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Probability Spaces

A probability space is a triple (2, F, P) where { is a set of “outcomes,” F is a set of “events,” and P : F — [0,1] is

a function that assigns probabilities to events.

Definition. Let €2 be a set. A nonempty collection F of subsets of § is called algebra (or field) if
(i) if A € F then Q\A € F, and
(ii) if A,B € F then AUB € F.
F is called a o-algebra (or o-field)
if (i) (ii) and
(iii) A1, Ag, - € F— [JAi € F.
i=1

1=

Example. F = {¢,Q} trivial o—field
F =2%={A| ACQ}: power set =>0—field

Example ([1, Example 1.1.6]). Q = Z ={integers}, F = {A C Z| |A| < o0 or |A°| < oco}. Then F is a field but not
a o—field.

Without P, (Q,F) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an o-algebra F, a function
u: F — [0,00] is a measure if

(i) p(A) > p(¢) =0 for all A € F, and

(ii) For Ay, As,--- € F with A; N A; = ¢ for any ¢ # j,

I (.UAZ) = ZM(Ai)-

Definition. (1) p(£2) < co =finite measure

(2) () = 1 =probability measure

(3) Ja partition Ay, Ag, - -- with flei = Q and pu(A;) < co = o—finite measure
Theorem ([1, Theorem 1.1.1]). Let u be a measure on (Q,F).

(1) Monotonicity. If A C B then u(A) < u(B).

(#1) Subadditivity. If A C GlAi then pu(A) < io:l,u(Ai).
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(iti) Continuity from below. A, T A (i.e. Ay CAy C -+ and A= G A;) then pu(A4;) T u(A).
i=1

(iv) Continuity from above. A, L A (i.e. Ay DAy D+ and A= ﬁ A;) with u(Ayr) < oo then p(A4;) 4 p(A).
i=1

1=



Definition. Let A be a class of subsets of Q. Then o(A) denotes the smallest c—algebra that contains A.
For any any A, such o(A) exists and is unique: this is by the following:

(i) If F;,i € I are o—fields, then () F; is a o—field.
iel

(ii) If we are given a collection A of subsets of €, then there is a smallest o-field containing .A.

Definition. Borel c—field on R?, denoted by R?, is the smallest o—field containing all open sets.

Theorem ([1, Theorem 1.1.4]). There is a unique measure jx on (R, R) with

u((a,b]) = b—a.

Such measure is called Lebesgue measure.

Distribution and Random Variables

Definition. Let (Q, F) and (S, S) are measurable spaces. A mapping X : Q — S is a measurable map from (Q, F)
to (5,8) if

foral Be€S, X '(B) ={weQ: X(w) € B}eF.
If (5,8) = (R%R?) (where R? = B(R?)) and d > 1 then X is called a random vector. If d = 1, X is called a
random variable.

For convenience, we sometimes replace R? by (R*)¢ = [~00,00]¢ and (R*)? = B((R*)?) and still say random

vector (or random variable).

Example. A trivial but useful example of a random variable is indicator function 14 of a set A € F:

1 weA,
Ly(w) =
0 w¢A.

If X is a random variable, then X induces a probability measure on R.

Definition. The probability measure p on (R, B(R)) defined as u(A) = P(X € A) for all A € B(R) is called the
distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.
Definition. The distribution function F(x) of a random variable X is defined as F(z) = P(X < z).

Theorem ([1, Theorem 1.2.1]). Any distribution function F has the following properties:
(i) F' is nondecreasing.
(i1) nILH;oF(x) =1, nEIPOOF(z) =0.
(iii) F' is right continuous. i.e. liinF(y) = F(z).
ylx

(iv) P(X <x)=F(z—) = BgF(x)
(v) P(X =x)=F(z) — F(z—).

Theorem ([1, Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [1, Theorem 1.2.1], then it is the distribution function of
some random variable. That is, there exists a triple (0, F, P) and a random variable X such that F(z) = P(X < x).



Theorem. If I satisfies (i) (i) (i), then there uniquely exists a probability measure p on (R, B(R)) such that for
all a < b,

p((a,b]) = F(b) — F(a).
Definition. If X and Y induce the same distribution p on (R, B(R)), we say X and Y are equal in distribution.
We write

X<y

Definition. When the distribution function F(z) = P(X < x) has the form F(z) = [*__ f(y)dy, then we say X
has the density function f.

