
Conditional Expectation

김지수 (Jisu KIM)

확률론 2 (Probability Theory 2), 2025 2nd semester

The lecture note is largely from the lecture notes from Prof. Alessandro Rianldo’s “Advanced Probability
Overview”.

Definition. Suppose a probability space (Ω,F0, P ), and a σ-field F ⊂ F0 is given. Let X : (Ω,F0) → (R,R) be a
random variable that is F0 measurable with E |X| < ∞. The conditional expectation of X given F , E(X|F), is a
random variable Y such that

(i) Y ∈ F , i.e., is F measurable.

(ii) for all A ∈ F ,
∫
A
XdP =

∫
A
Y dP .

Any Y satisfying (i) and (ii) is said to be a version of E(X|F).

Lemma ([1, Lemma 4.1.1]). If Y satisfies (i) and (ii), then it is integrable.

Proof. Letting A = {Y > 0} ∈ F , using (ii) twice, and then adding,∫
A

Y dP =

∫
A

X dP ≤
∫
A

|X| dP,

∫
Ac

−Y dP =

∫
Ac

−X dP ≤
∫
Ac

|X| dP.

So we have E|Y | ≤ E|X|.

Uniqueness.

If Y ′ also satisfies (i) and (ii), then ∫
A

Y dP =

∫
A

Y ′ dP for all A ∈ F .

Taking A = {Y − Y ′ ≥ ε > 0}, we see

0 =

∫
A

X −X dP =

∫
A

Y − Y ′ dP ≥ εP (A) ⇒ P (A) = 0.

Since this holds for all ε, we have Y ≤ Y ′ a.s., and interchanging the roles of Y and Y ′, we have Y = Y ′ a.s.
Technically, all equalities such as Y = E(X|F) should be written as Y = E(X|F) a.s., but we have ignored this
point in previous chapters and will continue to do so.

Repeating the last argument gives:

Theorem ([1, Theorem 4.1.2]). If X1 = X2 on B ∈ F , then E(X1|F) = E(X2|F) a.s. on B.
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Proof. Let Y1 = E(X1|F) and Y2 = E(X2|F). Taking A = {Y1 − Y2 ≥ ε > 0}, we see

0 =

∫
A∩B

(X1 −X2) dP =

∫
A∩B

(Y1 − Y2) dP ≥ εP (A ∩B) ⇒ P (A ∩B) = 0.

Below is a simple property that extends from expectations to conditional expectations. It will be used to prove
the existence of conditional expectations.

Theorem ([1, Theorem 4.1.9 (b)]). Monotonicity. If X ≤ Y , then

E(X|F) ≤ E(Y |F).

Proof. Suppose that both E(X|C) and E(Y |C) exist. Let

C0 = {∞ > E(X|C) > E(Y |C)}, C1 = {∞ = E(X|C) > E(Y |C)}.

Then, for i = 0, 1,

0 ≤
∫
Ci

(
E(X|C)− E(Y |C)

)
dP =

∫
Ci

(X − Y ) dP ≤ 0.

It follows that all terms in this string are 0 and P (Ci) = 0 for i = 0, 1. Since C0 ∪ C1 = {E(X|C) > E(Y |C)}, the
result is proven.

Existence of Conditional Expectation

We could prove that versions of conditional expectations exist by the Radon–Nikodym theorem. However, the
“modern” way to prove the existence of conditional expectations is through the theory of Hilbert spaces.

Definition. An inner product space is a vector space V with an inner product ⟨·, ·⟩ : V × V → R, a function that
satisfies

• symmetry: ⟨u, v⟩ = ⟨v, u⟩,

• bilinearity (part 1): ⟨u1 + u2, v⟩ = ⟨u1, v⟩+ ⟨u2, v⟩,

• bilinearity (part 2): for real λ, ⟨λu, v⟩ = λ⟨u, v⟩,

• positivity: ⟨u, u⟩ > 0 for all u ̸= 0, and ⟨u, u⟩ = 0 iff u = 0.

