Backwards Martingales and Exchangeability
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S+E2 2 (Probability Theory 2), 2025 2nd semester (fall)

Some parts of this lecture note are from the lecture notes from Prof. Alessandro Rianldo’s “Advanced Probability

Overview”.

Backwards Martingales

A backwards martingale (some authors call them reversed) is a martingale indexed by the negative integers, i.e.

X, n <0, adapted to an increasing sequence of o-fields F,, with
E[Xpi1 | Fu]l = X0, n<-1

Because the o-fields decrease as n | —oo, the convergence theory for backwards martingales is particularly simple.
Theorem (|2, Theorem 4.7.1]). X_ o, = lim,, o X,, ezists a.s. and in L'.

Proof. Let U, be the number of upcrossings of [a,b] by X_,, ..., Xo. The upcrossing inequality [2, Theorem 4.2.10]
implies

(b — G,)EUn S E(XO — Cl)+.

Letting n — oo and using the monotone convergence theorem, we have EU, < 00, so by the remark after [2,
Theorem 4.2.11], the limit X_, exists a.s.. The martingale property implies X,, = E[Xq | F3.], so [2, Theorem 4.6.1]

implies X,, is uniformly integrable and |2, Theorem 4.6.3] tells us that the convergence occurs in L!. O
The next result identifies the limit in [2, Theorem 4.7.1].
Theorem ([2, Theorem 4.7.2]). If X_o =lim,,_o X, and F_oc =(),, Fn, then
X_oo = E[Xo | Feoo-

Proof. Clearly X_ o, € F_o. Since X,, = E[X( | Fp,], for A € F_, C Fp,

/XndP:/XOdP.
A A

[2, Theorem 4.7.1] and [2, Lemma 4.6.5] imply E[X,,; A] = E[X_; 4], so

/X_OOdP:/XOdP,
A A

for all A € F_,, proving the claim. O

The next result is [2, Theorem 4.6.8] backwards



Theorem (|2, Theorem 4.7.3]). If F,, | F_oo asn | —oo (i.e. F_oo =(), Fn), then
EY | Fo] - EY | Fooo]  a.s. and in L.

Proof. X, =E[Y | F,,] is a backwards martingale, so [2, Theorem 4.7.1]-[2, Theorem 4.7.2] imply that as n | —oo,
X, = X_o a.s. and in L', where

X*OOZE[X0|}—700]:E[E[Y|]:0] |]:700]:E[Y|]:700]-

Exchangeability

Even though the convergence theory for backwards martingales is easy, there are some nice applications, in particular

for exchangeable random variables.

Definition. A sequence of random quantities {X,,}°2 ; is ezchangeable if, for every n and all distinct ji,...,jn,
(X, X;,) and (X1,...,X,,) have the same joint distribution.
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Remark ([2, Example 4.7.8]). This definition is equivalent to that, for every n and any permutation 7 of {1,...,n},
(X1,...,X,) and (Xr(1),..., Xr(n)) have the same joint distribution.

Example (Conditionally iid random quantities). Let {X,,}5; be conditionally iid given a o—field F. Then {X,,}°2 ;

is an exchangeable sequence. The result follows easily from the fact that

BX X5, | F = HXy . X | F o &S,

To analyze an exchangeable sequence of random variables, we return to the special space utilized for Hewitt-

Savage 0-1 law in Section 2,5. That is, we suppose
Q= {(w,wa,...):w; €S}, F=8Sx8Sx---, X (W) = wy.

Let &, be the o-field generated by events that are invariant under permutations leaving n 4+ 1,n + 2, ... fixed, and
let £ =(),, &n be the exchangeable o-field.
We recall Hewitt-Savage 0-1 law, which is a generalization of Kolmogorov’s 0-1 law. We provide martingale proof

of this at Appendix.

Theorem ([2, Theorem 2.5.4, Example 4.7.6]). Hewitt—Savage 0-1 law. If X1, Xo,... are i.i.d. and A € & then
P(A) € {0,1}.

Theorem. Strong Law of Large Numbers. Let {X,,}>2, be an exchangeable sequence of random variables with
E|X;| < co. Let S, =& + -+ + &u. Then lim,, o S, /n exists a.s. and has mean equal to E[X]. If the X;’s are
independent, then the limit equals E[X1] a.s.

Proof. Let Y_,, = S, /n, and let {F_,,},,>0 be defined as
Fon= U(Sna Sn+la Sn+27 v ) = J(Sn>Xn+17Xn+27 e )

To compute E[Y_,, | F_,,_1], note that if j,k < n + 1, symmetry (specifically, HW#1 Problem 7) implies E[X |



-anfl] = E[Xk | j—';nfl]a S0

n+1
1 Sn—i—l
E(X, Fen_i]|=—— E(X, | Fon_1] = ——EI[S, Fn_1] = .
[Xn+1 | 1] n+1k:1[k| 1] n+1[ +1] 1] i
Since Y_,, = (Sp+1 — Xna1)/n, it follows that
Sn-l—l
E[Y—n ‘ -F—n—l] = E[Sn+1/n | ]:—n—l] - IEP(n+1/n | ]:—n—l] = nt 1 =Y_,_1.

Thus Y_,, is a backwards martingale adapted to {F_,,},>0, so by [2, Theorem 4.7.1]-[2, Theorem 4.7.2],

lim Y_n = lim Sn/n = E[Y_l | ]:—oo] = E[Xl ‘ .7:_00}
n—00 n— 00

In particular,
E [ lim Y,n] =E[E[X; | F_oo]] = E[X4].

n—oo

Suppose further that X;’s are independent. Since F_,, C &,, F_oc C . The Hewitt—Savage 0-1 law [2, Theorem
2.5.4, Example 4.7.6] says £ is trivial, so

nh_)rr;o Sp/n =E[X_1] a.s.

