
Doob’s Inequality and Convergence in Lp, p > 1

김지수 (Jisu KIM)

확률론 2 (Probability Theory 2), 2025 2nd semester (fall)

Some parts of this lecture note are from the lecture notes from Prof. Alessandro Rianldo’s “Advanced Probability
Overview”.

We first recall [1, Theorem 4.2.8] and [1, Theorem 4.2.9]:

Theorem ([1, Theorem 4.2.8]). Let Xn be a (sub, super) martingale with respect to Fn and let {Hn} be predictable.
Suppose (H •X)n is integrable (this holds in particular when each Hn is bounded).

Then {(H •X)n, Fn} is a martingale.
If Hn ≥ 0, it is a (sub, super) martingale.

Theorem ([1, Theorem 4.2.9]). If N is a stopping time (정지시간) and Xn is a supermartingale, then XN∧n is a
supermartingale.

Now we prove a consequence of [1, Theorem 4.2.9].

Theorem ([1, Theorem 4.4.1]). If Xn is a submartingale and N is a stopping time with P (N ≤ k) = 1, then

EX0 ≤ EXN ≤ EXk.

Remark. Let Sn be a simple random walk with S0 = 1 and let N = inf{n : Sn = 0} (see [1, Example 4.2.13] for more
details). ES0 = 1 > 0 = ESN , so the first inequality need not hold for unbounded stopping times. In Section 4.8 we
will give conditions that guarantee EX0 ≤ EXN for unbounded N .

Proof. [1, Theorem 4.2.9] implies XN∧n is a submartingale, so it follows that

EX0 = EXN∧0 ≤ EXN∧k = EXN .

To prove the other inequality, let Kn = 1{N<n} = 1{N≤n−1}. Kn is predictable, so [1, Theorem 4.2.8] implies
(K ·X)n = Xn −XN∧n is a submartingale, and it follows that

EXk − EXN = E(K ·X)k ≥ E(K ·X)0 = 0.

We will see below that [1, Theorem 4.4.1] is very useful. The first indication of this is:

Theorem ([1, Theorem 4.4.2]). Doob’s Inequality. Let Xm be a submartingale, λ > 0, and

X̄n = max
0≤m≤n

X+
m.

Then
λP (X̄n ≥ λ) ≤ E

[
Xn1(X̄n ≥ λ)

]
≤ EX+

n . (1)
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Proof. Let A = {X̄n ≥ λ} and N = inf{m : Xm ≥ λ or m = n}, then N is a stopping time. Since XN ≥ λ on A,

λP (A) ≤ E [XN1A] .

And then [1, Theorem 4.4.1] implies EXN ≤ EXn, and we have XN = Xn on Ac, so we have

E [XN1A] ≤ E [Xn1A] .

And combining these gives the first inequality of (1) as

λP (X̄n ≥ λ) ≤ E
[
Xn1(X̄n ≥ λ)

]
.

The second inequality of (1) is trivial, so the proof is complete.

Example ([1, Example 4.4.3]). Random Walks. If we let Sn = ξ1 + · · · + ξn where the ξm are independent and
have Eξm = 0, σ2

m = Eξ2m < ∞, then Sn is a martingale, so [1, Theorem 4.2.6] implies Xn = S2
n is a submartingale.

If we let λ = x2 and apply [1, Theorem 4.4.2] to Xn, we get Kolmogorov’s maximal inequality ([1, Theorem 2.5.5]):

P

(
max

1≤m≤n
|Sm| ≥ x

)
≤ x−2var(Sn).

A consequence of [1, Theorem 4.4.2] is:

Theorem ([1, Theorem 4.4.4]). Lp Maximum Inequality. If Xn is a submartingale, then for 1 < p < ∞,

E
[
X̄p

n

]
≤
(

p

p− 1

)p

E
(
X+

n

)p
.

Consequently, if Yn is a martingale and Y ∗
n = max0≤m≤n |Ym|, then

E|Y ∗
n |p ≤

(
p

p− 1

)p

E|Yn|p.