An inner product provides a norm, namely ∥u∥ =
√

⟨u, u⟩ and a metric d(u, v) = ∥u− v∥. These facts follow from
some simple properties of inner products.

Proposition. Let V be a vector space with an inner product ⟨·, ·⟩. Then

1. Parallelogram law: for all u, v ∈ V ,

∥u∥2 + ∥v∥2 = 1
2

(
∥u+ v∥2 + ∥u− v∥2

)
.

2. Cauchy–Schwarz inequality: for all u, v ∈ V ,

|⟨u, v⟩| ≤ ∥u∥∥v∥,

with equality if and only if u and v are collinear.
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3. Triangle inequality: for all u, v ∈ V ,
∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Definition. A complete inner product space is a Hilbert space.

Example. Let V = L2(Ω,F , µ). Define ⟨f, g⟩ =
∫
fg dµ. This is an inner product that produces the norm ∥ · ∥2.

Note that L2 is complete.

We prove existence of conditional expectations using orthogonal projection in Hilbert spaces. The following
theorem is a basic result in Hilbert space theory

Theorem (Hilbert projection theorem). Let H be a Hilbert space and let C ⊂ H be a closed vector space of H. For
every x ∈ H, there exists a unique m ∈ C such that

∥x−m∥ = inf
c∈C

∥x− c∥ .

Further, x−m is orthogonal to C.

Now, we can prove the existence of conditional expectations.

Theorem (Existence of conditional expectation). Let (Ω,F , P ) be a probability space, and let Y be a random
variable. Let C be a sub-σ-field of F . If E(Y ) exists, then there exists a version of E(Y |C).

Proof. It is easy to see that L2(Ω, C, P ) is a closed linear subspace. If Y ∈ L2(Ω,F , P ), let Y0 be the projection of
Y into L2(Ω, C, P ). By Hilbert projection theorem,

E([Y − Y0]X) = 0 for all X ∈ L2(Ω, C, P ),

in particular for X = IC for arbitrary C ∈ C.
If Y > 0 but not in L2, define Yn = min{Y, n}. Then Yn ∈ L2. Let Y0,n be a version of E(Yn|C), and assume

that Y0,n ≤ Y0,n+1 for all n, which is allowed by monotonicity of conditional expectation. Let Y0 = limn→∞ Y0,n.
For each C ∈ C,

lim
n→∞

E(ICYn) = E(ICY ), lim
n→∞

E(ICY0,n) = E(ICY0),

and
E(ICYn) = E(ICY0,n), ∀n.

It follows that E(ICY ) = E(ICY0) for all C ∈ C and Y0 is a version of E(Y |C).
If Y takes both positive and negative values, write Y = Y + − Y −. If one of the means E(Y +) or E(Y −) is finite

then the probability is 0 that both E(Y +|C) = ∞ and E(Y −|C) = ∞. Then E(Y +|C) − E(Y −|C) is a version of
E(Y |C).

The following result summarizes what we have learned about the existence and uniqueness of conditional expec-
tation.

Corollary. If Y ∈ L2(Ω,F , P ) and C is a sub-σ-field of F . Let Z ∈ L2(Ω, C, P ). Then the following are equivalent.

1. Z = E(Y |C).

2. E(XZ) = E(XY ) for all X ∈ L2(Ω, C, P ).

3. Z is the orthogonal projection of Y into L2(Ω, C, P ).
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Examples

Intuitively, we think of F as describing the information we have at our disposal: for each A ∈ F , we know whether
or not A has occurred. E(X|F) is then our “best guess” of the value of X given the information we have.

Example ([1, Example 4.1.3]). If X ∈ F , E(X|F) = X; i.e., if we know X then our “best guess” is X itself. A
special case of this example is X = c, where c is a constant.

