
Martingales and Almost Sure Convergence

김지수 (Jisu KIM)

확률론 2 (Probability Theory 2), 2025 2nd semester (fall)

Some parts of this lecture note are from the lecture notes from Prof. Alessandro Rianldo’s “Advanced Probability
Overview”.

Martingales (마팅게일)

Martingales are elegant and powerful tools to study sequences of dependent random variables. It is originated from
gambling, where a gambler can adjust the bet according to the previous results.

Definition. An increasing sequence of sub σ−fields {Fn : n = 1, 2, · · · } of F is called a filtration. We call {Xn}
is adapted to {Fn} if Xn ∈ Fn for all n.

Definition. If {Xn} is a sequence of random variables with

(i) E|Xn| < ∞

(ii) Xn ∈ Fn

(iii) E(Xn+1|Fn) = Xn a.s. for all n

then {Xn} is a martingale (마팅게일) (with respect to Fn)

Definition. If (iii) is replaced with E(Xn+1|Fn) ≥ Xn, it is a submartingale.
If (iii) is replaced with E(Xn+1|Fn) ≤ Xn, it is a supermartingale.

Remark. If {Xn,Fn} is a submartingale, {−Xn,Fn} is a supermartingale.
If {Fn} is not specified when a martingale {Xn} is defined, we let Fn = σ(X1, · · · , Xn).
If {Gn} is a filtration such that Gn ⊂ Fn and Xn ∈ Gn, then {Xn,Gn} is also a martingale.

We begin by describing three examples related to random walk. Let ξ1, ξ2, · · · be independent and identically
distributed, with E |ξi| < ∞, and let µ = Eξi. Let S0 be a constant, and Sn = S0+ξ1+· · ·+ξn. Let Fn = σ(ξ1, . . . , ξn)

for n ≥ 1 and take F0 = {∅,Ω}.

Example ([1, Example 4.2.1]). Linear Martingale. If µ = 0, then {Sn} is a martingale with respect to Fn.
To prove this, we observe that Sn ∈ Fn, E|Sn| < ∞, and ξn+1 is independent of Fn, so using the linearity of

conditional expectation,

E(Sn+1 | Fn) = E(Sn | Fn) + E(ξn+1 | Fn) = Sn + Eξn+1 = Sn.

If µ ≤ 0, then E(Xn+1 | Fn) ≤ Xn, i.e., Xn is a supermartingale.
If µ ≥ 0 then Sn is a submartingale.
For any value of µ, by letting ξ′i = ξi − µ, we see that Sn − nµ is a martingale.
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Example ([1, Example 4.2.2]). Quadratic martiagale. Suppose now that µ = Eξi = 0 and σ2 = var(ξi) < ∞. In
this case S2

n − nσ2 is a martingale.
Since (Sn + ξn+1)

2 = S2
n + 2Snξn+1 + ξ2n+1 and ξn+1 is independent of Fn, we have

E(S2
n+1 − (n+ 1)σ2 | Fn) = S2

n + 2SnE(ξn+1 | Fn) + E(ξ2n+1 | Fn)− (n+ 1)σ2 = S2
n − nσ2.

Example ([1, Example 4.2.3]). Exponential martingale. Let Y1, Y2, . . . be nonnegative i.i.d. random variables with
EYm = 1. If Fn = σ(Y1, . . . , Yn) then

Mn =
∏
m≤n

Ym

defines a martingale. To prove this note that

E(Mn+1 | Fn) = MnE(Yn+1 | Fn) = Mn.

Suppose now that Yi = eθξi and φ(θ) = Eeθξi < ∞. Yi = exp(θξi)/φ(θ) has mean 1 so EYi = 1 and

Mn =

n∏
i=1

Yi =
exp(θSn)

φ(θ)n

is a martingale.

