Backwards Martingales and Exchangeability

확률론 2 (Probability Theory 2), 2025 2nd semester (fall)

Some parts of this lecture note are from the lecture notes from Prof. Alessandro Rianldo's "Advanced Probability Overview".

Backwards Martingales

A backwards martingale (some authors call them reversed) is a martingale indexed by the negative integers, i.e. X_n , $n \leq 0$, adapted to an increasing sequence of σ -fields \mathcal{F}_n with

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n, \quad n < -1.$$

Because the σ -fields decrease as $n \downarrow -\infty$, the convergence theory for backwards martingales is particularly simple.

Theorem ([2, Theorem 4.7.1]). $X_{-\infty} = \lim_{n \to -\infty} X_n$ exists a.s. and in L^1 .

Proof. Let U_n be the number of upcrossings of [a, b] by X_{-n}, \ldots, X_0 . The upcrossing inequality [2, Theorem 4.2.10] implies

$$(b-a)\mathbb{E}U_n < \mathbb{E}(X_0-a)^+$$
.

Letting $n \to \infty$ and using the monotone convergence theorem, we have $\mathbb{E}U_{\infty} < \infty$, so by the remark after [2, Theorem 4.2.11], the limit $X_{-\infty}$ exists a.s.. The martingale property implies $X_n = \mathbb{E}[X_0 \mid \mathcal{F}_n]$, so [2, Theorem 4.6.1] implies X_n is uniformly integrable and [2, Theorem 4.6.3] tells us that the convergence occurs in L^1 .

The next result identifies the limit in [2, Theorem 4.7.1].

Theorem ([2, Theorem 4.7.2]). If $X_{-\infty} = \lim_{n \to -\infty} X_n$ and $\mathcal{F}_{-\infty} = \bigcap_n \mathcal{F}_n$, then

$$X_{-\infty} = \mathbb{E}[X_0 \mid \mathcal{F}_{-\infty}].$$

Proof. Clearly $X_{-\infty} \in \mathcal{F}_{-\infty}$. Since $X_n = \mathbb{E}[X_0 \mid \mathcal{F}_n]$, for $A \in \mathcal{F}_{-\infty} \subset \mathcal{F}_n$,

$$\int_{A} X_n \, dP = \int_{A} X_0 \, dP.$$

[2, Theorem 4.7.1] and [2, Lemma 4.6.5] imply $\mathbb{E}[X_n; A] \to \mathbb{E}[X_{-\infty}; A]$, so

$$\int_A X_{-\infty} dP = \int_A X_0 dP,$$

for all $A \in \mathcal{F}_{-\infty}$, proving the claim.

The next result is [2, Theorem 4.6.8] backwards

Theorem ([2, Theorem 4.7.3]). If $\mathcal{F}_n \downarrow \mathcal{F}_{-\infty}$ as $n \downarrow -\infty$ (i.e. $\mathcal{F}_{-\infty} = \bigcap_n \mathcal{F}_n$), then

$$\mathbb{E}[Y \mid \mathcal{F}_n] \to \mathbb{E}[Y \mid \mathcal{F}_{-\infty}]$$
 a.s. and in L^1 .

Proof. $X_n = \mathbb{E}[Y \mid \mathcal{F}_n]$ is a backwards martingale, so [2, Theorem 4.7.1]-[2, Theorem 4.7.2] imply that as $n \downarrow -\infty$, $X_n \to X_{-\infty}$ a.s. and in L^1 , where

$$X_{-\infty} = \mathbb{E}[X_0 \mid \mathcal{F}_{-\infty}] = \mathbb{E}\left[\mathbb{E}[Y \mid \mathcal{F}_0] \mid \mathcal{F}_{-\infty}\right] = \mathbb{E}[Y \mid \mathcal{F}_{-\infty}].$$

Exchangeability

Even though the convergence theory for backwards martingales is easy, there are some nice applications, in particular for exchangeable random variables.

Definition. A sequence of random quantities $\{X_n\}_{n=1}^{\infty}$ is exchangeable if, for every n and all distinct $j_1, \ldots, j_n, (X_{j_1}, \ldots, X_{j_n})$ and (X_1, \ldots, X_n) have the same joint distribution.

Remark ([2, Example 4.7.8]). This definition is equivalent to that, for every n and any permutation π of $\{1, \ldots, n\}$, (X_1, \ldots, X_n) and $(X_{\pi(1)}, \ldots, X_{\pi(n)})$ have the same joint distribution.

Example (Conditionally iid random quantities). Let $\{X_n\}_{n=1}^{\infty}$ be conditionally iid given a σ -field \mathcal{F} . Then $\{X_n\}_{n=1}^{\infty}$ is an exchangeable sequence. The result follows easily from the fact that

$$\mu_{X_{j_1},...,X_{j_n}|\mathcal{F}} = \mu_{X_1,...,X_n|\mathcal{F}}$$
 a.s..