Remark. f is not unique, but unique up to Lebesque measure 0.

Remark. For defining a density function of a given probability measure, we can use the Radon-Nykodym Theorem.
Definition. If F' has a property that there exists f such that F'(x f f(y)dy, we call F is absolutely continuous.

Example ([1, Example 1.2.7]). Uniform distribution on the Cantor set

Let Cy :=[0,1] , and let C,41 be defined by removing middle third open interval of each interval that remains.

For example, C’1 [0,3]U[2,1].

Let C := ﬂ C,, : Cantor set.

n=

LetF() [O ]*)RbyFo() x

1F,(z) 0<z<i
Let Fn+1 : [O, 1] —R by Fn+1($) = % % <zx< %
14+1F.(Br-2) 2<z<1

Then, {F,} are uniformly Cauchy, so it converges to a continuous function F': [0,1] — R
F is constant on each excluded middle interval, so if 3f s.t. [; f(t)dt = F(z), f =0 on C®

This is impossible because Cantor set has measure 0

Example ([1, Example 1.2.9]). Dense discontinuities. Let g1, g2, -+ be an enumeration of the rationals. Let o; > 0
o0

with > a; =1 and let
i=1

Flz) = Lailigoo
Exercise ([1, Exercise 1.2.3]). Show that the number of jumps of distribution is at most countable.
Theorem ([1, Theorem 1.3.1]). Let A be a collection of sets in S such that

(1) {w| X(w)e A} € F forallAc A

(ii) o(A) =

Then X is measurable.

Remark. Note that {{X € B}| B € S} is a o-field. It is the smallest o-field on 2 that makes X a measurable map.
It is called the o-field generated by X and denoted by o(X)

Example ([1, Exercise 1.3.2]). (S,S) = (R, R). Possible choices of A in Theorem 1.3.1 are
{(—o0,2] | z € R}
{(—00,z) | z € R}
{(=00,2] [z € Q}
{(—o00,2) | 2 € Q}



Example ([1, Exercise 1.3.3]). (5,S) = (R, R9). A useful choice of A in Theorem 1.3.1 is
{(a1,b1) X -+ x (ag,bq) | —o00 < a; < b; < oo} (set of open rectangles)

Theorem ([1, Theorem 1.3.4]). If X : (0, F) — (S,S) and f: (S,8) — (T, T) are measurable maps, then f(X) is

measurable.

Theorem. f: (S,S) = (T,7) and suppose S = o(open sets), T = o(open sets). Then, if f is continuous then f

18 measurable.

Theorem ([1, Theorem 1.3.5]). If X;,--- , X, are random variables and f : (R™, R"™) — (R, R) is measurable, then

f(Xq,---, X,) is a random variable.
Theorem ([1, Theorem 1.3.6]). If X1,---, X, are random variables then X1 + --- 4+ X,, is a random variable.
Remark. If X|Y are random variables, then

cX (cis scalar), X +Y, XY, sin(X), X2, ---

are all random variables.

Theorem ([1, Theorem 1.3.7]). infX,,, supX,, limsupX,, liminfX, are random variables.
n n n

n

Integration and Expectation

Let p be a o-finite measure on (2, F).

Definition. For any predicate @Q(w) defined on Q, we say @ is true (u—)almost everywhere (or a.e.) if u({w :
Q(w) is false}) =0

Step 1.

n
Definition. ¢ is a simple function if p(w) = Y a;14, with A; € F
i=1

If ¢ is a simple function and ¢ > 0, we let -

/ pdp = iam(fh)

Step 2.

Definition. If f is measurable and f > 0 then we let

/fdu = sup{/ wdp: 0 <@ < f and ¢ simple}

We define the integral of f over the set E:
/ fdp = /f-lEdu
E

Step 3.

