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김지수 (Jisu KIM)

확률론 2 (Probability Theory 2), 2025 2nd semester

Probability Spaces

A probability space is a triple (Ω,F , P ) where Ω is a set of “outcomes,” F is a set of “events,” and P : F → [0, 1] is
a function that assigns probabilities to events.

Definition. Let Ω be a set. A nonempty collection F of subsets of Ω is called algebra (or field) if
(i) if A ∈ F then Ω\A ∈ F , and
(ii) if A,B ∈ F then A ∪B ∈ F .
F is called a σ-algebra (or σ-field)
if (i) (ii) and

(iii) A1, A2, · · · ∈ F =⇒
∞⋃
i=1

Ai ∈ F .

Example. F = {ϕ,Ω} trivial σ−field
F = 2Ω = {A| A ⊂ Ω} : power set =⇒σ−field

Example ([1, Example 1.1.6]). Ω = Z ={integers}, F = {A ⊂ Z| |A| < ∞ or |Ac| < ∞}. Then F is a field but not
a σ−field.

Without P , (Ω,F) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an σ-algebra F , a function
µ : F → [0,∞] is a measure if

(i) µ(A) ≥ µ(ϕ) = 0 for all A ∈ F , and
(ii) For A1, A2, · · · ∈ F with Ai ∩Aj = ϕ for any i ̸= j,

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Definition. (1) µ(Ω) < ∞ =⇒finite measure
(2) µ(Ω) = 1 =⇒probability measure

(3) ∃a partition A1, A2, · · · with
∞⋃
i=1

Ai = Ω and µ(Ai) < ∞ =⇒ σ−finite measure

Theorem ([1, Theorem 1.1.1]). Let µ be a measure on (Ω,F).
(i) Monotonicity. If A ⊂ B then µ(A) ≤ µ(B).

(ii) Subadditivity. If A ⊂
∞⋃
i=1

Ai then µ(A) ≤
∞∑
i=1

µ(Ai).

(iii) Continuity from below. An ↑ A ( i.e. A1 ⊂ A2 ⊂ · · · and A =
∞⋃
i=1

Ai) then µ(Ai) ↑ µ(A).

(iv) Continuity from above. An ↓ A ( i.e. A1 ⊃ A2 ⊃ · · · and A =
∞⋂
i=1

Ai) with µ(A1) < ∞ then µ(Ai) ↓ µ(A).

1



Definition. Let A be a class of subsets of Ω. Then σ(A) denotes the smallest σ−algebra that contains A.

For any any A, such σ(A) exists and is unique: this is by the following:

(i) If Fi, i ∈ I are σ−fields, then
⋂
i∈I

Fi is a σ−field.

(ii) If we are given a collection A of subsets of Ω, then there is a smallest σ-field containing A.

Definition. Borel σ−field on Rd, denoted by Rd, is the smallest σ−field containing all open sets.

Theorem ([1, Theorem 1.1.4]). There is a unique measure µ on (R,R) with

µ((a, b]) = b− a.

Such measure is called Lebesgue measure.

Distribution and Random Variables

Definition. Let (Ω,F) and (S,S) are measurable spaces. A mapping X : Ω → S is a measurable map from (Ω,F)

to (S,S) if
for all B ∈ S, X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ F .

If (S,S) = (Rd,Rd) (where Rd = B(Rd)) and d > 1 then X is called a random vector. If d = 1, X is called a
random variable.

For convenience, we sometimes replace Rd by (R∗)d = [−∞,∞]d and (R∗)d = B((R∗)d) and still say random
vector (or random variable).

Example. A trivial but useful example of a random variable is indicator function 1A of a set A ∈ F :

1A(ω) =

1 ω ∈ A,

0 ω /∈ A.

If X is a random variable, then X induces a probability measure on R.

Definition. The probability measure µ on (R,B(R)) defined as µ(A) = P (X ∈ A) for all A ∈ B(R) is called the
distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.

Definition. The distribution function F (x) of a random variable X is defined as F (x) = P (X ≤ x).

Theorem ([1, Theorem 1.2.1]). Any distribution function F has the following properties:
(i) F is nondecreasing.
(ii) lim

n→∞
F (x) = 1, lim

n→−∞
F (x) = 0.

(iii) F is right continuous. i.e. lim
y↓x

F (y) = F (x).

(iv) P (X < x) = F (x−) = lim
y↑x

F (x).

(v) P (X = x) = F (x)− F (x−).

Theorem ([1, Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [1, Theorem 1.2.1], then it is the distribution function of
some random variable. That is, there exists a triple (Ω,F , P ) and a random variable X such that F (x) = P (X ≤ x).
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Theorem. If F satisfies (i) (ii) (iii), then there uniquely exists a probability measure µ on (R,B(R)) such that for
all a < b,

µ((a, b]) = F (b)− F (a).

Definition. If X and Y induce the same distribution µ on (R,B(R)), we say X and Y are equal in distribution.
We write

X
d
= Y.