Theorem ([1, Theorem 4.2.4, 4.2.5]). (i) If Xn is a supermartingale then for n > m, E(Xn|Fm) ≤ Xm

(ii) If Xn is a submartingale then for n > m, E(Xn|Fm) ≥ Xm

(iii) If Xn is a martingale (마팅게일) then for n > m, E(Xn|Fm) = Xm

Proof. (i)
The definition gives the result for n = m+ 1. Suppose n = m+ k with k ≥ 2. By [1, Theorem 4.1.2],

E(Xm+k | Fm) = E(E(Xm+k | Fm+k−1) | Fm) ≤ E(Xm+k−1 | Fm),

by the definition of supermartingale and [1, Theorem 4.1.9 (b)]. The desired result now follows by induction.
(ii)
Note that −Xn is a supermartingale and use [1, Theorem 4.1.9 (a)].
(iii)
Observe that Xn is both a supermartingale and a submartingale.

Remark. The idea in the proof of (ii) and (iii) will be used many times below. To keep from repeating ourselves, we
will just state the result for either supermartingales or submartingales and leave it to the reader to translate the
result for the other two.

Theorem ([1, Theorem 4.2.6]). Let Xn be a martingale (마팅게일) with respect to Fn and φ be a convex function
(볼록함수) with E|φ(Xn)| < ∞ for all n. Then, φ(Xn) is a submartingale with respect to Fn. Consequently, if p ≥ 1

and E|Xn|p < ∞ for all n, then |Xn|p is a submartingale with respect to Fn.

Proof. By Jensen’s inequality and the definition,

E(φ(Xn+1) | Fn) ≥ φ(E(Xn+1 | Fn)) = φ(Xn).
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Theorem ([1, Theorem 4.2.7]). Let Xn be a submartingale with respect to Fn, and φ be an increasing convex
function(볼록증가함수) with E|φ(Xn)| < ∞ for all n. Then φ(Xn) is a submartingale with respect to Fn. Conse-
quently,

(i) If Xn is a submartingale then (Xn − a)+ is a submartingale.

(ii) If Xn is a supermartingale then Xn ∧ a is a supermartingale.

Proof. By Jensen’s inequality and the assumptions,

E(φ(Xn+1) | Fn) ≥ φ(E(Xn+1 | Fn)) ≥ φ(Xn).

Definition. A sequence of random variables {Hn : n = 1, 2, · · · } is said to be predictable relative to the filtration
{Fn} if Hn ∈ Fn−1 for all n ≥ 1.

In words, the value of Hn may be predicted (with certainty) from the information available at time n − 1. In
this section, we will be thinking of Hn as the amount of money a gambler will bet at time n. This can be based on
the outcomes at times 1, . . . , n− 1 but not on the outcome at time n.

Once we start thinking of Hn as a gambling system, it is natural to ask how much money we would make if we
used it. Let Xn be the net amount of money you would have won at time n if you had bet one dollar each time. If
you bet according to a gambling system H then your winnings at time n would be as follows:

Definition. Let Xn be a (sub, super) martingale with respect to Fn and let {Hn} be predictable. Define

(H •X)n =

n∑
m=1

Hm(Xm −Xm−1).

since if at time m you have wagered $3 the change in your fortune would be 3 times that of a person who
wagered $1. Alternatively you can think of Xm as the value of a stock and Hm the number of shares you hold from
time m− 1 to time m.

Suppose now that ξm = Xm −Xm−1 have P (ξm = 1) = p and P (ξm = −1) = 1− p. A famous gambling system
called the martingale is defined by H1 = 1 and for n ≥ 2,

Hn =

2Hn−1, if ξn−1 = −1,

1, if ξn−1 = 1.

In words, we double our bet when we lose, so that if we lose k times and then win, our net winnings will be 1.
To see this consider the following concrete situation:

n 1 2 4 8 16

ξn −1 −1 −1 −1 1

(H ·X)n −1 −3 −7 −15 1

This system seems to provide us with a “sure thing” as long as P (ξm = 1) > 0. However, the next result says
there is no system for beating an unfavorable game.

Theorem ([1, Theorem 4.2.8]). Let Xn be a (sub, super) martingale with respect to Fn and let {Hn} be predictable.
Suppose (H •X)n is integrable (this holds in particular when each Hn is bounded).

