Doob’s Inequality and Convergence in LP, p > 1
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Some parts of this lecture note are from the lecture notes from Prof. Alessandro Rianldo’s “Advanced Probability

Overview”.
We first recall [1, Theorem 4.2.8] and [1, Theorem 4.2.9]:

Theorem (|1, Theorem 4.2.8]). Let X,, be a (sub, super) martingale with respect to F,, and let {H,} be predictable.
Suppose (H o X),, is integrable (this holds in particular when each H, is bounded).

Then {(H o X),, Fn} is a martingale.

If H, >0, it is a (sub, super) martingale.

Theorem (|1, Theorem 4.2.9]). If N is a stopping time (ZXJAIZF) and X,, is a supermartingale, then Xnny is a

supermartingale.
Now we prove a consequence of [1, Theorem 4.2.9].

Theorem ([1, Theorem 4.4.1]). If X,, is a submartingale and N is a stopping time with P(N < k) =1, then
EX, < EXy < EXp.

Remark. Let S, be a simple random walk with Sy = 1 and let N = inf{n : S,, = 0} (see [1, Example 4.2.13] for more
details). ESy =1 > 0 = ESy, so the first inequality need not hold for unbounded stopping times. In Section 4.8 we
will give conditions that guarantee EXy < EXy for unbounded N.

Proof. [1, Theorem 4.2.9] implies Xya, is a submartingale, so it follows that
EXo =EXnyno < EXyar = EXy.

To prove the other inequality, let K, = liny<n} = l{y<n-_1}. Ky is predictable, so [1, Theorem 4.2.8] implies
(K- X), =X, — Xnan is a submartingale, and it follows that

EX, —EXy =E(K-X)p > E(K - X)o = 0.

We will see below that [1, Theorem 4.4.1] is very useful. The first indication of this is: O

Theorem ([1, Theorem 4.4.2]). Doob’s Inequality. Let X, be a submartingale, X > 0, and

X, = max X].
0<m<n .

Then

AP(X, > \) <E[X,1(X, > )] <EX;. (1)



Proof. Let A= {X,, > A} and N = inf{m : X,, > X\ or m = n}, then N is a stopping time. Since Xy > A on A,
AP(A) <E[Xn1la].
And then [1, Theorem 4.4.1] implies EXy < EX,,, and we have Xy = X,, on A€, so we have
E[Xn1a] <E[X,14].
And combining these gives the first inequality of (1) as
AP(X, > \) <E[X,1(X, > ))].

The second inequality of (1) is trivial, so the proof is complete. O

Example (|1, Example 4.4.3]). Random Walks. If we let S,, = & + -+ + &, where the &,, are independent and
have E¢,,, = 0, 02, = E€2, < oo, then S, is a martingale, so |1, Theorem 4.2.6] implies X,, = S2 is a submartingale.

If we let A = 22 and apply [1, Theorem 4.4.2] to X,,, we get Kolmogorov’s maximal inequality ([1, Theorem 2.5.5]):

P( max |Sp| > a:) < 7 %var(S,,).

1<m<
A consequence of [1, Theorem 4.4.2] is:
Theorem ([1, Theorem 4.4.4]). LP Maximum Inequality. If X,, is a submartingale, then for 1 < p < oo,
E[X?] < <p>pIE(X+)”.
n p—1 n

Consequently, if Y, is a martingale and Y, = maxo<m<n |Yin|, then
» \?
E|Y P < () E|Y,P.
p—1

(not covered in class). The second inequality follows by applying the first to X,, = |Y¥},|. To prove the first we will
work with X, rather than X,,. Since {X,apr > A} is always {X,, > A} or (), this does not change the application
of Doob’s inequality [1, Theorem 4.4.2].

Using [1, Lemma 2.2.13], Doob’s inequality [1, Theorem 4.4.2], Fubini’s theorem, and a little calculus gives

E [(Xunnt)?] = / PNPIP(Z s > N) dA
0

5/0 pAP! (A‘l/X:[l{XMMZA}dP> dX

Xnam
= / XF / pAP~2dNdP
0

p /v -1
=— | XT(X, P2 dP.
p—l n( /\M)

If we let ¢ = p/(p — 1) be the conjugate exponent to p and apply Hoélder’s inequality ([1, Theorem 1.6.3]), we see
that the above

< L (BIXHP) P (8] Kun ).

If we divide both sides of the last inequality by (| X, Aaz|?)'/9, which is finite thanks to the AM, then take the pth



power of each side, we get
P
- p
E|Xn/\M|p S (p) E(X:)p.
Letting M — oo and using the monotone convergence theorem gives the desired result. O

Example ([1, Example 4.4.5]). There is no L' maximal inequality. Again, the counterexample is provided by |1,
Example 4.2.13].

Let Sop =1 and {S,, n > 1} be i.i.d. symmetric simple random walk. That is, S, = Sp—1 + &, where &;,&, -
are i.i.d. with P(§ = 1) = P(§ = —1) = 1. Let N = min{n : S, = 0} and let X,, = Syan. Then [1, Theorem
4.4.1] implies

EX,, = ESyan =ESyg =1 for all n.