Definition. When the distribution function F (x) = P (X ≤ x) has the form F (x) =
∫ x

−∞ f(y)dy, then we say X

has the density function f .

Remark. f is not unique, but unique up to Lebesque measure 0.

Remark. For defining a density function of a given probability measure, we can use the Radon-Nykodym Theorem.

Definition. If F has a property that there exists f such that F (x) =
∫ x

−∞ f(y)dy, we call F is absolutely continuous.

Example ([1, Example 1.2.7]). Uniform distribution on the Cantor set
Let C0 := [0, 1] , and let Cn+1 be defined by removing middle third open interval of each interval that remains.

For example, C1 = [0, 1
3 ] ∪ [ 23 , 1].

Let C :=
∞⋂

n=0
Cn : Cantor set.

Let F0 : [0, 1] → R by F0(x) = x

Let Fn+1 : [0, 1] → R by Fn+1(x) =


1
2Fn(x) 0 ≤ x ≤ 1

3

1
2

1
3 ≤ x ≤ 2

3

1
2 + 1

2Fn(3x− 2) 2
3 ≤ x ≤ 1

Then, {Fn} are uniformly Cauchy, so it converges to a continuous function F : [0, 1] → R
F is constant on each excluded middle interval, so if ∃f s.t.

∫ x

0
f(t)dt = F (x), f = 0 on CC

This is impossible because Cantor set has measure 0

Example ([1, Example 1.2.9]). Dense discontinuities. Let q1, q2, · · · be an enumeration of the rationals. Let αi > 0

with
∞∑
i=1

αi = 1 and let

F (x) =
∞∑
i=1

αi1[qi,∞)

Exercise ([1, Exercise 1.2.3]). Show that the number of jumps of distribution is at most countable.

Theorem ([1, Theorem 1.3.1]). Let A be a collection of sets in S such that
(i) {ω| X(ω) ∈ A} ∈ F for all A ∈ A
(ii) σ(A) = S
Then X is measurable.

Remark. Note that {{X ∈ B}| B ∈ S} is a σ-field. It is the smallest σ-field on Ω that makes X a measurable map.
It is called the σ-field generated by X and denoted by σ(X)

Example ([1, Exercise 1.3.2]). (S,S) = (R,R). Possible choices of A in Theorem 1.3.1 are

A =



{(−∞, x] | x ∈ R}

{(−∞, x) | x ∈ R}

{(−∞, x] | x ∈ Q}

{(−∞, x) | x ∈ Q}
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Example ([1, Exercise 1.3.3]). (S,S) = (Rd,Rd). A useful choice of A in Theorem 1.3.1 is
{(a1, b1)× · · · × (ad, bd) | −∞ < ai < bi < ∞} (set of open rectangles)

Theorem ([1, Theorem 1.3.4]). If X : (Ω,F) → (S,S) and f : (S,S) → (T, T ) are measurable maps, then f(X) is
measurable.

Theorem. f : (S,S) → (T, T ) and suppose S = σ(open sets), T = σ(open sets). Then, if f is continuous then f

is measurable.

Theorem ([1, Theorem 1.3.5]). If X1, · · · , Xn are random variables and f : (Rn,Rn) → (R,R) is measurable, then
f(X1, · · · , Xn) is a random variable.

Theorem ([1, Theorem 1.3.6]). If X1, · · · , Xn are random variables then X1 + · · ·+Xn is a random variable.

Remark. If X,Y are random variables, then

cX (c is scalar), X ± Y, XY, sin(X), X2, · · · ,

are all random variables.

Theorem ([1, Theorem 1.3.7]). inf
n
Xn, sup

n
Xn, lim sup

n
Xn, lim inf

n
Xn are random variables.

Integration and Expectation

Let µ be a σ-finite measure on (Ω,F).

Definition. For any predicate Q(ω) defined on Ω, we say Q is true (µ−)almost everywhere (or a.e.) if µ({ω :

Q(ω) is false}) = 0

Step 1.

Definition. φ is a simple function if φ(ω) =
n∑

i=1

ai1Ai
with Ai ∈ F

If φ is a simple function and φ ≥ 0, we let ∫
φdµ =

n∑
i=1

aiµ(Ai)

Step 2.

Definition. If f is measurable and f ≥ 0 then we let∫
fdµ = sup{

∫
φdµ : 0 ≤ φ ≤ f and φ simple}

We define the integral of f over the set E: ∫
E

fdµ :=

∫
f · 1Edµ

Step 3.