Then {(H •X)n, Fn} is a martingale.
If Hn ≥ 0, it is a (sub, super) martingale.
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Proof. Using the fact that conditional expectation is linear, (H ·X)n ∈ Fn, Hn ∈ Fn−1, and [1, Theorem 4.1.14],
we have

E((H ·X)n+1 | Fn) = (H ·X)n + E(Hn+1(Xn+1 −Xn) | Fn).

= (H ·X)n +Hn+1E((Xn+1 −Xn) | Fn) ≤ (H ·X)n,

since E((Xn+1 −Xn) | Fn) ≤ 0 and Hn+1 ≥ 0.

Remark. (H •X)n is called an integral transformation of Hn with respect to Xn, and is a discrete-time version of
the famous Ito’s stochastic integral

(H •X)t =
∫ t

0
HsdXs

or the equivalent differential equation form
d(H •X)t = HtdXt with (H •X)0 = 0

We will now consider a very special gambling system: bet $1 at each time n ≤ N then stop playing.

Definition. A nonnegative integer valued random variable N : Ω → {0, 1, . . .} ∪ {∞} is said to be a stopping time
(정지시간) if {N = n} ∈ Fn for all n < ∞, i.e., the decision to stop at time n must be measurable with respect to
the information known at that time.

Theorem ([1, Theorem 4.2.9]). If N is a stopping time (정지시간) and Xn is a supermartingale, then XN∧n is a
supermartingale.

Proof. If we let Hn = 1{N≥n}, then {N ≥ n} = {N ≤ n − 1}c ∈ Fn−1, so Hn is predictable. Then [1, Theorem
4.2.8] implies that

(H ·X)n = XN∧n −X0

is a supermartingale. Since the constant sequence Yn = X0 is a supermartingale and the sum of two supermartingales
is also supermartingale, we have that XN∧n is a supermartingale.

Almost sure convergence (거의 확실한 수렴)

Submartingale is a stochastic version of monotone increasing sequence. Hence, we expect it converges a.s. if
sup
n
EX+

n < ∞.

Although [1, Theorem 4.2.8] implies that you cannot make money with gambling systems, you can prove theorems
with them. Let a < b and {Xn} be stochastic process. Let N0 = 1 and

N1 = min{m ≥ 1 : Xm ≤ a}

N2 = min{m > N1 : Xm ≥ b}
...

N2k−1 = min{m > N2k−2 : Xm ≤ a}

N2k = min{m > N2k−1 : Xm ≥ b}.

Then Nj are stopping times and

{N2k−1 < m ≤ N2k} = {N2k−1 ≤ m− 1} ∩ {N2k ≤ m− 1}∁ ∈ Fm−1.
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and so

Hm =

1, if N2k−1 < m ≤ N2k for some k,

0, otherwise,

defines a predictable sequence. XN2k−1
≤ a and XN2k

≥ b, so between times N2k−1 and N2k, Xm crosses from
below a to above b. Hm is a gambling system that tries to take advantage of these “upcrossings.” In stock market
terms, we buy when Xm ≤ a and sell when Xm ≥ b, so every time an upcrossing is completed, we make a profit of
≥ (b− a).

Finally, let Un = sup{k : N2k ≤ n} be the number of upcrossings completed by time n.

Figure 1: Upcrossings of (a, b). Lines indicate increments that are included in (H ·X)n. In Yn the points < a are
moved up to a.

Definition.

Theorem ([1, Theorem 4.2.10]). Upcrossing inequality.
If {Xn} is a submartingale, then

(b− a)E(Un) ≤ E(Xn − a)+ − E(X0 − a)+.

(not covered in class). Let Ym = a+(Xm−a)+. By [1, Theorem 4.2.7], Ym is a submartingale. Clearly, it upcrosses
[a, b] the same number of times that Xm does, and we have (b − a)Un ≤ (H · Y )n, since each upcrossing results
in a profit ≥ (b − a) and a final incomplete upcrossing (if there is one) makes a nonnegative contribution to the
right-hand side. It is for this reason we had to replace Xm by Ym.