Using hitting probabilities for simple random walk from [1, Theorem 4.4.1], we have

P(%?szM):ii 2)

Hence

E [mnalume] = i P(mn%me > M) = i % = 00.
M

=1 M=1

The monotone convergence theorem implies that E max,,<, X,, T 0o as n 1 oo.
From LP Maximum Inequality [1, Theorem 4.4.4], we get the following:

Theorem ([1, Theorem 4.4.6]). LP Convergence Theorem (L? =& 2]). If X,, is a martingale with sup E| X, |P < 0o
where p > 1, then X,, —» X a.s. and in LP.

Proof.
(BX,)" < (E[X,])? < E[X,[7,

so it follows from the martingale convergence theorem (W& A 4= A 2]) [1, Theorem 4.2.11] that X,, — X a.s..

The second conclusion in LP Maximum Inequality [1, Theorem 4.4.4] implies

P » \? » \?
E( sup |Xnl) <|——= ] EX,P<|——] supE|X,|".
p—1 p—1

0<m<n

Letting n — oo and using the monotone convergence theorem implies sup | X,,| € LP. Since | X,,— X |? < (2sup | X, |)?,

it follows from the dominated convergence theorem that
E|X, - X — 0.

O

The most important special case of the results in this lecture note occurs when p = 2. To treat this case, we

take some results for martingales in L? from [2, Chapter 12].

Theorem (|1, Theorem 4.4.7]). Orthogonality of Martingale Increments. Let X,, be a martingale with EX2 < oo
foralln. If m <n andY € F,,, has EY? < oo, then

E [(Xn - Xm)Y] =0,

and hence if { < m < n,
E[(X, — Xm)(Xm — Xe)] =0.



Proof. The Cauchy—Schwarz inequality implies E|(X,,— X,,,)Y| < co. Using the law of total expectation, [1, Theorem
4.1.14], and the definition of a martingale,

E [(Xn - X'm)Y] =E [E [(Xn - Xm)Y | fm“
—E[YE[X, — X,n | Fn]] = 0.

O
Hence the formula N
Xo =Xo+ Y (X — Xp1)
k=1
expresses X, as the sum of orthogonal terms, and Pythagoras’s theorem and the law of total expectation yields
EX2 =EXZ + Y E[(X; - X5-1)?]

k=1
=EX5 + Y E[E [(Xe — Xp-1)*|Fr-1]]- (3)

k=1

This is what we use for Branching Processes below, but one can also use conditional variance formula below, as

how [1, Example 4.4.9] is explained in [1].

Theorem (|1, Theorem 4.4.7|). Conditional Variance Formula. If X,, is a martingale with EX2 < oo for all n,

and m < n, then
E[(Xn— Xm)? | Fu] =E[X] | Fn] — X2

Remark. This is the conditional analogue of E(X — EX)? = EX? — (EX)? and is proved in exactly the same way.

Proof. Using the linearity of conditional expectation and then [1, Theorem 4.1.14], we have

E [X721 - 2X’ILX’"L + X1,2n ‘ ]:m] = ]E [XZ | fm] - 2X’H’LE [Xn | ‘FTTL] + X72n
=E[X; | Fin] - 2X7, + X7,

which gives the desired result. 0

Example ([1, Example 4.4.9]). Branching Processes. We now see the L? convergence of Branching Processes. To
recall, we had:
Let £, i,n > 1, be 1.i.d. nonnegative integer-valued random variables. Define a stochastic process {Z,, }n>0 by
ZQ =1 and
ntl +...+ggjl, if Z, >0,
Zn+1 -

We suppose p = EE™ > 1 and var(£) = 02 < oo. Let X,, = Z,,/pu™, then we have seen in [1, Lemma 4.3.9\| that
X,, is a martingale.

Now we apply (3) to have

EX2 =EX2 + EH: E [E [(Xm — Xm—1)?[Fm-1]] - W

m=1



To compute this, we observe

E (X = Xno1)*|Fin-1] = E [(Zn/ 0™ = Zinea Ju™ ™) | Frnc]
= 1 "E [(Zi = 1Zm-1)? | Frua] -

It follows from [1, Theorem 4.1.2] that on {Z,,—1 = k},

2

k
E [(Zm - MZm—l)2 ‘ ]:m—l] =K <Z§lm - /’Lk> ‘]:’m—l = kUz = Zm—lo-z-

i=1

Hence
E [E [(Xm _ Xm71)2|]:m71}:| _ 'LL—QWLE I:melo-Q} — 0,2//117714-17
since E [Z,—1/p™ "] =EZy = 1. Now EXZ = 1, so applying to (4) gives
n+1
EX2 =1+ ¢0? Z wo

m=2

This shows supEX? < o0, so X,, — X in L% and hence EX,, - EX. EX,, =1 for all n, so EX = 1 and X # 0.
Moreover, it follows from [1, Exercise 4.3.11] that {X > 0} = {Z,, > 0 for all n}.
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