Definition. We say measurable f is integrable if [ |f|du < co. Let

fr@)=f@)v0, and [ (z):=(-f(2)) VO,



where a V b = max(a,b). We define the integral of f by

[ tin= [ rrau= [ dn
we can also define [ fdp if [ fTdu = o0 and [ f~du < oo, or [ fTdu < oo and [ f~dp = oo

Theorem ([1, Theorem 1.4.7]). Suppose f and g are integrable.
(i) If f > 0 a.e. then [ fdu >0
(i) Va € R, [afdp=a [ fdu
(i) [ f+gdu= [ fdu+ [gdu
(iv) If g < f a.e. then [ gdu < [ fdu
(v) If g= [ a.e. then [gdp= [ fdu
(vi) | [ fdp| < [|fldu
Definition. [|f|, = ([ \f|pd,u)1/p for 0 < p < oo

[flloc = nf{M: p({z: [f(z)] > M}) = 0}
Notice that Ve € R, |lefllp = le| - | fllp

Theorem ([1, Theorem 1.5.1]). Jensen’s inequality. Suppose ¢ : R — R is convex, that is, for all X € [0,1] and
z,y € R,
Ap(z) + (1= Ne(y) = Az + (1= Ay).

If 1 is a probability measure, and f and o(f) are integrable, then

o[ 1n) < [ otrrin

Theorem ([1, Theorem 1.5.2]). Holder’s inequality. If p,q € [1,00] with 1/p+1/q =1, then

[ 15 < 171l

Remark. The special case p = ¢ = 2 is called the Cauchy-Schwarz inequality
Definition. We say f,, — f in measure if Ve > 0, li_>m plz: |folz) — f(x)] >} =0
n o0

Theorem ([1, Theorem 1.5.3]). Bounded convergence theorem. Let E be a set with 1(E) < co. Suppose f, vanishes
on EC, |fn(2)| < M, and f, — f in measure. Then

/ fdp = lim / fm

Theorem ([1, Theorem 1.5.5]). Fatou’s lemma. If f, > 0 then

lim inf / Fodp > / (liminffn) dyi.

Theorem (|1, Theorem 1.5.7]). Monotone convergence theorem. If f,, > 0 and f, T f then

/ fudps 1 / fd.

Theorem (|1, Theorem 1.5.8]). Dominated convergence theorem. If f, — f a.e., |fn| < g for all n, and g is

/fndu%/fdu.

integrable, then



Definition. If X is a random variable on (2, F, P), we define its expected value to be E(X) = [, XdP
We also write E(X; A) = [, XdP.

Theorem ([1, Theorem 1.6.4]). Chebyshev’s inequality. Suppose ¢ : R — R has ¢ > 0, let A € R and let

ia =inf{p(y): y € A}
iaP(X € A) SE(p(X); X € A) <EEp(X)

Remark. if p(z) = 2% and A= {z: |z| > a}:

a’>P(|X| > a) <EX2

Several techniques of integration

e The pushforward measure of a transformation 7" is Ty = u(T~(A)). The change of variables formula for

/ fon,u:/ fdTyp.
Q T(Q)

Now, consider a probability space (Q, F, P), and consider a measurable map X : (Q,F) — (5,S) as a

pushforward measures is

transformation. Then the distribution measure px of X is in fact the pushforward measure px(A) = P(X €
A) = P(X~1(A)), and hence the change of variable formula becomes

Ep [f(X)] = / (X (@))dP(w) = /X F(@)dpix ().

()

e For Lebesgue measure A and Riemann integrable function f, f[a b fd\ is the same as the Riemann integral
X ,
I, fx)dx.
o [ fdé, = f(x), where §, is the Dirac-delta measure, i.e., §,(A) = I(z € A).

e For a random variable X > 0,

Br (¥ = [ X(w)ire) = [ /[o,w dtaP(w)

- / dt x dP(w)
{(w,t)eQx[0,00):0<t<X (w)}

:/ / AP (w)dt
0 {we: X (w)>t}

= /OO P(X > t)dt.
0

Product Measures, Fubini’s Theorem

Let {(€%, F;, i) }i; be a sequence of o-finite measure spaces.
Let Q=01 x -+ x Q= {(w1,- ,wn)| wi € Q;}
Let F = F1 X -+ X F, =the o—field generated by A; x --- x A,, where A; € F;

Then there exists a unique measure p on F with

(A x - x Ap) = pa(Ar) - pn(An).

Let (X, A, u1) and (Y, B, u2) be two o-finite measure spaces. Let p = g X po.