Example ([1, Example 4.1.4]). If X is independent of F , then E(X|F) = E(X). This is at the other extreme of
having no information; if you don’t know anything about X, then the best guess is the mean EX. To check the
definition, note that EX ∈ F so (i) holds. To verify (ii), we observe that if A ∈ F , then since X and 1A ∈ F are
independent, [1, Theorem 2.1.3] implies∫

A

X dP = E(X1A) = EX · E(1A) =

∫
A

EX dP.

Example ([1, Example 4.1.5]). Let Ω1,Ω2, · · · be a countable partition of Ω into disjoint sets, and let F =

σ(Ω1,Ω2, · · · ) be the σ-field generated by these sets. Then

E(X|F)(ω) =

∞∑
i=1

ciI(ω ∈ Ωi),

where

ci =


E(X;Ωi)
P (Ωi)

, if P (Ωi) > 0,

arbitrary, if P (Ωi) = 0.

In words, the information in Ωi tells us which element of the partition our outcome lies in and given this information,
the best guess for X is the average value of X over Ωi.

Definition. Conditional expectation given random variable is a special case of the conditional expectation given a
σ-field, being defined as

E(X|Y ) = E(X|σ(Y )),

where σ(Y ) is the σ-field generated by Y .

Definition. Conditional expectation given Y = y, i.e. E(X|Y = y).
Consider E(X|Y ), which is σ(Y )-measurable. Then there exists a measurable function h : R → R s.t. E(X|Y ) =

h(Y ) (Exercise 1.3.8) Now, we can define
E(X|Y = y) = h(y)

Example ([1, Example 4.1.6]). Suppose X and Y have joint density f(x, y), and suppose for simplicity that∫
f(x, y) dx > 0 for all y. If E|g(X)| < ∞, then

E(g(X)|Y ) = h(Y ), where h(y) =

∫
g(x)f(x, y) dx∫
f(x, y) dx

.

To “guess” this formula, note that treating the probability densities P (Y = y) as if they were real probabilities,

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=

f(x, y)∫
f(x, y) dx

,

so, integrating against the conditional probability density, we have

E(g(X)|Y = y) =

∫
g(x)P (X = x|Y = y) dx.

4



To “verify” the proposed formula now, observe h(Y ) ∈ σ(Y ) so (i) holds. To check (ii), observe that if A ∈ σ(Y )

then A = {ω : Y (ω) ∈ B} for some B ⊆ R, so

E(h(Y );A) =

∫
B

h(y)f(y) dy =

∫
B

(∫
g(x)f(x, y) dx

)
dy = E(g(X) · 1B(Y )) = E(g(X);A).

Remark. To drop the assumption that
∫
f(x, y) dx > 0, define h by

h(y)

∫
f(x, y) dx =

∫
g(x)f(x, y) dx

(i.e., h can be anything where the denominator is 0), and observe this is enough for the proof.

Example ([1, Example 4.1.7]). Suppose X and Y are independent. Let φ be a function wit E|φ(X,Y )| < ∞ and
let g(x) = E(φ(x, Y )). Then

E(φ(X,Y )|X) = g(X).

Proof. It is clear that g(X) ∈ σ(X). To check (ii), note that if A ∈ σ(X) then A = {X ∈ C}, so using Fubini’s
theorem and the independence of X and Y :∫

A

φ(X,Y ) dP = E[φ(X,Y ) · 1C(X)] =

∫
C

E[φ(x, Y )]PX(dx) =

∫
A

g(X) dP.

Properties

Conditional expectation has many of the same properties that ordinary expectation does.

Theorem ([1, Theorem 4.1.9]). (a) Linearlity.

E(aX + Y |F) = aE(X|F) + E(Y |F).

(c) Monotone convergence theorem.
If Xn ≥ 0 and Xn ↑ X with E|X| < ∞, then

E(Xn|F) ↑ E(X|F).

Remark. By applying the last result to Y1−Yn, we see that if Yn ↓ Y and E|Y1|, E|Y | < ∞, then E(Yn|F) ↓ E(Y |F).

