Probability 1

김지수 (Jisu KIM)

확률론 2 (Probability Theory 2), 2025 2nd semester

Probability Spaces

A probability space is a triple (Ω, \mathcal{F}, P) where Ω is a set of "outcomes," \mathcal{F} is a set of "events," and $P : \mathcal{F} \to [0, 1]$ is a function that assigns probabilities to events.

Definition. Let Ω be a set. A nonempty collection \mathcal{F} of subsets of Ω is called algebra (or field) if

- (i) if $A \in \mathcal{F}$ then $\Omega \backslash A \in \mathcal{F}$, and
- (ii) if $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$.

 \mathcal{F} is called a σ -algebra (or σ -field)

- if (i) (ii) and
- (iii) $A_1, A_2, \dots \in \mathcal{F} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$

Example. $\mathcal{F} = \{\phi, \Omega\}$ trivial σ -field

$$\mathcal{F} = 2^{\Omega} = \{A \mid A \subset \Omega\} : \text{power set} \Longrightarrow \sigma - \text{field}$$

Example ([1, Example 1.1.6]). $\Omega = \mathbb{Z} = \{\text{integers}\}, \mathcal{F} = \{A \subset \mathbb{Z} | |A| < \infty \text{ or } |A^c| < \infty\}.$ Then \mathcal{F} is a field but not a σ -field.

Without P, (Ω, \mathcal{F}) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an σ -algebra \mathcal{F} , a function $\mu: \mathcal{F} \to [0, \infty]$ is a measure if

- (i) $\mu(A) \ge \mu(\phi) = 0$ for all $A \in \mathcal{F}$, and
- (ii) For $A_1, A_2, \dots \in \mathcal{F}$ with $A_i \cap A_j = \phi$ for any $i \neq j$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Definition. (1) $\mu(\Omega) < \infty$ \Longrightarrow finite measure

- (2) $\mu(\Omega) = 1 \Longrightarrow \text{probability measure}$
- (3) \exists a partition A_1, A_2, \cdots with $\bigcup_{i=1}^{\infty} A_i = \Omega$ and $\mu(A_i) < \infty \Longrightarrow \sigma$ -finite measure

Theorem ([1, Theorem 1.1.1]). Let μ be a measure on (Ω, \mathcal{F}) .

- (i) Monotonicity. If $A \subset B$ then $\mu(A) \leq \mu(B)$.
- (ii) Subadditivity. If $A \subset \bigcup_{i=1}^{\infty} A_i$ then $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$.
- (iii) Continuity from below. $A_n \uparrow A$ (i.e. $A_1 \subset A_2 \subset \cdots$ and $A = \bigcup_{i=1}^{\infty} A_i$) then $\mu(A_i) \uparrow \mu(A)$.
- (iv) Continuity from above. $A_n \downarrow A$ (i.e. $A_1 \supset A_2 \supset \cdots$ and $A = \bigcap_{i=1}^{\infty} A_i$) with $\mu(A_1) < \infty$ then $\mu(A_i) \downarrow \mu(A)$.

Definition. Let \mathcal{A} be a class of subsets of Ω . Then $\sigma(\mathcal{A})$ denotes the smallest σ -algebra that contains \mathcal{A} .

For any any \mathcal{A} , such $\sigma(\mathcal{A})$ exists and is unique: this is by the following:

- (i) If $\mathcal{F}_i, i \in I$ are σ -fields, then $\bigcap_{i \in I} \mathcal{F}_i$ is a σ -field.
- (ii) If we are given a collection \mathcal{A} of subsets of Ω , then there is a smallest σ -field containing \mathcal{A} .

Definition. Borel σ -field on \mathbb{R}^d , denoted by \mathcal{R}^d , is the smallest σ -field containing all open sets.

Theorem ([1, Theorem 1.1.4]). There is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with

$$\mu((a,b]) = b - a.$$

Such measure is called Lebesgue measure.

Distribution and Random Variables

Definition. Let (Ω, \mathcal{F}) and (S, \mathcal{E}) are measurable spaces. A mapping $X : \Omega \to S$ is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}) if

for all
$$B \in \mathcal{S}$$
, $X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{F}$.