Theorem (|1, Theorem 1.7.2|). Fubini’s theorem. Let f be a mesaurable function. If f >0 or [|fldu < oo, then

/X/Yf(x,y)ﬂz(dy)ul(d:c):/xxy fdu:L/)(f(z,y)u1(dx)uz(dy)

Example ([1, Example 1.7.5]). Let X =Y = {1,2,---} with A = B =all subsets and pu; = ps =counting measure.
let

f(m7n) =41

Then,
/){/yf(:c,y)uz(dy)ul(dx):o but /Y/Xf(x,y)m(dx)w(dy)zl.

0 0 0 1

T 0 0 1 -1
n 0 1 -1 0
1 -1 0 0

m —

Example ([1, Example 1.7.6]). Let X = (0,1), Y = (1,00), both equipped with the Borel sets and Lebesque

measure. Let f(z,y) = e™%Y — 2e72%Y

1 e} 1
/ / [z, y)dydz = / g (e — e *)dx > 0,
0o J1 0
1 [eS) 1
/ / flz,y)dydz = / e (e " — e ") dx < 0.
o J1 0

Example ([1, Example 1.7.7]). Let X = (0,1) with .4 =the Borel sets and p; =Lebesque measure. Let Y = (0,1)

with B =all subsets and po =counting measure. Let f(z,y) =1 if z = y and 0 otherwise

| Fammtn) = voraneso [ [ papnldpm ) = 1
[t s =0 torallyso [ fepma(dnm ) = o
X Y JX

Independence (59)

Definition. Let (2, F, P) be probability space. Two events A, B € F are independent (=) if
P(ANB)=P(A)P(B).
Two random variables X and Y are independent if for all C, D € R,
P(XeC, YeD)=P(XeC)P(Y €D).

Two o-fields F; and F» (C F) are independent if for all A € F; and B € F;, A and B are independent.



Remark. An infinite collection of objects (o—fields, random variables, or sets) is said to be independent if every

finite subcollection is.

Definition. o—fields F1,--- , F, are independent if for all A; € F;,

P (ﬁAi) = ﬁP(Ai)7

Random variables X1, -, X,, are independent if for all B; € R,
P (ﬂ{Xi € Bl-}> =[P € By).
i=1 i=1

Sets Aj,---, A, are independent if for all I C {1,--- ,n},
P (ﬂAi> = HP(Ai)
iel i€l

Remark. the definition of independent events is not enough to assume pairwise independent, which is P(4;NA;) =

P(A;)P(Aj), i # j. It is clear that indenendent events are pairwise independent, but converse is not true.

Example. Let X;, X, X3be independent random variables with P(X; = 0) = P(X; = 1) = 1 Let A; = {X, =
X3}, Ay = {X3 =X} and A3 = {X; = X5}. These events are pairwise independent but not independent.

Theorem (|1, Theorem 2.1.7]). Suppose Ai,--- , A, are independent and A; are w-systems. Then o( A1), ,0(Ay)

are independent.

Theorem ([1, Theorem 2.1.8]). (X1, --,X,) are independent if and only if for all x; € (—o0, 0],

Theorem ([1, Theorem 2.1.9]). Suppose F;;, 1 <i < n, 1 < j < m(i) are independent and let G, = o(UF; ;).
J
Then Gy, ---,G, are independent.

Theorem ([1, Theorem 2.1.10]). If for 1 <i < n, 1 < j < m(i), X;; are independent and f; : R™ — R are

measurable then fi(Xi1, -, X m@)) are independent.

Theorem ([1, Theorem 2.1.11]). Suppose X1, ,X,, are independent random variables and X; has distribution

wi. Then (X1, -+, X,) has distribution pg X -+ X fiy,.

Theorem (|1, Theorem 2.1.12|). Suppose X and Y are independent and have distribution p and v. If h : R?> — R
is a measurable function with h > 0 or E|h(X,Y)| < oo, then

BN Y) = [ [ heg)du()iv(y).
In particular, when h(z,y) = f(x)g(y) with f,g >0 or E|f(X)],E|g(Y)] < oo, then

Ep[f(X)g(Y)] = Ep[f(X)]Ep[g(Y)].

Theorem ([1, Theorem 2.1.13]). If X1, -, X,, are independent and have (a) X; > 0 for all i, or E|X;| < oo for



all i, then
E (HX) = HIEXZ-.
=1 =1

Example ([1, Exercise 2.1.14]). It can happen that E(XY) = EX -EY with X and Y are dependent. Suppose joint
distribution of X and Y is given by the following table:

Y
1 -1
X 0 a O
0O b ¢ b
-1 0 a O

where a,b >0, ¢>0and 2a+2b+ c=1. Then E(XY)=0= EXEY but
P(X=1Y=1)=0<ab=P(X =1)P(Y =1).