Let Km = 1 − Hm. Clearly, Yn − Y0 = (H · Y )n + (K · Y )n, and it follows from [1, Theorem 4.2.8] that
E(K · Y )n ≥ E(K · Y )0 = 0, so E(H · Y )n ≤ E(Yn − Y0), proving the desired inequality.

The upcrossing lemma says that a submartingale cannot cross a fixed nondegenerate interval very often with
high probability. If the submartingale were to cross an interval infinitely often, then its lim sup and lim inf would
have to be different and it couldn’t converge.

Theorem ([1, Theorem 4.2.11]). Martingale convergence theorem (마팅게일 수렴정리).
If {Xn} is a submartingale with sup

n
EX+

n < ∞, then as n → ∞, Xn converges a.s. (거의 확실한 수렴) to a limit

X with E|X| < ∞.

Proof. Since (X − a)+ ≤ X+ + |a|, [1, Theorem 4.2.10] implies that

EUn ≤ (|a|+ EX+
n )/(b− a).
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As n ↑ ∞, Un ↑ U , where U is the number of upcrossings of [a, b] by the whole sequence. So if supEX+
n < ∞ then

EU < ∞ and hence U < ∞ a.s.. Since lim infXn < a < b < lim supXn implies that U = ∞, this implies that

P (lim infXn < a < b < lim supXn) = 0.

Since this holds for all rational a and b,⋃
a,b∈Q

{lim infXn < a < b < lim supXn}

has probability 0 and hence lim supXn = lim infXn a.s., i.e., limXn exists a.s.. Fatou’s lemma guarantees EX+ ≤
lim inf EX+

n < ∞, so X < ∞ a.s. To see X > −∞, we observe that

EX−
n = EX+

n − EXn ≤ EX+
n − EX0

(since Xn is a submartingale), so another application of Fatou’s lemma shows

EX− ≤ lim inf
n→∞

EX−
n ≤ sup

n
EX+

n − EX0 < ∞.

An important special case of this theorem is:

Theorem ([1, Theorem 4.2.12]). If Xn ≥ 0 is a supermartingale, then Xn → X a.s. (거의 확실한 수렴) and
EX ≤ EX0.

Proof. Yn = −Xn ≤ 0 is a submartingale with EY +
n = 0. Since EX0 ≥ EXn, the inequality follows from Fatou’s

lemma.

We first give two “counterexamples.”

Example ([1, Example 4.2.13]). The first shows that the assumptions of [1, Theorem 4.2.12] (or [1, Theorem
4.2.11]) do not guarantee convergence in L1 (L1 수렴).

Let S0 = 1 and {Sn, n ≥ 1} be i.i.d. symmetric simple random walk. That is, Sn = Sn−1 + ξn where ξ1, ξ2, · · ·
are i.i.d. with P (ξi = 1) = P (ξi = −1) = 1

2 .
In fact, Sn does not converge and lim supSn = ∞, by [1, Exercise 5.4.1].
Let N = min{n : Sn = 0} and let Xn = SN∧n. Then [1, Theorem 4.2.9] implies that Xn is a nonnegative

martingale.
Hence [1, Theorem 4.2.12] implies that Xn converges to a limit X∞ a.s. and E|X∞| < ∞. In fact, X∞ = 0 a.s.,

since convergence to k > 0 is impossible. (If Xn = k > 0 then Xn+1 = k ± 1.)
Since EXn = EX0 = 1 for all n and X∞ = 0, Xn ↛ X in L1.

The above example is an important counterexample to keep in mind as you read the rest of this chapter. The
next one is not as important.

Example ([1, Example 4.2.14]). We will now give an example of a martingale with Xk → 0 in probability (확률수렴)
but not a.s. (거의 확실한 수렴).
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Let X0 = 0. When Xk−1 = 0, let

Xk =


1 with probability 1/2k,

−1 with probability 1/2k,

0 with probability 1− 1/k.

When Xk−1 ̸= 0, let

Xk =

kXk−1 with probability 1/k,

0 with probability 1− 1/k.