Definition. We say measurable f is integrable if
∫
|f |dµ < ∞. Let

f+(x) := f(x) ∨ 0, and f−(x) := (−f(x)) ∨ 0,
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where a ∨ b = max(a, b). We define the integral of f by∫
fdµ =

∫
f+dµ−

∫
f−dµ.

we can also define
∫
fdµ if

∫
f+dµ = ∞ and

∫
f−dµ < ∞, or

∫
f+dµ < ∞ and

∫
f−dµ = ∞

Theorem ([1, Theorem 1.4.7]). Suppose f and g are integrable.
(i) If f ≥ 0 a.e. then

∫
fdµ ≥ 0

(ii) ∀a ∈ R,
∫
afdµ = a

∫
fdµ

(iii)
∫
f + gdµ =

∫
fdµ+

∫
gdµ

(iv) If g ≤ f a.e. then
∫
gdµ ≤

∫
fdµ

(v) If g = f a.e. then
∫
gdµ =

∫
fdµ

(vi) |
∫
fdµ| ≤

∫
|f |dµ

Definition. ∥f∥p =
(∫

|f |pdµ
)1/p for 0 < p < ∞

∥f∥∞ = inf{M : µ({x : |f(x)| > M}) = 0}
Notice that ∀c ∈ R, ∥cf∥p = |c| · ∥f∥p

Theorem ([1, Theorem 1.5.1]). Jensen’s inequality. Suppose φ : R → R is convex, that is, for all λ ∈ [0, 1] and
x, y ∈ R,

λφ(x) + (1− λ)φ(y) ≥ φ(λx+ (1− λ)y).

If µ is a probability measure, and f and φ(f) are integrable, then

φ

(∫
fdµ

)
≤
∫

φ(f)dµ.

Theorem ([1, Theorem 1.5.2]). Holder’s inequality. If p, q ∈ [1,∞] with 1/p+ 1/q = 1, then∫
|fg|dµ ≤ ∥f∥p∥g∥q.

Remark. The special case p = q = 2 is called the Cauchy-Schwarz inequality

Definition. We say fn → f in measure if ∀ϵ > 0, lim
n→∞

µ{x : |fn(x)− f(x)| > ϵ} = 0

Theorem ([1, Theorem 1.5.3]). Bounded convergence theorem. Let E be a set with µ(E) < ∞. Suppose fn vanishes
on E∁, |fn(x)| ≤ M , and fn → f in measure. Then∫

fdµ = lim
n→∞

∫
fndµ.

Theorem ([1, Theorem 1.5.5]). Fatou’s lemma. If fn ≥ 0 then

lim inf
n

∫
fndµ ≥

∫ (
lim inf

n
fn

)
dµ.

Theorem ([1, Theorem 1.5.7]). Monotone convergence theorem. If fn ≥ 0 and fn ↑ f then∫
fndµ ↑

∫
fdµ.

Theorem ([1, Theorem 1.5.8]). Dominated convergence theorem. If fn → f a.e., |fn| ≤ g for all n, and g is
integrable, then ∫

fndµ →
∫

fdµ.
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Definition. If X is a random variable on (Ω,F , P ), we define its expected value to be E(X) =
∫
Ω
XdP

We also write E(X;A) =
∫
A
XdP .

Theorem ([1, Theorem 1.6.4]). Chebyshev’s inequality. Suppose φ : R → R has φ ≥ 0, let A ∈ R and let
iA = inf{φ(y) : y ∈ A}

iAP (X ∈ A) ≤ E(φ(X); X ∈ A) ≤ EEφ(X)

Remark. if φ(x) = x2 and A = {x : |x| ≥ a}:

a2P (|X| ≥ a) ≤ EX2.

Several techniques of integration

• The pushforward measure of a transformation T is T∗µ := µ(T−1(A)). The change of variables formula for
pushforward measures is ∫

Ω

f ◦ Tdµ =

∫
T (Ω)

fdT∗µ.

Now, consider a probability space (Ω,F , P ), and consider a measurable map X : (Ω,F) → (S,S) as a
transformation. Then the distribution measure µX of X is in fact the pushforward measure µX(A) = P (X ∈
A) = P (X−1(A)), and hence the change of variable formula becomes

EP [f(X)] =

∫
Ω

f(X(ω))dP (ω) =

∫
X(Ω)

f(x)dµX(x).

• For Lebesgue measure λ and Riemann integrable function f ,
∫
[a,b]

fdλ is the same as the Riemann integral∫ b

a
f(x)dx.

•
∫
fdδx = f(x), where δx is the Dirac-delta measure, i.e., δx(A) = I(x ∈ A).

• For a random variable X ≥ 0,

EP [X] =

∫
Ω

X(ω)dP (ω) =

∫
Ω

∫
[0,X(ω)]

dtdP (ω)

=

∫
{(ω,t)∈Ω×[0,∞):0≤t≤X(ω)}

dt× dP (ω)

=

∫ ∞

0

∫
{ω∈Ω:X(ω)≥t}

dP (ω)dt

=

∫ ∞

0

P (X ≥ t)dt.

Product Measures, Fubini’s Theorem

Let {(Ωi,Fi, µi)}ni=1 be a sequence of σ-finite measure spaces.
Let Ω = Ω1 × · · · × Ωn = {(ω1, · · · , ωn)| ωi ∈ Ωi}
Let F = F1 × · · · × Fn =the σ−field generated by A1 × · · · ×An, where Ai ∈ Fi

Then there exists a unique measure µ on F with

µ(A1 × · · · ×An) = µ1(A1) · · ·µn(An).