Definition. Two random variables X and Y with EX?, EY? < oo that have EXY = EXEY are said to be

uncorrelated.

Theorem ([1, Theorem 2.1.15]). If X and Y are independent, F(x) = P(X < ), and G(y) = P(Y <y), then
PX+Y <2) = / F(z - y)dG(y)

The integral on the right-hand side is called the convolution of F and G and is denoted F x G(z)

Theorem ([1, Theorem 2.1.16]). Suppose X with density f and Y with distribution function G are independent.
Then X +Y has density

o) = [ (o~ 9)dG(o)

When Y has density g, the last formula can be written as

o) = [ 1o~ vy
Now, we consider constructing independent random variables.

[1] finite many random variables

Objective : Construct n many independent random variables whose distributions are F;, i =1,--- | n
Let Q =R", F =R" and X;(w) = Xi(w1, -+ ,wn) = w;. Then we let

Pllar,ba) % -+ x [an, b)) = [[ (i (00) = i)

[2] Countably many random variables

Notation. Q = RN = {(wy,ws, -+ )| w; € R}

B(RY) = RN : the smallest o-fields generated by collection of finite dimensional rectangles {w| w; € B;, B; €
R,i=1,--- ,n}n=12---

We want to specify P on (RY, RY) by specifying P on finite dimensional rectangles



Theorem ([1, Theorem 2.1.21]). Kolmogorov’s extension theorem. Suppose we are given probability measures jip,

on (R™,R"™) that are consistent, that is,

Mn+1((a1ab1] X X (anabn] X R) - ,un((alabl} X X (anabn])-
Then, there is a unique probability measure P on (RN, RY) with

Pw: w; € (a;,b], 1 <i<n)=pp((ar,b1] X -+ X (an, by)).

Weak laws of large numbers (& 9] 2¢FH3])

Various modes of convergence

{X,} and X are random variables defined on (2, F, P)

Definition. X,, — X almost surely (a.s.) ( with probability 1(w.p. 1), almost everywhere(a.e.) ) if P{w : X, (w) —
Xw)} =1

Equivalent definition : Ve, 77}i_l}looP{w X (w) = X(w)| <eVn>m}p=1
or Ve, ﬂ}iian{w DX (w) = X(w)| >eVn>m} =0
Definition. X,, — X in probability (&+84%) (in pr, =) if lim P{|X,, — X| > ¢} =0
Theorem. X,, —» X a.5s. — X, Ly x
Remark. X, 2 X #X,, > X a.s.
Definition. X,, -+ X in L,, 0 <p < o0
if nlinéoE(|X" — XP) =0 provided E|X, [P < co, E|X|P < 0.
Theorem. X, — X in L, = X, NS¢
Theorem. (Chebyshev inequality, AJHAX HEA])

FE|X|P
P(X| > o < 22
epP

Remark. X, =+ X # X, — X in L,

Example. Q =[0,1], F = B[0,1], P = Unif[0,1]
X(w) =0, X,(w)=nl(0<w< 1)
Then P{|X,(w) - X(w)| > e} =P{0<w< it =19
But E|X, — X| = E|X,| =1

Theorem. X,, —— X and there ezists a random variables Z s.t.
| Xn| < Z and E|ZP < o0
Then X, — X in Ly.

Remark. If E|X| < oo, then
lim [, |X|dP — 0 whenever P(A,) — 0

n—oo

10



Lo, weak law

Theorem ([1, Theorem 2.2.3]). Let X, Xa, -+ be uncorrelated random variables with EX; = p and Var(X;) <

C < oo Let S, = > X;. Then % — u in Lo and also in probability.
i=1

Theorem (|1, Theorem 2.2.14|). Weak law of large numbers (Z 2] oFH 2], fj=0] oF# ])
Let X1,Xa,--- be i.i.d. random variables with E|X;| < oco. Let S, = X1 + -+ + Xpand let p = EXy.Then
% — 1 1n probability.

Borel-Canteli lemma
Let {A,} be a sequence of subsets of Q.