To analyze an exchangeable sequence of random variables, we return to the special space utilized for Hewitt-Savage 0-1 law in Section 2,5. That is, we suppose

$$\Omega = \{(\omega_1, \omega_2, \dots) : \omega_i \in S\}, \qquad \mathcal{F} = S \times S \times \dots, \qquad X_n(\omega) = \omega_n.$$

Let \mathcal{E}_n be the σ -field generated by events that are invariant under permutations leaving $n+1, n+2, \ldots$ fixed, and let $\mathcal{E} = \bigcap_n \mathcal{E}_n$ be the exchangeable σ -field.

We recall Hewitt-Savage 0-1 law, which is a generalization of Kolmogorov's 0-1 law. We provide martingale proof of this at Appendix.

Theorem ([2, Theorem 2.5.4, Example 4.7.6]). Hewitt-Savage 0-1 law. If X_1, X_2, \ldots are i.i.d. and $A \in \mathcal{E}$ then $P(A) \in \{0, 1\}$.

Theorem. Strong Law of Large Numbers. Let $\{X_n\}_{n=1}^{\infty}$ be an exchangeable sequence of random variables with $\mathbb{E}|X_i| < \infty$. Let $S_n = \xi_1 + \cdots + \xi_n$. Then $\lim_{n\to\infty} S_n/n$ exists a.s. and has mean equal to $\mathbb{E}[X_1]$. If the X_j 's are independent, then the limit equals $\mathbb{E}[X_1]$ a.s.

Proof. Let $Y_{-n} = S_n/n$, and let $\{\mathcal{F}_{-n}\}_{n>0}$ be defined as

$$\mathcal{F}_{-n} = \sigma(S_n, S_{n+1}, S_{n+2}, \dots) = \sigma(S_n, X_{n+1}, X_{n+2}, \dots).$$

To compute $\mathbb{E}[Y_{-n} \mid \mathcal{F}_{-n-1}]$, note that if $j, k \leq n+1$, symmetry (specifically, HW#1 Problem 7) implies $\mathbb{E}[X_j \mid$

 \mathcal{F}_{-n-1}] = $\mathbb{E}[X_k \mid \mathcal{F}_{-n-1}]$, so

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_{-n-1}] = \frac{1}{n+1} \sum_{k=1}^{n+1} \mathbb{E}[X_k \mid \mathcal{F}_{-n-1}] = \frac{1}{n+1} \mathbb{E}[S_{n+1} \mid \mathcal{F}_{-n-1}] = \frac{S_{n+1}}{n+1}.$$

Since $Y_{-n} = (S_{n+1} - X_{n+1})/n$, it follows that

$$\mathbb{E}[Y_{-n} \mid \mathcal{F}_{-n-1}] = \mathbb{E}[S_{n+1}/n \mid \mathcal{F}_{-n-1}] - \mathbb{E}[X_{n+1}/n \mid \mathcal{F}_{-n-1}] = \frac{S_{n+1}}{n+1} = Y_{-n-1}.$$

Thus Y_{-n} is a backwards martingale adapted to $\{\mathcal{F}_{-n}\}_{n\geq 0}$, so by [2, Theorem 4.7.1]-[2, Theorem 4.7.2],

$$\lim_{n \to \infty} Y_{-n} = \lim_{n \to \infty} S_n / n = \mathbb{E}[Y_{-1} \mid \mathcal{F}_{-\infty}] = \mathbb{E}[X_1 \mid \mathcal{F}_{-\infty}].$$

In particular,

$$\mathbb{E}\left[\lim_{n\to\infty} Y_{-n}\right] = \mathbb{E}\left[\mathbb{E}[X_1 \mid \mathcal{F}_{-\infty}]\right] = \mathbb{E}[X_1].$$

Suppose further that X_j 's are independent. Since $\mathcal{F}_{-n} \subset \mathcal{E}_n$, $\mathcal{F}_{-\infty} \subset \mathcal{E}$. The Hewitt–Savage 0–1 law [2, Theorem 2.5.4, Example 4.7.6] says \mathcal{E} is trivial, so

$$\lim_{n \to \infty} S_n / n = \mathbb{E}[X_{-1}] \qquad \text{a.s.}$$

Example. Let $\{X_n\}_{n=1}^{\infty}$ be Bernoulli random variables such that

 $P(X_1 = x_1, \dots, X_n = x_n) = \frac{1}{(n+1)\binom{n}{y}},$

where $y = \sum_{j=1}^{n} x_j$. One can show that this specifies consistent joint distributions. One can also check that the X_n 's are not independent:

$$P(X_1 = 1) = \frac{1}{2}, \qquad P(X_1 = 1, X_2 = 1) = \frac{1}{3} \neq (\frac{1}{2})^2.$$

From Strong law of large number, we know that $Y_{-n} := S_n/n$ converges a.s., hence it converges in distribution. We can compute the exact distribution:

$$P(Y_{-n} = k/n) = \frac{1}{n+1}, \quad k = 0, 1, \dots, n.$$

Hence Y_{-n} converges in distribution to Uniform[0, 1], which must be the distribution of the limit. The limit is not a.s. constant.