Let (X,A, µ1) and (Y,B, µ2) be two σ-finite measure spaces. Let µ = µ1 × µ2.
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Theorem ([1, Theorem 1.7.2]). Fubini’s theorem. Let f be a mesaurable function. If f ≥ 0 or
∫
|f |dµ < ∞, then∫

X

∫
Y

f(x, y)µ2(dy)µ1(dx) =

∫
X×Y

fdµ =

∫
Y

∫
X

f(x, y)µ1(dx)µ2(dy)

Example ([1, Example 1.7.5]). Let X = Y = {1, 2, · · · } with A = B =all subsets and µ1 = µ2 =counting measure.
let

f(m,n) =


1 m = n

−1 m = n+ 1

0 o.w

Then, ∫
X

∫
Y

f(x, y)µ2(dy)µ1(dx) = 0 but
∫
Y

∫
X

f(x, y)µ1(dx)µ2(dy) = 1.

...
...

...
...

0 0 0 1 · · ·
↑ 0 0 1 −1 · · ·
n 0 1 −1 0 · · ·

1 −1 0 0 · · ·
m →

Example ([1, Example 1.7.6]). Let X = (0, 1), Y = (1,∞), both equipped with the Borel sets and Lebesque
measure. Let f(x, y) = e−xy − 2e−2xy

∫ 1

0

∫ ∞

1

f(x, y)dydx =

∫ 1

0

x−1(e−x − e−2x)dx > 0,∫ 1

0

∫ ∞

1

f(x, y)dydx =

∫ 1

0

x−1(e−2x − e−x)dx < 0.

Example ([1, Example 1.7.7]). Let X = (0, 1) with A =the Borel sets and µ1 =Lebesque measure. Let Y = (0, 1)

with B =all subsets and µ2 =counting measure. Let f(x, y) = 1 if x = y and 0 otherwise

∫
Y

f(x, y)µ2(dy) = 1 for all x so
∫
X

∫
Y

f(x, y)µ2(dy)µ1(dx) = 1,∫
X

f(x, y)µ1(dx) = 0 for all y so
∫
Y

∫
X

f(x, y)µ2(dy)µ1(dx) = 0.

Independence (독립)

Definition. Let (Ω,F , P ) be probability space. Two events A,B ∈ F are independent (독립) if

P (A ∩B) = P (A)P (B).

Two random variables X and Y are independent if for all C,D ∈ R,

P (X ∈ C, Y ∈ D) = P (X ∈ C)P (Y ∈ D).

Two σ-fields F1 and F2 (⊂ F) are independent if for all A ∈ F1 and B ∈ F2, A and B are independent.
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Remark. An infinite collection of objects (σ−fields, random variables, or sets) is said to be independent if every
finite subcollection is.

Definition. σ−fields F1, · · · ,Fn are independent if for all Ai ∈ Fi,

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

P (Ai),

Random variables X1, · · · , Xn are independent if for all Bi ∈ R,

P

(
n⋂

i=1

{Xi ∈ Bi}

)
=

n∏
i=1

P (Xi ∈ Bi).

Sets A1, · · · , An are independent if for all I ⊂ {1, · · · , n},

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai)

Remark. the definition of independent events is not enough to assume pairwise independent, which is P (Ai∩Aj) =

P (Ai)P (Aj), i ̸= j. It is clear that indenendent events are pairwise independent, but converse is not true.

Example. Let X1, X2, X3be independent random variables with P (Xi = 0) = P (Xi = 1) = 1
2 Let A1 = {X2 =

X3}, A2 = {X3 = X1} and A3 = {X1 = X2}. These events are pairwise independent but not independent.

Theorem ([1, Theorem 2.1.7]). Suppose A1, · · · ,An are independent and Ai are π-systems. Then σ(A1), · · · , σ(An)

are independent.

Theorem ([1, Theorem 2.1.8]). (X1, · · · , Xn) are independent if and only if for all xi ∈ (−∞,∞],

P (X1 ≤ x1, · · · , Xn ≤ xn) =

n∏
i=1

P (Xi ≤ xi)

Theorem ([1, Theorem 2.1.9]). Suppose Fi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m(i) are independent and let Gi = σ(∪
j
Fi,j).

Then G1, · · · ,Gn are independent.

Theorem ([1, Theorem 2.1.10]). If for 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), Xi,j are independent and fi : Rm(i) → R are
measurable then fi(Xi,1, · · · , Xi,m(i)) are independent.

Theorem ([1, Theorem 2.1.11]). Suppose X1, · · · , Xn are independent random variables and Xi has distribution
µi. Then (X1, · · · , Xn) has distribution µ1 × · · · × µn.

Theorem ([1, Theorem 2.1.12]). Suppose X and Y are independent and have distribution µ and ν. If h : R2 → R
is a measurable function with h ≥ 0 or E|h(X,Y )| < ∞, then

Eh(X,Y ) =

∫ ∫
h(x, y)dµ(x)dν(y).