Definition. limsup A4,, = hm U A, = {w that are in infinitely many A, } = {4, i.0.}

On=m

liminf A,, = lim ﬂ A,, = {w that are in all but finite A4,,} = {4,, a.b.f.}

m~>oo

Theorem ([1, Theorem 2.3.1]). Borel-Canteli lemma (E2-7Fe2] HZZ2])
[ee]
If 3" P(Ay) < oo, then
n=1
P(A, i.0.)=0.
Theorem ([1, Theorem 2.3.2). X,, — X in probability (ZE5% ) if and only if for every subsequence X, (), there

is a further subsequence Xy, that converges almost surely to X.

Theorem ([1, Theorem 2.3.3]). For a given sequence {yn} of a topological space, if any subsequence yy () has a

convergent subsequence Yy (m,) which converges to y, then y, —y

Theorem ([1, Theorem 2.3.4|). If f is continuous and X, — X in probability (BH-&5%), then f(X,) — f(X) in
probability (BF&%). If in addition f is bounded, then Ef(X,) — Ef(X).
n
Theorem (|1, Theorem 2.3.5]). Let {X,,} be i.i.d. random variables with E(X,,) = p and EX{ < c0. If S, = >_ X;
i=1

then "—)u a.s..

Example ([1, Example 2.3.6]). Q = [0,1] 7 = B[0,1], P ~ unif(0,1). Let A, = (0, ), then P(A, i.0.) = 0 but

Theorem ([1, Theorem 2.3.7]). The second Borel Cantelli lemma
If A,, are independent, then > P(A,) = oo implies that

P(4, i.0.)=1.

Theorem ([1, Theorem 2.3.8]). Let X,, be i.i.d. random variables with E|X1| = oo, then P{|X,| > n i.0o} =1. So
if Spn =X14+ -+ X, then

P (thn € (—oo,oo)) =0.

n

Strong Law of Large Numbers (£ 49| 7 3])

Theorem ([1, Theorem 2.4.1]). Let X1, Xa,- -+ be pairwise independent and identically distributed random variables
with E|X1| < co. Let 4 = E(X1) and S, = > X;. Then % — [ a.s..

i=1

11



Theorem (|1, Theorem 2.4.5]). Let X1, Xo,--- be i.i.d. with E‘X;r =00 and EX] <oo. If Sy =X1 +---+ X,

then Sn—" — 00 a.S.

Example ([1, Example 2.4.8]). Empirical distribution functions

Let X1, Xo,-- “4 F, and let

F,(z) = %iI(Xi < x).
i=1

1) For given x, E(F,(z)) = F(x) unbiased
2) For given z, F,,(x) — F(x) consistency
3) asymptotic efficient?

Theorem ([1, Theorem 2.4.9]). Glivenko-Cantellli theorem (Z&]¥lZ-7Fea] & 2])

sup|F,,(z) — F(x)] = 0 a.s. as n — 0.
x

Weak Convergence

We define weak convergence for random variables, but most of the results can be generalized to measurable maps
X0, X (Q,F) = (5,8), where S is equipped with a metric p.

Definition. A sequence of random vectors {X,} converges weakly or converges in distribution (E£X43) to a
limit X (X, = X, X, -5 X, X, -5 X) if

IEP [g(Xn)] - IEP [g(X)] ) for all g€ Cb(R)a

where C(R) is a set of continuous and bounded functions. We analogously define P, 4 Pfor probability measures
{P,} and P, ie., [g(z)dP,(x) — [g(xz)dP(z) for all g € C,(R). We also analogously define F, 4 F (F, =
F, F, = F) for distribution functions {F,,} and F, i.e., [ g(z)dF,(z) — [ g(x)dF(z) for all g € Cy(R).

Theorem ([1, Theorem 3.2.9]). A sequence of distribution function F,, converges weakly to a limit F' if and only if

F,(y) = F(y) for all continuity points of F.