(not covered in class). The second inequality follows by applying the first to Xn = |Yn|. To prove the first we will
work with X̄n∧M rather than X̄n. Since {X̄n∧M ≥ λ} is always {X̄n ≥ λ} or ∅, this does not change the application
of Doob’s inequality [1, Theorem 4.4.2].

Using [1, Lemma 2.2.13], Doob’s inequality [1, Theorem 4.4.2], Fubini’s theorem, and a little calculus gives

E
[
(X̄n∧M )p

]
=

∫ ∞

0

pλp−1P (X̄n∧M ≥ λ) dλ

≤
∫ ∞

0

pλp−1

(
λ−1

∫
X+

n 1{X̄n∧M≥λ}dP

)
dλ

=

∫
X+

n

∫ X̄n∧M

0

pλp−2 dλ dP

=
p

p− 1

∫
X+

n (X̄n∧M )p−1 dP.

If we let q = p/(p − 1) be the conjugate exponent to p and apply Hölder’s inequality ([1, Theorem 1.6.3]), we see
that the above

≤ p

p− 1
(E|X+

n |p)1/p(E|X̄n∧M |p)1/q.

If we divide both sides of the last inequality by (E|X̄n∧M |p)1/q, which is finite thanks to the ∧M , then take the pth
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power of each side, we get

E|X̄n∧M |p ≤
(

p

p− 1

)p

E(X+
n )p.

Letting M → ∞ and using the monotone convergence theorem gives the desired result.

Example ([1, Example 4.4.5]). There is no L1 maximal inequality. Again, the counterexample is provided by [1,
Example 4.2.13].

Let S0 = 1 and {Sn, n ≥ 1} be i.i.d. symmetric simple random walk. That is, Sn = Sn−1 + ξn where ξ1, ξ2, · · ·
are i.i.d. with P (ξi = 1) = P (ξi = −1) = 1

2 . Let N = min{n : Sn = 0} and let Xn = SN∧n. Then [1, Theorem
4.4.1] implies

EXn = ESN∧n = ES0 = 1 for all n.

Using hitting probabilities for simple random walk from [1, Theorem 4.4.1], we have

P
(
max
m

Xm ≥ M
)
=

1

M
. (2)

Hence

E
[
max
m

Xm

]
=

∞∑
M=1

P
(
max
m

Xm ≥ M
)
=

∞∑
M=1

1

M
= ∞.

The monotone convergence theorem implies that Emaxm≤n Xm ↑ ∞ as n ↑ ∞.

From Lp Maximum Inequality [1, Theorem 4.4.4], we get the following:

Theorem ([1, Theorem 4.4.6]). Lp Convergence Theorem (Lp 수렴정리). If Xn is a martingale with supE|Xn|p < ∞
where p > 1, then Xn → X a.s. and in Lp.

Proof.
(EX+

n )p ≤ (E|Xn|)p ≤ E|Xn|p,

so it follows from the martingale convergence theorem (마팅게일 수렴정리) [1, Theorem 4.2.11] that Xn → X a.s..
The second conclusion in Lp Maximum Inequality [1, Theorem 4.4.4] implies

E
(

sup
0≤m≤n

|Xm|
)p

≤
(

p

p− 1

)p

E|Xn|p ≤
(

p

p− 1

)p

supE|Xn|p.

Letting n → ∞ and using the monotone convergence theorem implies sup |Xn| ∈ Lp. Since |Xn−X|p ≤ (2 sup |Xn|)p,
it follows from the dominated convergence theorem that

E|Xn −X|p → 0.

The most important special case of the results in this lecture note occurs when p = 2. To treat this case, we
take some results for martingales in L2 from [2, Chapter 12].