In particular, when h(x, y) = f(x)g(y) with f, g ≥ 0 or E |f(X)| ,E |g(Y )| < ∞, then

EP [f(X)g(Y )] = EP [f(X)]EP [g(Y )].

Theorem ([1, Theorem 2.1.13]). If X1, · · · , Xn are independent and have (a) Xi ≥ 0 for all i, or E|Xi| < ∞ for
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all i, then

E

(
n∏

i=1

Xi

)
=

n∏
i=1

EXi.

Example ([1, Exercise 2.1.14]). It can happen that E(XY ) = EX ·EY with X and Y are dependent. Suppose joint
distribution of X and Y is given by the following table:

Y

X

1 0 −1

1 0 a 0

0 b c b

−1 0 a 0

where a, b > 0, c ≥ 0 and 2a+ 2b+ c = 1. Then E(XY ) = 0 = EXEY but

P (X = 1, Y = 1) = 0 < ab = P (X = 1)P (Y = 1).

Definition. Two random variables X and Y with EX2, EY 2 < ∞ that have EXY = EXEY are said to be
uncorrelated.

Theorem ([1, Theorem 2.1.15]). If X and Y are independent, F (x) = P (X ≤ x), and G(y) = P (Y ≤ y), then

P (X + Y ≤ z) =

∫
F (z − y)dG(y)

The integral on the right-hand side is called the convolution of F and G and is denoted F ∗G(z)

Theorem ([1, Theorem 2.1.16]). Suppose X with density f and Y with distribution function G are independent.
Then X + Y has density

h(x) =

∫
f(x− y)dG(y)

When Y has density g, the last formula can be written as

h(x) =

∫
f(x− y)g(y)dy

Now, we consider constructing independent random variables.

[1] finite many random variables

Objective : Construct n many independent random variables whose distributions are Fi, i = 1, · · · , n
Let Ω = Rn, F = Rn and Xi(ω) = Xi(ω1, · · · , ωn) = ωi. Then we let

P ([a1, b1]× · · · × [an, bn]) =

n∏
i=1

(Fi(bi)− Fi(ai)).

[2] Countably many random variables

Notation. Ω = RN = {(ω1, ω2, · · · )| ωi ∈ R}
B(RN) = RN : the smallest σ-fields generated by collection of finite dimensional rectangles {ω| ωi ∈ Bi, Bi ∈

R, i = 1, · · · , n} n = 1, 2, · · ·
We want to specify P on (RN, RN) by specifying P on finite dimensional rectangles
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Theorem ([1, Theorem 2.1.21]). Kolmogorov’s extension theorem. Suppose we are given probability measures µn

on (Rn,Rn) that are consistent, that is,

µn+1((a1, b1]× · · · × (an, bn]× R) = µn((a1, b1]× · · · × (an, bn]).

Then, there is a unique probability measure P on (RN,RN) with

P (ω : ωi ∈ (ai, bi], 1 ≤ i ≤ n) = µn((a1, b1]× · · · × (an, bn]).

Weak laws of large numbers (큰 수의 약법칙)

Various modes of convergence

{Xn} and X are random variables defined on (Ω,F , P )

Definition. Xn → X almost surely (a.s.) ( with probability 1(w.p. 1), almost everywhere(a.e.) ) if P{ω : Xn(ω) →
X(ω)} = 1

Equivalent definition : ∀ϵ, lim
m→∞

P{ω : |Xn(ω)−X(ω)| ≤ ϵ ∀n ≥ m} = 1

or ∀ϵ, lim
m→∞

P{ω : |Xn(ω)−X(ω)| > ϵ ∀n ≥ m} = 0

Definition. Xn → X in probability (확률수렴) (in pr, p−→) if lim
n→∞

P{|Xn −X| > ϵ} = 0

Theorem. Xn → X a.s. =⇒ Xn
p−→ X

Remark. Xn
p−→ X ⇏Xn → X a.s.

Definition. Xn → X in Lp, 0 < p < ∞
if lim

n→∞
E(|Xn −X|p) = 0 provided E|Xn|p < ∞, E|X|p < ∞.

Theorem. Xn → X in Lp =⇒ Xn
p−→ X

Theorem. (Chebyshev inequality, 체비셰프 부등식)

P (|X| ≥ ϵ) ≤ E|X|p

ϵp

Remark. Xn
p−→ X ⇏ Xn → X in Lp

Example. Ω = [0, 1], F = B[0, 1], P = Unif [0, 1]

X(ω) = 0, Xn(ω) = nI(0 ≤ ω ≤ 1
n )

Then P{|Xn(ω)−X(ω)| > ϵ} = P{0 ≤ ω ≤ 1
n} = 1

n → 0

But E|Xn −X| = E|Xn| = 1

Theorem. Xn
p−→ X and there exists a random variables Z s.t.

|Xn| ≤ Z and E|Z|p < ∞
Then Xn → X in Lp.