Example ([1, Example 3.2.1]). Let Xy, X5,--- be iid. with P(X; = 1) = P(X; = —1) = 1, and let S, =
X1+ -+ X,,. Then

y 2
Fn(y):P(Sn/\/ﬁgy)—)/ e 2 dx VyGR

1
V27
That is, F,, — N(0,1).

Example ([1, Example 3.2.3]). Let X ~ F and X,, = X + % Then
1
F,(z)=P(X, <z)=F(zx— E) — F(x—).
Hence F,,(z) — F(x) only when F(x) = F(xz—), i.e. only if z is a continuity point of F'. Still, X, 4 X,
Example ([1, Example 3.2.4]). Let X, ~ Geo(p), i.e. P(X, >m) = (1 —p)™~!. Then
P(X, > g):(l—p)% —e ", asp — 0.
p

In words, pX, converges weakly to an exponential distribution.

12



Theorem. Scheffe’s theorem. Let {f,} be a sequence of densities and let foobe a density. If f, — foo pointwisely,
then

lpin = proollry = suplpn(B) = pioo(B)] = 0,
when p, and ps are probability measure corresponding to f, and fs.

|| tn — poolly is called the total variation norm. If u,, — fie in the total variation norm, then p, — oo (i.e.

w .
F,, — F,) However, the converse is not true.

Theorem (|1, Theorem 3.2.8|). (Skorohod representation theorem)
Suppose F, Ny o) Then, there exists a probability space (2, F, P), a sequence of random variables {Y,,} and a
random variables Y on (2, F,P) so that Y, ~ F,, Y ~ F, and Y, =Y a.s..

Theorem ([1, Theorem 3.2.10]). Continuous mapping theorem.
Let g be a measurable function and Dy = {z : g is continuous at x}. If X, % X and P(X € Dy) =0, then
9(Xy) LN g(X). If in addition g is bounded, then Eg(X,) — Eg(X).

Theorem ([1, Theorem 3.2.11]). The following statements are equivalent
(i) X, -5 X
(ii) Yopen set G, liminf P(X,, € G) > P(X € G)
(#1i) Yclosed set G, limsup P(X,, € F') < P(X € F)
(iv) For all set A with P(X € 0A) =0, im P(X,, € A) = P(X € A), where A = clA — intA.

Theorem ([1, Theorem 3.2.12]). Helly’s selection theorem
For every sequence F, of distribution functions, there exists a subsequence Fy, () and a right continuous nonde-

creasing function F so that
Foay(y) — F(y), for all continuity points y of F.

Remark. The limit may not be a distribution function.

Theorem ([1, Theorem 3.2.13]). Every subsequential limit of Helly’s selection theorem is a distribution function if

and only if the sequence F,, is tight, i.e., for all € > 0 there exists M, > 0 so that

limsup{l — F,,(M,) + F,(—M,)} < e.

n—oo

Theorem ([1, Theorem 3.2.14]). If there is a ¢ > 0 so that ¢(x) — oo as |x| = oo and

C= sgp/gp(x)an(x) < o0,

then F, is tight.

Exercise ([1, Theorem 3.2.15]). Lévy metric for cumulative distribution functions is
p(F,G)=inf{e: F(x —e) —e < G(z) < F(x +¢€) + € for all z € R}.

Then p(F,, F) — 0 if and only if F), Ny ) So, convergence in distribution can be thought as convergence in metric

space.

The fact that convergence in distribution comes from a metric immediately implies

13



Theorem ([1, Theorem 3.2.15]). If each subsequence of X, has a further subsequence that converges to X then
d
X, — X.

Characteristic Functions

Definition. The characteristic function (ch.f.) of a random variable X is defined by
©(t) = Ee'X = E(cos(tX)) + iE(sin(tX))

Theorem ([1, Theorem 3.3.1]). All characteristic functions have the following properties:

@e=1
(b) o(—t) = p(t), where z=a—bi if z=a+ bi
(c) le() <1

(d) o(t) is uniformly continuous on (—00,0)
(e) Eeit(aXer) _ eitbgo(at)

Theorem ([1, Theorem 3.3.2]). If X1 and Xs are two independent random variables with the ch.f. ¢1 and @3, then
X1+ Xo has the ch.f. p1(t) - pa(t)

Theorem ([1, Theorem 3.3.11]). Inversion formula.

Let o(t) = fe”xu(da:), where [ is a probability measure. If a < b, then

€ — €

1 T —ita —itb 1
fim o [ S0t = e, + pufa.b),
T it 2

Theorem ([1, Theorem 3.3.14]). If [ |¢(t)|dt < oo, then p has bounded continuous density f so that

_ i —ity
= 27T/e o(t)dt.