From the construction, P (Xk = 0) = 1− 1/k so Xk → 0 in probability.
On the other hand, the second Borel–Cantelli lemma implies P (Xk = 0 for all k ≥ K) = 0, and values in

(−1, 1) \ {0} are impossible, so Xk does not converge to 0 a.s.

Examples

Bounded Increments

Our first result shows that martingales with bounded increments either converge or oscillate between +∞ and −∞.

Theorem ([1, Theorem 4.3.1]). Let X1, X2, . . . be a martingale with |Xn+1 −Xn| ≤ M < ∞. Let

C = {limXn exists and is finite}, D = {lim supXn = +∞ and lim infXn = −∞}.

Then P (C ∪D) = 1.

Proof. Since Xn −X0 is a martingale, we can without loss of generality suppose X0 = 0. Let 0 < K < ∞ and let
N = inf{n : Xn ≤ −K}. Xn∧N is a martingale with Xn∧N ≥ −K − M a.s., so applying [1, Theorem 4.2.12] to
Xn∧N+K+M shows limXn exists on {N = ∞}. Letting K → ∞, we see that the limit exists on {lim infXn > −∞}.
Applying the last conclusion to −Xn, we see that limXn exists on {lim supXn < ∞} and the proof is complete.

Theorem ([1, Theorem 4.3.2]). Doob’s decomposition. Any submartingale Xn, n ≥ 0, can be written in a unique
way as

Xn = Mn +An,

where Mn is a martingale and An is a predictable increasing sequence with A0 = 0.

Proof. We want Xn = Mn +An, E(Mn | Fn−1) = Mn−1, and An ∈ Fn−1. So we must have

E(Xn | Fn−1) = E(Mn | Fn−1) + E(An | Fn−1) = Mn−1 +An = Xn−1 −An−1 +An,

and it follows that
An −An−1 = E(Xn | Fn−1)−Xn−1.

Since A0 = 0, we have

An =

n∑
m=1

E(Xm −Xm−1 | Fm−1).

To check that our recipe works, we observe that An − An−1 ≥ 0 since Xn is a submartingale and An ∈ Fn−1. To
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prove that Mn = Xn −An is a martingale, we note that using An ∈ Fn−1 and the relations above,

E(Mn | Fn−1) = E(Xn −An | Fn−1) = E(Xn | Fn−1)−An = Xn−1 −An−1 = Mn−1,

which completes the proof.

Theorem ([1, Theorem 4.3.4]). Second Borel–Cantelli lemma, II. Let Fn, n ≥ 0 be a filtration with F0 = {∅,Ω}
and let Bn, n ≥ 1 be a sequence of events with Bn ∈ Fn. Then

{Bn i.o.} =

{ ∞∑
n=1

P (Bn | Fn−1) = ∞

}
.

Proof. If we let X0 = 0 and Xn =
∑

m≤n 1Bm
, then Xn is a submartingale. Doob’s decomposition [1, Theorem

4.3.2\] implies

An =

n∑
m=1

E(1Bm | Fm−1),

so if M0 = 0 and

Mn =

n∑
m=1

(
1Bm − P (Bm | Fm−1)

)
, n ≥ 1,

then Mn is a martingale with |Mn −Mn−1| ≤ 1.
Using the notation of [1, Theorem 4.3.1] we have:
On C,

∞∑
n=1

1Bn
= ∞ if and only if

∞∑
n=1

P (Bn | Fn−1) = ∞.

On D,
∞∑

n=1

1Bn
= ∞ and

∞∑
n=1

P (Bn | Fn−1) = ∞.

Since P (C ∪D) = 1, the result follows.

Polya’s Urn Scheme

An urn contains r red and g green balls. At each time we draw a ball out, then replace it, and add c more balls of
the color drawn. Let Xn be the fraction of green balls after the nth draw.

We check that Xn is a martingale. Suppose there are i red balls and j green balls at time n, then

Xn+1 =


j + c

i+ j + c
with probability

j

i+ j
,

j

i+ j + c
with probability

i

i+ j
,

so we have

E

[
Xn+1|Xn =

j

i+ j

]
=

j + c

i+ j + c
· j

i+ j
+

j

i+ j + c
· i

i+ j
=

(j + c+ i)j

(i+ j + c)(i+ j)
=

j

i+ j
.