Remark. If E|X| < ∞, then
lim
n→∞

∫
An

|X|dP → 0 whenever P (An) → 0

10



L2 weak law

Theorem ([1, Theorem 2.2.3]). Let X1, X2, · · · be uncorrelated random variables with EXi = µ and V ar(Xi) ≤
C < ∞ Let Sn =

n∑
i=1

Xi. Then Sn

n → µ in L2 and also in probability.

Theorem ([1, Theorem 2.2.14]). Weak law of large numbers (큰 수의 약법칙, 대수의 약법칙)
Let X1, X2, · · · be i.i.d. random variables with E|Xi| < ∞. Let Sn = X1 + · · · + Xnand let µ = EX1.Then

Sn

n → µ in probability.

Borel-Canteli lemma

Let {An} be a sequence of subsets of Ω.

Definition. lim supAn = lim
m→∞

∞⋃
n=m

An = {ω that are in infinitely many An} = {An i.o.}

lim inf An = lim
m→∞

∞⋂
n=m

An = {ω that are in all but finite An} = {An a.b.f.}

Theorem ([1, Theorem 2.3.1]). Borel-Canteli lemma (보렐-칸텔리 보조정리)

If
∞∑

n=1
P (An) < ∞, then

P (An i.o.) = 0.

Theorem ([1, Theorem 2.3.2]). Xn → X in probability (확률수렴) if and only if for every subsequence Xn(m), there
is a further subsequence Xn(mk) that converges almost surely to X.

Theorem ([1, Theorem 2.3.3]). For a given sequence {yn} of a topological space, if any subsequence yn(m) has a
convergent subsequence yn(mk) which converges to y, then yn → y

Theorem ([1, Theorem 2.3.4]). If f is continuous and Xn → X in probability (확률수렴), then f(Xn) → f(X) in
probability (확률수렴). If in addition f is bounded, then Ef(Xn) → Ef(X).

Theorem ([1, Theorem 2.3.5]). Let {Xn} be i.i.d. random variables with E(Xn) = µ and EX4
1 < ∞. If Sn =

n∑
i=1

Xi

then Sn

n → µ a.s..

Example ([1, Example 2.3.6]). Ω = [0, 1] F = B[0, 1], P ∼ unif(0, 1). Let An = (0, 1
n ), then P (An i.o.) = 0 but∑

P (An) = ∞.

Theorem ([1, Theorem 2.3.7]). The second Borel Cantelli lemma
If An are independent, then

∑
P (An) = ∞ implies that

P (An i.o.) = 1.

Theorem ([1, Theorem 2.3.8]). Let Xn be i.i.d. random variables with E|X1| = ∞, then P{|Xn| ≥ n i.o} = 1. So
if Sn = X1 + · · ·+Xn, then

P

(
lim

Sn

n
∈ (−∞,∞)

)
= 0.

Strong Law of Large Numbers (큰 수의 강법칙)

Theorem ([1, Theorem 2.4.1]). Let X1, X2, · · · be pairwise independent and identically distributed random variables

with E|X1| < ∞. Let µ = E(X1) and Sn =
n∑

i=1

Xi. Then Sn

n → µ a.s..

11



Theorem ([1, Theorem 2.4.5]). Let X1, X2, · · · be i.i.d. with EX+
i = ∞ and EX−

1 < ∞. If Sn = X1 + · · · +Xn

then Sn

n → ∞ a.s.

Example ([1, Example 2.4.8]). Empirical distribution functions
Let X1, X2, · · ·

iid∼ F , and let

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x).

1) For given x, E(Fn(x)) = F (x) unbiased
2) For given x, Fn(x) → F (x) consistency
3) asymptotic efficient?

Theorem ([1, Theorem 2.4.9]). Glivenko-Cantellli theorem (글리벤코-칸텔리 정리)

sup
x
|Fn(x)− F (x)| → 0 a.s. as n → ∞.

Weak Convergence

We define weak convergence for random variables, but most of the results can be generalized to measurable maps
Xn, X : (Ω,F) → (S,S), where S is equipped with a metric ρ.

Definition. A sequence of random vectors {Xn} converges weakly or converges in distribution (분포수렴) to a
limit X (Xn ⇒ X, Xn

w−→ X, Xn
d−→ X) if

EP [g(Xn)] → EP [g(X)] , for all g ∈ Cb(R),

where Cb(R) is a set of continuous and bounded functions. We analogously define Pn
d−→ P for probability measures

{Pn} and P , i.e.,
∫
g(x)dPn(x) →

∫
g(x)dP (x) for all g ∈ Cb(R). We also analogously define Fn

d−→ F (Fn ⇒
F, Fn

w−→ F ) for distribution functions {Fn} and F , i.e.,
∫
g(x)dFn(x) →

∫
g(x)dF (x) for all g ∈ Cb(R).

Theorem ([1, Theorem 3.2.9]). A sequence of distribution function Fn converges weakly to a limit F if and only if
Fn(y) → F (y) for all continuity points of F .