Proof. To prove (a), we need to check that the right-hand side is a version of the left. It clearly is F-measurable.
To check (ii), we observe that if A ∈ F then by linearity of the integral and the defining properties of E(X|F) and
E(Y |F),∫

A

{aE(X|F) + E(Y |F)}dP = a

∫
A

E(X|F)dP +

∫
A

E(Y |F)dP = a

∫
A

X dP +

∫
A

Y dP =

∫
A

(aX + Y ) dP.

For (c): Let Yn = X −Xn. It suffices to show that E(Yn|F) ↓ 0. Since Yn ↓ 0, part (b) implies Zn := E(Yn|F) ↓
Z∞. If A ∈ F , then ∫

A

Zn dP =

∫
A

Yn dP.
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Letting n → ∞, and noting Yn ↓ 0, the dominated convergence theorem gives:∫
A

Z∞ dP = 0 for all A ∈ F ,⇒ Z∞ ≡ 0.

Theorem ([1, Theorem 4.1.10]). Jensen Inequality
If φ is convex and E|X| < ∞ and E|φ(X)| < ∞, then

φ(E(X|F)) ≤ E(φ(X)|F).

Proof. If φ is linear, the result is trivial, so we will suppose φ is not linear. We do this so that if we let

S = {(a, b) : a, b ∈ Q, ax+ b ≤ φ(x) for all x},

then φ(x) = sup{ax + b : (a, b) ∈ S} (see proof of [1, Theorem 1.6.2] for details). If φ(x) ≥ ax + b, then using [1,
Theorem 4.1.9] parts (a) and (b):

E(φ(X)|F) ≥ aE(X|F) + b a.s.

Taking the supremum over (a, b) ∈ S gives:

E(φ(X)|F) ≥ φ(E(X|F)) a.s.

Remark. Here we have written a.s. in the inequalities to stress that there is an exceptional set for each a, b, so we
must take the supremum over a countable set.

Theorem ([1, Theorem 4.1.11]). Conditional expectation is a contraction in Lp, p ≥ 1, i.e., i.e.,

E(|E(X|F)|p) ≤ E|X|p.

Proof. [1, Theorem 4.1.10] implies |E(X|F)|p ≤ E(|X|p|F). Taking expectations:

E(|E(X|F)|p) ≤ E(E(|X|p|F)) = E|X|p.

In the last equality, we have used an identity that is an immediate consequence of the definition (use property
(ii) with A = Ω):

E(E(Y |F)) = E(Y ).

Conditional expectation also has properties like this that have no analogue for “ordinary” expectation.

Theorem ([1, Theorem 4.1.12]). If F ⊂ G and E(X|G) ∈ F , then

E(X|F) = E(X|G).

Proof. By assumption E(X|G) ∈ F . To check the other part of the definition we note that if A ∈ F ⊂ G then∫
A

X dP =

∫
A

E(X|G) dP.
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Theorem ([1, Theorem 4.1.13]). If F1 ⊂ F2, then
(i) E(E(X|F1)|F2) = E(X|F1)

(ii) E(E(X|F2)|F1) = E(X|F1)

In words, the smaller σ-field always wins.

Proof. For (i): Since E(X|F1) ∈ F1 ⊂ F2, this follows from [1, Example 4.1.3].
For (ii): Notice E(X|F1) ∈ F1, and if A ∈ F1 ⊂ F2,∫

A

E(X|F1) dP =

∫
A

X dP =

∫
A

E(X|F2) dP.

Hence E(E(X|F2)|F1) = E(X|F1) a.s.

The next result shows that for conditional expectation with respect to F , random variables X ∈ F are like
constants — they can be brought outside the “integral.”

Theorem ([1, Theorem 4.1.14]). If X ∈ F and E|X| < ∞, then

E(XY |F) = XE(Y |F).