Since Xn ≥ 0, Martingale convergence theorem (마팅게일 수렴정리) [1, Theorem 4.2.12] implies that Xn → X∞

a.s..
To compute the distribution of the limit X∞, we observe (a) the probability of getting green on the first m
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draws then red on the next ℓ = n−m draws is

g

g + r
· g + c

g + r + c
· · · · · g + (m− 1)c

g + r + (m− 1)c
· r

g + r +mc
· r + c

g + r + (m+ 1)c
· · · · · r + (ℓ− 1)c

g + r + (n− 1)c
,

and (b) any other outcome of the first n draws with m green draws and ℓ red draws has the same probability since
the denominator remains the same and the numerator is permuted. Hence, by letting Gn be the number of green
balls after the nth draw has been completed and the new ball has been added, then it follows from (a) and (b) that

P (Gn = mc+g) =

(
n

m

)
g

g + r
· g + c

g + r + c
·· · ·· g + (m− 1)c

g + r + (m− 1)c
· r

g + r +mc
· r + c

g + r + (m+ 1)c
·· · ·· r + (ℓ− 1)c

g + r + (n− 1)c
.

Consider the special case c = 1, g = 1, and r = 1, then

P (Gn = m+ 1) =

(
n

m

)
m!(n−m)!

(n+ 1)!
=

1

n+ 1
,

so
X∞ ∼ Unif(0, 1).

If we suppose that c = 1, g = 2, and r = 1, then

P (Gn = m+ 2) =
n!

m!(n−m)!

(m+ 1)!(n−m)!

(n+ 2)!/2
→ 2x if n → ∞ and m/n → x,

so
X∞ ∼ Beta(2, 1).

In general, the distribution of X∞ has density

Γ
(
(g + r)/c

)
Γ(g/c) Γ(r/c)

x(g/c)−1(1− x)(r/c)−1,

so
X∞ ∼ Beta

(g
c
,
r

c

)
.

In [1, Example 4.5.6], the limit behavior changes drastically if, in addition to the c balls of the color chosen, we
always add one ball of the opposite color.

Branching Processes

Definition. Let ξni , i, n ≥ 1, be i.i.d. nonnegative integer-valued random variables. Define a stochastic process
{Zn}n≥0 by Z0 = 1 and

Zn+1 =


ξ n+1
1 + · · ·+ ξ n+1

Zn
, if Zn > 0,

0, if Zn = 0.

This process is called a Galton–Watson process.

The idea behind the definitions is that Zn is the number of individuals in the nth generation, and each member
of the nth generation gives birth independently to an identically distributed number of children. pk = P (ξni = k) is
called the offspring distribution.

One of the fundamental question for {Zn} is to calculate P (Zn = 0 for some n) (i.e. extinction probability).

Lemma. [1, Lemma 4.3.9\] Let Fn = σ(ξmi : i ≥ 1, 1 ≤ m ≤ n) and µ = Eξmi ∈ (0,∞). Then Zn/µ
n is a
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martingale w.r.t. Fn.

Proof. Clearly, Zn ∈ Fn. Using [1, Theorem 4.1.2], we conclude that on {Zn = k},

E(Zn+1 | Fn) = E(ξ n+1
1 + · · ·+ ξ n+1

k | Fn) = kµ = µZn,

where in the second equality we used the fact that the ξ n+1
j are independent of Fn.

Zn/µ
n is a nonnegative martingale, so Martingale convergence theorem (마팅게일 수렴정리) [1, Theorem 4.2.12]

implies Zn/µ
n → a limit a.s. We begin by identifying cases when the limit is trivial.

Theorem. [1, Theorem 4.3.10] If µ < 1 then Zn = 0 for all n sufficiently large, so Zn/µ
n → 0.

Proof. E(Zn/µ
n) = E(Z0) = 1, so E(Zn) = µn. Now Zn ≥ 1 on {Zn > 0}, so

P (Zn > 0) ≤ E(Zn;Zn > 0) = E(Zn) = µn → 0

exponentially fast if µ < 1.