Example ([1, Example 3.2.1]). Let X1, X2, · · · be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1
2 , and let Sn =

X1 + · · ·+Xn. Then

Fn(y) = P (Sn/
√
n ≤ y) →

∫ y

−∞

1√
2π

e−
x2

2 dx ∀y ∈ R.

That is, Fn
w−→ N (0, 1).

Example ([1, Example 3.2.3]). Let X ∼ F and Xn = X + 1
n . Then

Fn(x) = P (Xn ≤ x) = F (x− 1

n
) → F (x−).

Hence Fn(x) → F (x) only when F (x) = F (x−), i.e. only if x is a continuity point of F . Still, Xn
d−→ X.

Example ([1, Example 3.2.4]). Let Xp ∼ Geo(p), i.e. P (Xp ≥ m) = (1− p)m−1. Then

P (Xp >
x

p
) = (1− p)

x
p → e−x, as p → 0.

In words, pXp converges weakly to an exponential distribution.
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Theorem. Scheffe’s theorem. Let {fn} be a sequence of densities and let f∞be a density. If fn → f∞ pointwisely,
then

∥µn − µ∞∥TV := sup
B

|µn(B)− µ∞(B)| → 0,

when µn and µ∞ are probability measure corresponding to fn and f∞.

∥µn − µ∞∥TV is called the total variation norm. If µn → µ∞ in the total variation norm, then µn
w−→ µ∞ (i.e.

Fn
w−→ F∞) However, the converse is not true.

Theorem ([1, Theorem 3.2.8]). (Skorohod representation theorem)
Suppose Fn

d−→ F . Then, there exists a probability space (Ω,F , P ), a sequence of random variables {Yn} and a
random variables Y on (Ω,F , P ) so that Yn ∼ Fn, Y ∼ F , and Yn → Y a.s..

Theorem ([1, Theorem 3.2.10]). Continuous mapping theorem.
Let g be a measurable function and Dg = {x : g is continuous at x}. If Xn

d−→ X and P (X ∈ Dg) = 0, then
g(Xn)

d−→ g(X). If in addition g is bounded, then Eg(Xn) → Eg(X).

Theorem ([1, Theorem 3.2.11]). The following statements are equivalent
(i) Xn

d−→ X

(ii) ∀open set G, lim inf P (Xn ∈ G) ≥ P (X ∈ G)

(iii) ∀closed set G, lim supP (Xn ∈ F ) ≤ P (X ∈ F )

(iv) For all set A with P (X ∈ ∂A) = 0, limP (Xn ∈ A) = P (X ∈ A), where ∂A = clA− intA.

Theorem ([1, Theorem 3.2.12]). Helly’s selection theorem
For every sequence Fn of distribution functions, there exists a subsequence Fn(k) and a right continuous nonde-

creasing function F so that

Fn(k)(y) → F (y), for all continuity points y of F.

Remark. The limit may not be a distribution function.

Theorem ([1, Theorem 3.2.13]). Every subsequential limit of Helly’s selection theorem is a distribution function if
and only if the sequence Fn is tight, i.e., for all ϵ > 0 there exists Mϵ > 0 so that

lim sup
n→∞

{1− Fn(Mϵ) + Fn(−Mϵ)} ≤ ϵ.

.

Theorem ([1, Theorem 3.2.14]). If there is a φ ≥ 0 so that φ(x) → ∞ as |x| → ∞ and

C = sup
n

∫
φ(x)dFn(x) < ∞,

then Fn is tight.

Exercise ([1, Theorem 3.2.15]). Lévy metric for cumulative distribution functions is

ρ(F,G) = inf {ϵ : F (x− ϵ)− ϵ ≤ G(x) ≤ F (x+ ϵ) + ϵ for all x ∈ R} .

Then ρ(Fn, F ) → 0 if and only if Fn
d−→ F . So, convergence in distribution can be thought as convergence in metric

space.

The fact that convergence in distribution comes from a metric immediately implies
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Theorem ([1, Theorem 3.2.15]). If each subsequence of Xn has a further subsequence that converges to X then
Xn

d−→ X.

Characteristic Functions

Definition. The characteristic function (ch.f.) of a random variable X is defined by

φ(t) = EeitX = E(cos(tX)) + iE(sin(tX))

Theorem ([1, Theorem 3.3.1]). All characteristic functions have the following properties:
(a) φ(0) = 1

(b) φ(−t) = φ(t), where z̄ = a− bi if z = a+ bi

(c) |φ(t)| ≤ 1

(d) φ(t) is uniformly continuous on (−∞,∞)

(e) Eeit(aX+b) = eitbφ(at)

Theorem ([1, Theorem 3.3.2]). If X1 and X2 are two independent random variables with the ch.f. φ1 and φ2, then
X1 +X2 has the ch.f. φ1(t) · φ2(t)

Theorem ([1, Theorem 3.3.11]). Inversion formula.
Let φ(t) =

∫
eitXµ(dx), where µ is a probability measure. If a < b, then

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t)dt = µ(a, b) +

1

2
µ{a, b}.