Proof. The right-hand side is F-measurable, so it remains to verify property (ii). Suppose X = 1B with B ∈ F .
Then for A ∈ F , ∫

A

1BE(Y |F) dP =

∫
A∩B

E(Y |F) dP =

∫
A∩B

Y dP =

∫
A

1BY dP.

This extends to simple X by linearity. If X ≥ 0, let Xn ↑ X by simple functions and apply the monotone convergence
theorem to conclude: ∫

A

XE(Y |F) dP =

∫
A

XY dP.

Split X and Y into positive and negative parts for the general case.

Theorem ([1, Theorem 4.1.15]). Suppose EX2 < ∞, then E(X|F) is a random variable Y ∈ F that minimizes
E(X − Y )2 among all random variables∈ F .

Remark. This result gives a geometric interpretation of E(X|F). Let

L2(F0) = {Y ∈ F0 : EY 2 < ∞}

be a Hilbert space, and let L2(F) be the closed subspace. Then E(X|F) is the orthogonal projection of X onto
L2(F), i.e., the point in the subspace closest to X.

Remark. Conditional operation generator

Let L1(Ω,F , P ) = {X ∈ F| E|X| < ∞}. We can think of E(·|G) as a mapping L1(Ω,F , P ) → L1(Ω,F , P )

Consider L2(Ω,F , P ) = {X ∈ F| EX2 < ∞} Then L2(Ω,F , P ) ⊂ L1(Ω,F , P ).

Now, when E(·|G) is viewed as E(·|G) : L2(Ω,F , P ) → L2(Ω,F , P ), then E(·|G) has the following properties:

• E(·|G) is a linear operator.
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• E(·|G) is an order-preserving operator (i.e. X ≤ Y =⇒ E(X|G) ≤ E(Y |G)).

• E(·|G) is a contraction operator (i.e. E(E(X|G))2 ≤ EX2).

• L2(Ω,F , P ) is a Hilbert space with ⟨X,Y ⟩ = E(XY ), then above implies ∥E(X|G)∥ ≤ ∥X∥

• E(·|G) is an idempotent operator (i.e. E(E(X|G)|G) = E(X|G))

• E(·|G) is a symmetric operator (i.e. ⟨E(X|G), Y ⟩ = ⟨X,E(Y |G)⟩)

Conclusively, E(·|G) is an orthogonal projection operator (since it is linear, idempotent and symmetric). This can

be illustrated as E(X − E(X|G))2 ≤ E(X − Y )2 for ∀Y ∈ L2(Ω,G, P )

Conditional Distribution

Now we introduce the measure-theoretic version of conditional probability and distribution.

Conditional probability and Regular conditional probability

For A ∈ F , define
Pr(A|C) = E(IA|C).

That is, treat IA as a random variable X and define the conditional probability of A to be the conditional mean
of X. We would like to show that conditional probabilities behave like probabilities. The first thing we can show is
that they are additive. That is a consequence of the following result.

It follows easily from [1, Theorem 4.1.9 (a)] that

Pr(A|C) + Pr(B|C) = Pr(A ∪B|C) a.s.

if A and B are disjoint. The following additional properties are straightforward. They are similar to [1, Theorem
4.1.9 (a)].

Example (Probability at most 1). We shall show that Pr(A|C) ≤ 1 a.s. Let B = {ω : Pr(A|C) > 1}. Then B ∈ C,
and

P (B) ≤
∫
B

Pr(A|C) dP =

∫
B

IA dP = P (A ∩B) ≤ P (B),

where the first inequality is strict if P (B) > 0. Clearly, neither of the inequalities can be strict, hence P (B) = 0.

Example (Countable Additivity). Let {An}∞n=1 be disjoint elements of F . Let

W =

∞∑
n=1

Pr(An|C).

We shall show that W is a version of Pr
(⋃∞

n=1 An

∣∣ C). Let C ∈ C.