De Finetti's theorem says that a sequence of random quantities is exchangeable if and only if it is conditionally iid given exchangeable σ -field. That is, the Conditionally iid example is essentially the only example of exchangeable sequences. We provide the proof at Appendix.

Theorem ([2, Theorem 4.7.9]). de Finetti's Theorem. X_1, X_2, \ldots are exchangeable if and only if, conditional on $\mathcal{E}, X_1, X_2, \ldots$ are independent and identically distributed.

When the X_i take values in a nice space, there is a regular conditional distribution for $(X_1, X_2, ...)$ given \mathcal{E} , and the sequence can be represented as a mixture of i.i.d. sequences. [4] call the sequence *presentable* in this case. For general measurable spaces the result may fail; see [1] and [3] for counterexamples.

References

- [1] Lester E. Dubins and David A. Freedman. Exchangeable processes need not be mixtures of independent, identically distributed random variables. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1979.
- [2] Rick Durrett. Probability—theory and examples, volume 49 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019. Fifth edition.
- [3] David A. Freedman. A mixture of independent identically distributed random variables need not admit a regular conditional probability given the exchangeable σ-field. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1980.
- [4] Edwin Hewitt and Leonard J. Savage. Symmetric measures on Cartesian products. Trans. Amer. Math. Soc., 80:470–501, 1955.

Appendix

The key to the martingale proof for Hewitt-Savage 0-1 law and de Finetti's Theorem is:

Lemma ([2, Lemma 4.7.7]). Suppose X_1, X_2, \ldots are i.i.d. and let

$$A_n(\varphi) = \frac{1}{(n)_k} \sum_i \varphi(X_{i_1}, \dots, X_{i_k}),$$

where the sum is over all sequences of distinct integers $1 \le i_1, \ldots, i_k \le n$, and

$$(n)_k = n(n-1)\cdots(n-k+1)$$

is the number of such sequences. If φ is bounded, $A_n(\varphi) \to \mathbb{E}\varphi(X_1, \ldots, X_k)$ a.s..

Proof. $A_n(\varphi) \in \mathcal{E}_n$, so

$$A_n(\varphi) = \mathbb{E}(A_n(\varphi) \mid \mathcal{E}_n) = \frac{1}{(n)_k} \sum_i \mathbb{E}(\varphi(X_{i_1}, \dots, X_{i_k}) \mid \mathcal{E}_n) = \mathbb{E}(\varphi(X_1, \dots, X_k) \mid \mathcal{E}_n),$$

since all the terms in the sum are the same. [2, Theorem 4.7.3] with $\mathcal{F}_{-m} = \mathcal{E}_m$ for $m \geq 1$ implies that

$$\mathbb{E}(\varphi(X_1,\ldots,X_k)\mid \mathcal{E}_n)\to \mathbb{E}(\varphi(X_1,\ldots,X_k)\mid \mathcal{E}).$$

We want to show that the limit is $\mathbb{E}(\varphi(X_1,\ldots,X_k))$. The first step is to observe that there are $k(n-1)^{k-1}$ terms in $A_n(\varphi)$ involving X_1 , and φ is bounded, so if we let $1 \in i$ denote the sum over sequences that contain 1,

$$\frac{1}{(n)_k} \sum_{1 \in i} \varphi(X_{i_1}, \dots, X_{i_k}) \le \frac{k(n-1)^{k-1}}{(n)_k} \sup \varphi \to 0.$$

This shows that $\mathbb{E}(\varphi(X_1,\ldots,X_k)\mid\mathcal{E})\in\sigma(X_2,X_3,\ldots)$. Repeating the argument for $2,3,\ldots,k$ shows

$$\mathbb{E}(\varphi(X_1,\ldots,X_k)\mid \mathcal{E})\in \sigma(X_{k+1},X_{k+2},\ldots).$$

Intuitively, if the conditional expectation of a r.v. is independent of the r.v., then

$$\mathbb{E}(\varphi(X_1,\ldots,X_k)\mid\mathcal{E}) = \mathbb{E}(\varphi(X_1,\ldots,X_k)). \tag{1}$$