Theorem ([1, Theorem 3.3.17]). Let u, be a sequence of probability measures with the ch.f.s {pn}.

(i) If pin = poo, then pn(t) — @oo(t) for all t
(ii) Suppose @, (t) — p(t) pointwisely. If ¢ is continuous at 0, then the associated distributions p, is tight, and

f(y)

converges weakly to the probability measure powith the ch.f. ¢.

Remark. The continuity of ¢ at 0 implies that that u., is a probability measure.

Central Limit Theorem (F4=3%tA 7))

Theorem (|1, Theorem 3.4.1]). Let X1, Xo,--- be i.i.d. withEX; = p and Var(X;) =02 > 0. If S,, = X1+ -+ X,
then

(S, — np)/ (Vo) L N(0,1).

Theorem ([1, Theorem 3.4.10]). Lindeberg-Feller theorem
For each n, let Xy, m, 1 <m < n, be independent random variables with EX,, ,, = 0. Suppose

(i) > EX?%m — 02 >0,
m=1
(i) Ve > 0, Tm 3> E(| X 2[(| X > €)) = 0.
n%Om=1

Then Sy, = Xp1+ -+ Xnn i>J\/'(O,02) as n — 00.

14



Remark. We can prove the first CLT using the Lindeberg-Feller theorem.

Exercise ([1, Exercise 3.4.12]). Lyapunov’s theorem
Let {X,,m} be a triangular array of independent random variables satisfying
(i) E \Xn’m|2+5 < oo for some § > 0

(i) lim > E[Xpm —E|Xpm|[*T /210 = 0, where 52 = Var(S,)
’I’L*}OOle

Then (S, — ES,)//s2 % N(0,1).

Theorem. (Feller)
Let {X,, 1} be an array of independent random variables.

Lindeberg’s condition holds if and only if CLT holds and max o2, /s2 =0 asn — oo.

Theorem ([1, Theorem 3.4.14]). Let X, Xo, -+ be i.i.d. and S, = X1 + -+ X,,. Then there exist a,, b, >0 so
that (S, — an)/bn —2 N(0,1) if and only if

Y P(1X1| > y)/E(1 X% [ X <y) =0

Theorem ([1, Theorem 3.4.17]). Berry-Essen theorem
Let X1, Xo,- -+ be i.i.d. with EX; =0, EX? = 0% and E|X1|®> = p < co. Let F,,(x) be the distribution function
of (X1 4+ -+ X,)/(0y/n) and ®(x) be the standard normal distribution. Then

sup|Fn (7) — ()] < 3p/(0%V/n).

Stochastic Order Notation

The classical order notation should be familiar to you already.
1. We say that a sequence a,, = o(1) if a,, — 0 as n — oo. Similarly, a,, = o(b,,) if a, /b, = o(1).

2. We say that a sequence a,, = O(1) if the sequence is eventually bounded, i.e. for all n large, |a,| < C for some
constant C' > 0. Similarly, a,, = O(by,) if a, /b, = O(1).

3. If a,, = O(by,) and b,, = O(a,,) then we use either a, = O(b,) or a, < b,.
When we are dealing with random variables we use stochastic order notation.
1. We say that X,, = op(1) if for every e > 0, as n — oo
P(|X,| >¢€) — 0,
i.e. X, converges to zero in probability.

2. We say that X,, = Op(1) if for every € > 0 there is a finite C'(¢) > 0 such that, for all n large enough:

P(|X,| > C(e)) <e.

The typical use case: suppose we have X, ..., X,, which are i.i.d. and have finite variance, and we define:
1 n
fo= ; Zl X;.
i—



1. i —p =o0p(1) (Weak Law of Large Number)

2. i —p=0p(1/y/n) (Central Limit Theorem)

Proposition. 1. X, I x implies X, LN X, and this implies X, = O,(1). Also, X, = op(1) implies X,, =

0,(1).
2. (a) Op(1) + Op(1) = Op(1)
(b) Op(1) +0p(1) = Op(1)

(¢) 0p(1) + 0p(1) = 0p(1)
(d) O0p(1) - Op(1) = Op(1)
(¢) Op(1) - 0p(1) = 0p(1)
(f) 0p(1) - 0p(1) = 0p(1)
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