E
[
ICI∪∞

n=1An

]
= P

(
C ∩

∞⋃
n=1

An

)
=

∞∑
n=1

P (C ∩An) =

∞∑
n=1

∫
C

Pr(An|C) dP
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=

∫
C

∞∑
n=1

Pr(An|C) dP =

∫
C

W dP,

where the sum and integral are interchangeable by the monotone convergence theorem.

We could also prove that Pr(A|C) ≥ 0 a.s. and Pr(Ω|C) = 1 a.s. But there are generally uncountably many
different A ∈ F and uncountably many different sequences of disjoint events. Although countable additivity holds
a.s. separately for each sequence of disjoint events, how can we be sure that it holds simultaneously for all sequences
a.s.?

Definition (Regular Conditional Probabilities). Let A ⊆ F be a sub-σ-field. We say that a collection of versions
{Pr(A|C) : A ∈ A} are regular conditional probabilities if, for a.e. ω ∈ Ω, Pr(·|C)(ω) is a probability measure on
(Ω,A).

Rarely do regular conditional probabilities exist on (Ω,F), but there are lots of common sub-σ-fields A such that
regular conditional probabilities exist on (Ω,A). Oddly enough, the existence of regular conditional probabilities
doesn’t seem to depend on C.

Example. Continuation of [1, Example 4.1.6]. Set C = σ(Y ). Under the same setup, for each B ∈ R, let A =

X−1(B), and define

h(y;A) =

∫
B
f(x, y) dx∫

R f(x, y) dx
, for all y.

Finally, define Pr(A|C)(ω) = h(Y (ω);A). Then the same calculation of [1, Example 4.1.6] shows that this is a version
of the conditional mean of IA given C. And the dominated convergence theorem implies that A 7→ Pr(A|C)(ω) is a
probability measure on (Ω, σ(X)).

The results we have on existence of regular conditional probabilities are for the cases in which A is the σ-field

generated by a random variable or something a lot like a random variable. Note that this is a condition on A, not on

C. The conditioning σ-field can be anything at all. What matters is the σ-field on which the conditional probability

is to be defined.

Conditional Distribution and Regular conditional distribution

Let (Ω,F , P ) be a probability space, X : (Ω,F) → (S,S) measurable map, and C ⊂ F a σ-field. If A = σ(X),

conditional probabilities on A form a conditional distribution for X.

Definition. µ : Ω× S → [0, 1] is a regular conditional distribution (r.c.d.) for X given C if

(i) For each A, ω 7→ µ(ω,A) is a version of Pr(X ∈ A|C)

(ii) For a.e. ω, A 7→ µ(ω,A) is a probability measure on (S,S)

When S = Ω and X is the identity map, µ becomes a regular conditional probability Pr(A|C) we defined before.
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Example. Continuation of [1, Example 4.1.6].
Suppose X and Y have a joint density f(x, y) > 0. Define:

µ(y,A) =

∫
A
f(x, y) dx∫
f(x, y) dx

.

Then µ(Y (ω), A) is a regular conditional distribution for X given σ(Y ).

Regular conditional distributions are useful because they allow us to simultaneously compute the conditional
expectation of all functions of X and to generalize properties of ordinary expectation in a more straightforward
way.

Theorem. [1, Theorem 4.1.16] Let µ(ω,A) be a regular conditional distribution for X given F . If f : (S,S) → (R,B)
has E|f(X)| < ∞, then

E(f(X)|F) =

∫
f(x)µ(ω, dx) a.s.

Proof. If f = 1A, this follows from the definition. Linearity extends the result to simple functions. Monotone
convergence extends it to nonnegative f . The general result follows by writing f = f+ − f−.

Unfortunately, regular conditional distributions do not always exist. The existence is guaranteed when (S,S) is
nice.

Theorem. [1, Theorem 4.1.16] If (S,S) is nice, i.e., if there is a 1-1 map φ from S into R so that φ and φ−1 are

both measurable., then there exists a regular conditional distribution.
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