To show this, we prove:

If
$$\mathbb{E}X^2 < \infty$$
 and $\mathbb{E}(X \mid \mathcal{G}) \in \mathcal{F}$ with X independent of \mathcal{F} , then $\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}X$. (2)

To prove (2), let $Y = \mathbb{E}(X \mid \mathcal{G})$ and note that [2, Theorem 4.1.11] implies $\mathbb{E}Y^2 \leq \mathbb{E}X^2 < \infty$. By independence, $\mathbb{E}XY = \mathbb{E}X\mathbb{E}Y = (\mathbb{E}Y)^2$ since $\mathbb{E}Y = \mathbb{E}X$. From the geometric interpretation of conditional expectation [2, Theorem 4.1.15], $\mathbb{E}((X - Y)Y) = 0$, so $\mathbb{E}Y^2 = \mathbb{E}XY = (\mathbb{E}Y)^2$ and hence var(Y) = 0.

Now we use this Lemma to show Hewitt-Savage 0-1 law.

Proof. Statement (1) holds for all bounded φ , so \mathcal{E} is independent of $\mathcal{G}_k = \sigma(X_1, \dots, X_k)$. Since this holds for all k, and $\bigcup_k \mathcal{G}_k$ is a π -system containing Ω , [2, Theorem 2.1.6] implies \mathcal{E} is independent of $\sigma(\bigcup_k \mathcal{G}_k) \supset \mathcal{E}$, and we get the usual 0–1 law conclusion: if $A \in \mathcal{E}$, it is independent of itself, and hence

$$P(A) = P(A \cap A) = P(A)P(A),$$

i.e.
$$P(A) \in \{0,1\}.$$

We also use this Lemma to show de Finitti's Theorem.

Proof. Repeating the first calculation in [2, Lemma 4.7.7] and using the notation introduced there shows that for any exchangeable sequence:

$$A_n(\varphi) = \mathbb{E}(A_n(\varphi) \mid \mathcal{E}_n) = \frac{1}{(n)_k} \sum_i \mathbb{E}(\varphi(X_{i_1}, \dots, X_{i_k}) \mid \mathcal{E}_n) = \mathbb{E}(\varphi(X_1, \dots, X_k) \mid \mathcal{E}_n),$$

since all terms are the same. Again, [2, Theorem 4.7.3] implies that

$$A_n(\varphi) \to \mathbb{E}(\varphi(X_1, \dots, X_k) \mid \mathcal{E}).$$
 (3)

This time, however, \mathcal{E} may be nontrivial, so we cannot hope that the limit is $\mathbb{E}(\varphi(X_1,\ldots,X_k))$.

Let f and g be bounded functions on \mathbb{R}^{k-1} and \mathbb{R} , respectively. If we let $I_{n,k}$ be the set of all sequences of distinct integers $1 \leq i_1, \ldots, i_k \leq n$, then

$$(n)_{k-1}A_n(f)nA_n(g) = \sum_{i \in I_{n,k-1}} f(X_{i_1}, \dots, X_{i_{k-1}}) \sum_m g(X_m)$$

$$= \sum_{i \in I_{n,k}} f(X_{i_1}, \dots, X_{i_{k-1}})g(X_{i_k}) + \sum_{i \in I_{n,k-1}} \sum_{j=1}^{k-1} f(X_{i_1}, \dots, X_{i_{k-1}})g(X_{i_j}).$$

If we let $\varphi(x_1,\ldots,x_k)=f(x_1,\ldots,x_{k-1})g(x_k)$, note that

$$\frac{(n)_{k-1}n}{(n)_k} = \frac{n}{n-k+1}, \qquad \frac{(n)_{k-1}}{(n)_k} = \frac{1}{n-k+1},$$

then rearrange to get

$$A_n(\varphi) = \frac{n}{n-k+1} A_n(f) A_n(g) - \frac{1}{n-k+1} \sum_{j=1}^{k-1} A_n(\varphi_j),$$

where $\varphi_j(x_1,\ldots,x_{k-1})=f(x_1,\ldots,x_{k-1})g(x_j)$. Applying (3) to φ , f, g, and all φ_j gives

$$\mathbb{E}(f(X_1,\ldots,X_{k-1})g(X_k)\mid \mathcal{E}) = \mathbb{E}(f(X_1,\ldots,X_{k-1})\mid \mathcal{E})\mathbb{E}(g(X_k)\mid \mathcal{E}).$$

It follows by induction that

$$\mathbb{E}\left(\left.\prod_{j=1}^k f_j(X_j)\right|\mathcal{E}\right) = \prod_{j=1}^k \mathbb{E}(f_j(X_j)\mid \mathcal{E}).$$