Theorem ([1, Theorem 3.3.14]). If
∫
|φ(t)|dt < ∞, then µ has bounded continuous density f so that

f(y) =
1

2π

∫
e−ityφ(t)dt.

Theorem ([1, Theorem 3.3.17]). Let µn be a sequence of probability measures with the ch.f.s {φn}.
(i) If µn ⇒ µ∞, then φn(t) → φ∞(t) for all t
(ii) Suppose φn(t) → φ(t) pointwisely. If φ is continuous at 0, then the associated distributions µn is tight, and

converges weakly to the probability measure µ∞with the ch.f. φ.

Remark. The continuity of φ at 0 implies that that µ∞ is a probability measure.

Central Limit Theorem (중심극한정리)

Theorem ([1, Theorem 3.4.1]). Let X1, X2, · · · be i.i.d. with EXi = µ and V ar(Xi) = σ2 > 0. If Sn = X1+· · ·+Xn,
then

(Sn − nµ)/(
√
nσ)

d−→ N (0, 1).

Theorem ([1, Theorem 3.4.10]). Lindeberg-Feller theorem
For each n, let Xn,m, 1 ≤ m ≤ n, be independent random variables with EXn,m = 0. Suppose

(i)
n∑

m=1
EX2

n,m → σ2 > 0,

(ii) ∀ϵ > 0, lim
n→∞

n∑
m=1

E(|Xn,m|2I(|Xn,m| > ϵ)) = 0.

Then Sn = Xn,1 + · · ·+Xn,n
d−→ N (0, σ2) as n → ∞.

14



Remark. We can prove the first CLT using the Lindeberg-Feller theorem.

Exercise ([1, Exercise 3.4.12]). Lyapunov’s theorem
Let {Xn,m} be a triangular array of independent random variables satisfying
(i) E |Xn,m|2+δ

< ∞ for some δ > 0

(ii) lim
n→∞

n∑
m=1

E |Xn,m − E |Xn,m||2+δ
/s2+δ

n = 0, where s2n = V ar(Sn)

Then (Sn − ESn)/
√
s2n

d−→ N (0, 1).

Theorem. (Feller)
Let {Xn,k} be an array of independent random variables.
Lindeberg’s condition holds if and only if CLT holds and max

1≤k≤n
σ2
nk/s

2
n → 0 as n → ∞.

Theorem ([1, Theorem 3.4.14]). Let X1, X2, · · · be i.i.d. and Sn = X1 + · · ·+Xn. Then there exist an, bn > 0 so
that (Sn − an)/bn

d−→ N (0, 1) if and only if

y2P (|X1| > y)/E(|X1|2; |X1| ≤ y) → 0

Theorem ([1, Theorem 3.4.17]). Berry-Essen theorem
Let X1, X2, · · · be i.i.d. with EXi = 0, EX2

i = σ2 and E|X1|3 = ρ < ∞. Let Fn(x) be the distribution function
of (X1 + · · ·+Xn)/(σ

√
n) and Φ(x) be the standard normal distribution. Then

sup
x
|Fn(x)− Φ(x)| ≤ 3ρ/(σ3

√
n).

Stochastic Order Notation

The classical order notation should be familiar to you already.

1. We say that a sequence an = o(1) if an → 0 as n → ∞. Similarly, an = o(bn) if an/bn = o(1).

2. We say that a sequence an = O(1) if the sequence is eventually bounded, i.e. for all n large, |an| ≤ C for some
constant C ≥ 0. Similarly, an = O(bn) if an/bn = O(1).

3. If an = O(bn) and bn = O(an) then we use either an = Θ(bn) or an ≍ bn.

When we are dealing with random variables we use stochastic order notation.

1. We say that Xn = oP (1) if for every ϵ > 0, as n → ∞

P (|Xn| ≥ ϵ) → 0,

i.e. Xn converges to zero in probability.

2. We say that Xn = OP (1) if for every ϵ > 0 there is a finite C(ϵ) > 0 such that, for all n large enough:

P (|Xn| ≥ C(ϵ)) ≤ ϵ.

The typical use case: suppose we have X1, . . . , Xn which are i.i.d. and have finite variance, and we define:

µ̂ =
1

n

n∑
i=1

Xi.
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1. µ̂− µ = oP (1) (Weak Law of Large Number)

2. µ̂− µ = OP (1/
√
n) (Central Limit Theorem)

Proposition. 1. Xn
P−→ X implies Xn

d→ X, and this implies Xn = Op(1). Also, Xn = op(1) implies Xn =

Op(1).

2. (a) Op(1) +Op(1) = Op(1)

(b) Op(1) + op(1) = Op(1)

(c) op(1) + op(1) = op(1)

(d) Op(1) ·Op(1) = Op(1)

(e) Op(1) · op(1) = op(1)

(f) op(1) · op(1) = op(1)
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