The last answer should be intuitive. If each individual on the average gives birth to less than one child, the
species will die out. The next result shows that after we exclude the trivial case in which each individual has exactly
one child, the same result holds when µ = 1.

Theorem. [1, Theorem 4.3.11] If µ = 1 and P (ξmi = 1) < 1 then Zn = 0 for all n sufficiently large.

Proof. When µ = 1, Zn is itself a nonnegative martingale. Since Zn is integer valued and by Martingale convergence
theorem (마팅게일 수렴정리) [1, Theorem 4.2.12], Zn converges to an a.s. finite limit Z∞, we must have Zn = Z∞

for large n. If P (ξmi = 1) < 1 and k > 0 then P (Zn = k for all n ≥ N) = 0 for any N , so we must have Z∞ ≡ 0.

When µ ≤ 1, the limit of Zn/µ
n is 0 because the branching process dies out. Our next step is to show that if

µ > 1 then P (Zn > 0 for all n) > 0.

Definition. For a nonnegative integer valued random variable X, i.e., X ∈ {0, 1, . . .}, then the (probability)
generating function of X is a function φ : I ⊂ R → R such that

φ(s) = E
[
sX

]
=

∞∑
k=0

P (X = k)sk.

We consider the generating function φ : [0, 1] → R for ξmi , which is the generating function for the offspring
distribution pk = P (ξmi = k).

Theorem. [1, Theorem 4.3.12] Suppose µ > 1. If Z0 = 1 then P (Zn = 0 for some n) = ρ, the only solution of
φ(ρ) = ρ in [0, 1).

Proof. φ(1) = 1. Differentiating and referring to [1, Theorem A.5.3] for the justification gives for s < 1,

φ′(s) =

∞∑
k=1

kpks
k−1 ≥ 0,

so φ is increasing. We may have φ(s) = ∞ when s > 1 so we have to work carefully.

lim
s↑1

φ′(s) =

∞∑
k=1

kpk = µ.

10



Figure 2: Generating function for Binomial(3, 1/2).

Integrating we have

φ(1)− φ(1− h) =

∫ 1

1−h

φ′(s) ds ∼ µh as h → 0,

so if h is small φ(1− h) < 1− h. φ(0) ≥ 0 so there must be a solution of φ(x) = x in [0, 1).
To prove uniqueness we note that for s < 1,

φ′′(s) =

∞∑
k=2

k(k − 1)pks
k−2 > 0

since µ > 1 implies that pk > 0 for some k ≥ 2. Let ρ be the smallest solution of φ(ρ) = ρ in [0, 1). Since φ(1) = 1

and φ is strictly convex we have φ(x) < x for x ∈ (ρ, 1) so there is only one solution of φ(ρ) = ρ in [0, 1).
Combining the next two results will complete the proof.

(a) If θm = P (Zm = 0) then

θm =

∞∑
k=0

pk(θm−1)
k = φ(θm−1).

(b) As m ↑ ∞, θm ↑ ρ.

Proof of (a). If Z1 = k, an event with probability pk, then Zm = 0 iff all k families die out in the remaining m− 1

units of time, an independent event with probability θkm−1. Summing over the disjoint possibilities for each k gives
the desired result.

Proof of (b). Clearly θm = P (Zm = 0) is increasing. To show by induction that θm ≤ ρ, note that θ0 = 0 ≤ ρ,
and if the result is true for m− 1,

θm = φ(θm−1) ≤ φ(ρ) = ρ.

Taking limits in θm = φ(θm−1), we see θ∞ = φ(θ∞). Since θ∞ ≤ ρ, it follows that θ∞ = ρ.

The last result shows that when µ > 1, the limit of Zn/µ
n has a chance of being nonzero. The best result on

11



Figure 3: Iteration as in the proof for Binomial(3, 1/2) generating function.

this question is due to Kesten and Stigum:

Theorem. [1, Theorem 4.3.13] W = limZn/µ
n is not ≡ 0 if and only if∑

kpk log k < ∞.

