . , Xk) | En) → E(φ(X1, . . . , Xk) | E).

We want to show that the limit is E(φ(X1, . . . , Xk)). The first step is to observe that there are k(n− 1)k−1 terms
in An(φ) involving X1, and φ is bounded, so if we let 1 ∈ i denote the sum over sequences that contain 1,

1

(n)k

∑
1∈i

φ(Xi1 , . . . , Xik) ≤
k(n− 1)k−1

(n)k
supφ → 0.

This shows that E(φ(X1, . . . , Xk) | E) ∈ σ(X2, X3, . . . ). Repeating the argument for 2, 3, . . . , k shows

E(φ(X1, . . . , Xk) | E) ∈ σ(Xk+1, Xk+2, . . . ).
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Intuitively, if the conditional expectation of a r.v. is independent of the r.v., then

E(φ(X1, . . . , Xk) | E) = E(φ(X1, . . . , Xk)). (1)

To show this, we prove:

If EX2 < ∞ and E(X | G) ∈ F with X independent of F , then E(X | G) = EX. (2)

To prove (2), let Y = E(X | G) and note that [2, Theorem 4.1.11] implies EY 2 ≤ EX2 < ∞. By independence,
EXY = EXEY = (EY )2 since EY = EX. From the geometric interpretation of conditional expectation [2, Theorem
4.1.15], E((X − Y )Y ) = 0, so EY 2 = EXY = (EY )2 and hence var(Y ) = 0.

Now we use this Lemma to show Hewitt-Savage 0-1 law.

Proof. Statement (1) holds for all bounded φ, so E is independent of Gk = σ(X1, . . . , Xk). Since this holds for all
k, and

⋃
k Gk is a π-system containing Ω, [2, Theorem 2.1.6] implies E is independent of σ(

⋃
k Gk) ⊃ E , and we get

the usual 0–1 law conclusion: if A ∈ E , it is independent of itself, and hence

P (A) = P (A ∩A) = P (A)P (A),

i.e. P (A) ∈ {0, 1}.

We also use this Lemma to show de Finitti’s Theorem.

Proof. Repeating the first calculation in [2, Lemma 4.7.7] and using the notation introduced there shows that for
any exchangeable sequence:

An(φ) = E(An(φ) | En) =
1

(n)k

∑
i

E(φ(Xi1 , . . . , Xik) | En) = E(φ(X1, . . . , Xk) | En),

since all terms are the same. Again, [2, Theorem 4.7.3] implies that

An(φ) → E(φ(X1, . . . , Xk) | E). (3)

This time, however, E may be nontrivial, so we cannot hope that the limit is E(φ(X1, . . . , Xk)).
Let f and g be bounded functions on Rk−1 and R, respectively. If we let In,k be the set of all sequences of

distinct integers 1 ≤ i1, . . . , ik ≤ n, then

(n)k−1An(f)nAn(g) =
∑

i∈In,k−1

f(Xi1 , . . . , Xik−1
)
∑
m

g(Xm)

=
∑

i∈In,k

f(Xi1 , . . . , Xik−1
)g(Xik) +

∑
i∈In,k−1

k−1∑
j=1

f(Xi1 , . . . , Xik−1
)g(Xij ).

If we let φ(x1, . . . , xk) = f(x1, . . . , xk−1)g(xk), note that

(n)k−1n

(n)k
=

n

n− k + 1
,

(n)k−1

(n)k
=

1

n− k + 1
,

then rearrange to get

An(φ) =
n

n− k + 1
An(f)An(g)−

1

n− k + 1

k−1∑
j=1

An(φj),
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where φj(x1, . . . , xk−1) = f(x1, . . . , xk−1)g(xj). Applying (3) to φ, f , g, and all φj gives

E(f(X1, . . . , Xk−1)g(Xk) | E) = E(f(X1, . . . , Xk−1) | E)E(g(Xk) | E).

It follows by induction that

E

 k∏
j=1

fj(Xj)

∣∣∣∣∣∣ E
 =

k∏
j=1

E(fj(Xj) | E).
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