Theorem ([1, Theorem 4.4.7]). Orthogonality of Martingale Increments. Let Xn be a martingale with EX2
n < ∞

for all n. If m ≤ n and Y ∈ Fm has EY 2 < ∞, then

E [(Xn −Xm)Y ] = 0,

and hence if ℓ < m < n,
E [(Xn −Xm)(Xm −Xℓ)] = 0.
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Proof. The Cauchy–Schwarz inequality implies E|(Xn−Xm)Y | < ∞. Using the law of total expectation, [1, Theorem
4.1.14], and the definition of a martingale,

E [(Xn −Xm)Y ] = E [E [(Xn −Xm)Y | Fm]]

= E [Y E [Xn −Xm | Fm]] = 0.

Hence the formula

Xn = X0 +

n∑
k=1

(Xk −Xk−1)

expresses Xn as the sum of orthogonal terms, and Pythagoras’s theorem and the law of total expectation yields

EX2
n = EX2

0 +

n∑
k=1

E
[
(Xk −Xk−1)

2
]

= EX2
0 +

n∑
k=1

E
[
E
[
(Xk −Xk−1)

2|Fk−1

]]
. (3)

This is what we use for Branching Processes below, but one can also use conditional variance formula below, as
how [1, Example 4.4.9] is explained in [1].

Theorem ([1, Theorem 4.4.7]). Conditional Variance Formula. If Xn is a martingale with EX2
n < ∞ for all n,

and m ≤ n, then
E
[
(Xn −Xm)2 | Fm

]
= E

[
X2

n | Fm

]
−X2

m.

Remark. This is the conditional analogue of E(X − EX)2 = EX2 − (EX)2 and is proved in exactly the same way.

Proof. Using the linearity of conditional expectation and then [1, Theorem 4.1.14], we have

E
[
X2

n − 2XnXm +X2
m | Fm

]
= E

[
X2

n | Fm

]
− 2XmE [Xn | Fm] +X2

m

= E
[
X2

n | Fm

]
− 2X2

m +X2
m,

which gives the desired result.

Example ([1, Example 4.4.9]). Branching Processes. We now see the L2 convergence of Branching Processes. To
recall, we had:

Let ξni , i, n ≥ 1, be i.i.d. nonnegative integer-valued random variables. Define a stochastic process {Zn}n≥0 by
Z0 = 1 and

Zn+1 =


ξn+1
1 + · · ·+ ξn+1

Zn
, if Zn > 0,

0, if Zn = 0.

We suppose µ = Eξmi > 1 and var(ξmi ) = σ2 < ∞. Let Xn = Zn/µ
n, then we have seen in [1, Lemma 4.3.9\] that

Xn is a martingale.
Now we apply (3) to have

EX2
n = EX2

0 +

n∑
m=1

E
[
E
[
(Xm −Xm−1)

2|Fm−1

]]
. (4)
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To compute this, we observe

E
[
(Xm −Xm−1)

2|Fm−1

]
= E

[
(Zm/µm − Zm−1/µ

m−1)2 | Fm−1

]
= µ−2mE

[
(Zm − µZm−1)

2 | Fm−1

]
.

It follows from [1, Theorem 4.1.2] that on {Zm−1 = k},

E
[
(Zm − µZm−1)

2 | Fm−1

]
= E

( k∑
i=1

ξmi − µk

)2 ∣∣∣Fm−1

 = kσ2 = Zm−1σ
2.

Hence
E
[
E
[
(Xm −Xm−1)

2|Fm−1

]]
= µ−2mE

[
Zm−1σ

2
]
= σ2/µm+1,

since E
[
Zm−1/µ

m−1
]
= EZ0 = 1. Now EX2

0 = 1, so applying to (4) gives

EX2
n = 1 + σ2

n+1∑
m=2

µ−m.

This shows supEX2
n < ∞, so Xn → X in L2, and hence EXn → EX. EXn = 1 for all n, so EX = 1 and X ̸≡ 0.

Moreover, it follows from [1, Exercise 4.3.11] that {X > 0} = {Zn > 0 for all n}.
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