For a proof, see Athreya and Ney (1972), p. 24–29. In the next lecture note, we will see that
∑

k2pk < ∞ (i.e.,
var(ξmi ) < ∞) is sufficient for a nontrivial limit.

Radon–Nikodym Derivatives

Let (Ω,F) be a measurable space, and let µ be a finite measure and ν a probability measure on (Ω,F). Let {Fn}
be σ-fields with Fn ↑ F (i.e., σ(∪Fn) = F). Let µn and νn be the restrictions of µ and ν to Fn.

Definition. Let µ, ν be measure. We say ν is said to be absolutely continuous with respect to µ (abbreviated
ν ≪ µ) if µ(A) = 0 implies ν(A) = 0. We say µ and ν are mutually singular (abbreviated µ ⊥ ν) if there is a set A

such that µ(A) = 0 and ν(A∁) = 0. We also say µ is singular with respect to ν.

Theorem. [1, Theorem 4.3.5] Suppose µn ≪ νn for all n. Let Xn = dµn/dνn and let X = lim supXn. Then

µ = µr + µs,

where
µr(A) =

∫
A

Xdν and µs(A) = µ(A ∩ {X = ∞}).

Remark. µr is a measure ≪ ν. Since Martingale convergence theorem (마팅게일 수렴정리) [1, Theorem 4.2.12]
implies ν(X = ∞) = 0, µs is singular with respect to ν. Thus µ = µr + µs gives the Lebesgue decomposition of µ
(see [1, Theorem A.4.7]), and X = dµr/dν, [ν]-a.s.

Lemma. [1, Lemma 4.3.6] Xn (defined on (Ω,F , ν)) is a martingale with respect to Fn.
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Proof. We observe that, by definition, Xn ∈ Fn. Let A ∈ Fn. Since Xn ∈ Fn and νn is the restriction of ν to Fn,∫
A

Xn dν =

∫
A

Xn dνn.

Using the definition of Xn and [1, Exercise A.4.7],∫
A

Xn dνn = µn(A) = µ(A),

the last equality holding since A ∈ Fn and µn is the restriction of µ to Fn.
If A ∈ Fm−1 ⊂ Fm, using the last result for n = m and n = m− 1 gives∫

A

Xm dν = µ(A) =

∫
A

Xm−1 dν,

so E(Xm | Fm−1) = Xm−1.
Since Xn is a nonnegative martingale, Martingale convergence theorem (마팅게일 수렴정리) [1, Theorem 4.2.12]

implies that Xn → X ν-a.s.
To see whether µ(A) =

∫
A
Xdν + µ(A ∩ {X = ∞}) holds, see [1, Section 4.3].

Kakutani dichotomy for infinite product measures

Let µ and ν be measures on sequence space (RN,RN) that make the coordinates ξn(ω) = ωn independent. Let
Fn(x) = µ(ξn ≤ x), Gn(x) = ν(ξn ≤ x) be the distribution functions of ξn under µ and ν, respectively.. Suppose
Fn ≪ Gn and let qn = dFn/dGn. To avoid a problem we will suppose qn > 0, Gn-a.s.

Let Fn = σ(ξm : m ≤ n), let µn and νn be the restrictions of µ and ν to Fn, and let

Xn =
dµn

dνn
=

n∏
m=1

qm.

[1, Theorem 4.3.5] implies that Xn → X ν-a.s. Thanks to our assumption qn > 0, Gn-a.s.. Now, note that

∞∑
m=1

log(qm) > −∞

is a tail event, so the Kolmogorov 0–1 law implies

ν(X = 0) ∈ {0, 1}. (1)

and it follows from [1, Theorem 4.3.5] that either µ ≪ ν or µ ⊥ ν. The next result gives a concrete criterion for
which of the two alternatives occurs.

Theorem. [1, Theorem 4.3.8]

µ ≪ ν if
∞∏

m=1

∫
√
qmdGm > 0,

µ ⊥ ν if
∞∏

m=1

∫
√
qmdGm = 0.

For the proof, see [1, Section 4.3].
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