Example. Let {X,,}72, be Bernoulli random variables such that

1

P(Xlz-rlv""Xn:xn):m’

where y = 2?21 x;. One can show that this specifies consistent joint distributions. One can also check that the
X,’s are not independent:
2
P(Xi=1)=3, P(Xi=1Xo=1)=3#(3)"

From Strong law of large number, we know that Y_,, := S, /n converges a.s., hence it converges in distribution.

We can compute the exact distribution:

1

P(an = k/n) = m,

k=0,1,...,n.
Hence Y_,, converges in distribution to Uniform[0, 1], which must be the distribution of the limit. The limit is not

a.s. constant.

De Finetti’s theorem says that a sequence of random quantities is exchangeable if and only if it is conditionally
iid given exchangeable o-field. That is, the Conditionally iid example is essentially the only example of exchangeable

sequences. We provide the proof at Appendix.

Theorem (|2, Theorem 4.7.9]). de Finetti’s Theorem. X1, Xa,... are exchangeable if and only if, conditional on
E, X1,Xa,... are independent and identically distributed.

When the X; take values in a nice space, there is a regular conditional distribution for (X, Xa,...) given &,
and the sequence can be represented as a mixture of i.i.d. sequences. [4] call the sequence presentable in this case.

For general measurable spaces the result may fail; see [1] and [3] for counterexamples.
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Appendix
The key to the martingale proof for Hewitt-Savage 0-1 law and de Finetti’s Theorem is:

Lemma ([2, Lemma 4.7.7]). Suppose X1, Xa,... are i.i.d. and let
A0(p) = Y (X Xy
n@_(n)k i 2 119000 ik )

where the sum is over all sequences of distinct integers 1 < iy,... i < n, and
(n)k=nn-1)---(n—k+1)

is the number of such sequences. If ¢ is bounded, A, (v) = Ep(X1,...,Xk) a.s..

Proof. Ay, (p) € &y, so

An(9) = E(An() | £,) = ﬁzﬂ«:wxm...,xik) 1£2) = E(p(X1s. ... X1) | £0),

since all the terms in the sum are the same. [2, Theorem 4.7.3] with F_,, = &, for m > 1 implies that
E(o(X1,..., Xk) | &) = E(e(X1,..., Xk) | E).

We want to show that the limit is E(p(X7, ..., X)). The first step is to observe that there are k(n — 1)k~1 terms
in A, (p) involving X7, and ¢ is bounded, so if we let 1 € i denote the sum over sequences that contain 1,

n—1)k-1
(n%Zga(X“,...,Xik) < k(<n)1k)sup<p%0.

leq

This shows that E(¢(X1,...,Xk) | £) € 0(X2, X3,...). Repeating the argument for 2,3,. ..,k shows

E((p(Xh A ,Xk) | 5) S (T(Xk+1,Xk+2, .. )



Intuitively, if the conditional expectation of a r.v. is independent of the r.v., then
E(p(Xy,..., Xi) | £) = E(p(Xy,..., Xi)). (1)

To show this, we prove:

If EX? < 0o and E(X | G) € F with X independent of F, then E(X | G) = EX. (2)

To prove (2), let Y = E(X | G) and note that [2, Theorem 4.1.11] implies EY? < EX? < oco. By independence,
EXY = EXEY = (EY)? since EY = EX. From the geometric interpretation of conditional expectation |2, Theorem
4.1.15, E((X —=Y)Y) =0, so EY? = EXY = (EY)? and hence var(Y) = 0. O

Now we use this Lemma to show Hewitt-Savage 0-1 law.

Proof. Statement (1) holds for all bounded ¢, so £ is independent of Gy = o(X7, ..., X}). Since this holds for all
k, and |J,, Gk is a m-system containing €, [2, Theorem 2.1.6] implies £ is independent of o(|J, Gr) D &, and we get

the usual 0-1 law conclusion: if A € &, it is independent of itself, and hence
P(A)=P(ANA)=P(A)P(A),
ie. P(A) € {0,1}. O
We also use this Lemma to show de Finitti’s Theorem.

Proof. Repeating the first calculation in [2, Lemma 4.7.7] and using the notation introduced there shows that for

any exchangeable sequence:

An(e) = E(Aa(0) | €)= 7 ST B((Xiyrooe Xi) | £2) = Blol(Xr,-0, K1) | E0)

since all terms are the same. Again, [2, Theorem 4.7.3] implies that
An(p) = E(p(X1, ..., Xk) | £). 3)

This time, however, £ may be nontrivial, so we cannot hope that the limit is E(o(X1, ..., Xk)).
Let f and ¢ be bounded functions on R¥~! and R, respectively. If we let I, be the set of all sequences of

distinct integers 1 < éq,...,1; < n, then

(M- An(Fndalg) = D FXinsee o Xin) D 9(Xom)

i€l k1

k—1
= Z f(X’ilﬂ"'ﬂXik—l)g(Xik)+ Z Zf(Xi17""Xik—l)g(Xi_j)'

€10 k i€ln k-1 J=1

If we let p(z1,...,2k) = f(z1,...,2x_1)g(xk), note that

(n)g—1n _ n (n)k-1 _ 1
(n)g n—k+1 (n)k n—k+1
then rearrange to get
k—1
n 1
Au(9) = i A DA = g A



where @;(z1,...,25-1) = f(21,...,2k-1)g(z;). Applying (3) to ¢, f, g, and all ¢; gives
E(f(X1,..., Xk—1)9(Xi) | €) = E(f(X1,..., Xp—1) [ E)E(9(Xk) | €).

It follows by induction that

k
E (H fi(X5)

k
5) = HE(fj(Xj) | E).