If $(S, S) = (\mathbb{R}^d, \mathcal{R}^d)$ (where $\mathcal{R}^d = \mathcal{B}(\mathbb{R}^d)$) and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

For convenience, we sometimes replace \mathbb{R}^d by $(\mathbb{R}^*)^d = [-\infty, \infty]^d$ and $(\mathcal{R}^*)^d = \mathcal{B}((\mathbb{R}^*)^d)$ and still say random vector (or random variable).

Example. A trivial but useful example of a random variable is indicator function 1_A of a set $A \in \mathcal{F}$:

$$1_A(\omega) = \begin{cases} 1 & \omega \in A, \\ 0 & \omega \notin A. \end{cases}$$

If X is a random variable, then X induces a probability measure on \mathbb{R} .

Definition. The probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined as $\mu(A) = P(X \in A)$ for all $A \in \mathcal{B}(\mathbb{R})$ is called the distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.

Definition. The distribution function F(x) of a random variable X is defined as $F(x) = P(X \le x)$.

Theorem ([1, Theorem 1.2.1]). Any distribution function F has the following properties:

- (i) F is nondecreasing.
- (ii) $\lim_{n \to \infty} F(x) = 1$, $\lim_{n \to -\infty} F(x) = 0$. (iii) F is right continuous. i.e. $\lim_{y \downarrow x} F(y) = F(x)$.
- (iv) $P(X < x) = F(x-) = \lim_{x \to x} \tilde{F}(x)$
- (v) P(X = x) = F(x) F(x-1)

Theorem ([1, Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [1, Theorem 1.2.1], then it is the distribution function of some random variable. That is, there exists a triple (Ω, \mathcal{F}, P) and a random variable X such that $F(x) = P(X \le x)$. **Theorem.** If F satisfies (i) (ii) (iii), then there uniquely exists a probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for all a < b,

$$\mu((a,b]) = F(b) - F(a).$$

Definition. If X and Y induce the same distribution μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we say X and Y are equal in distribution. We write

$$X \stackrel{d}{=} Y$$
.

Definition. When the distribution function $F(x) = P(X \le x)$ has the form $F(x) = \int_{-\infty}^{x} f(y) dy$, then we say X has the density function f.

Remark. f is not unique, but unique up to Lebesque measure 0.

Remark. For defining a density function of a given probability measure, we can use the Radon-Nykodym Theorem.

Definition. If F has a property that there exists f such that $F(x) = \int_{-\infty}^{x} f(y)dy$, we call F is absolutely continuous.

Example ([1, Example 1.2.7]). Uniform distribution on the Cantor set

Let $C_0 := [0,1]$, and let C_{n+1} be defined by removing middle third open interval of each interval that remains. For example, $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$.

Let
$$\mathcal{C}:=\bigcap_{n=0}^{\infty}C_n:$$
 Cantor set.
Let $F_0:[0,1]\to\mathbb{R}$ by $F_0(x)=x$

$$\text{Let }F_{n+1}:[0,1]\to\mathbb{R} \text{ by }F_{n+1}(x)=\begin{cases} \frac{1}{2}F_n(x) & 0\leq x\leq \frac{1}{3}\\ \frac{1}{2} & \frac{1}{3}\leq x\leq \frac{2}{3}\\ \frac{1}{2}+\frac{1}{2}F_n(3x-2) & \frac{2}{3}\leq x\leq 1 \end{cases}$$
Then, $\{F_n\}$ are uniformly Cauchy, so it converges to a continuous function $F:[0,1]\to\mathbb{R}$.

F is constant on each excluded middle interval, so if $\exists f$ s.t. $\int_0^x f(t)dt = F(x)$, f = 0 on \mathcal{C}^C

This is impossible because Cantor set has measure 0

Example ([1, Example 1.2.9]). Dense discontinuities. Let q_1, q_2, \cdots be an enumeration of the rationals. Let $\alpha_i > 0$ with $\sum_{i=1}^{\infty} \alpha_i = 1$ and let

$$F(x) = \sum_{i=1}^{\infty} \alpha_i 1_{[q_i, \infty)}$$

Exercise ([1, Exercise 1.2.3]). Show that the number of jumps of distribution is at most countable.

Theorem ([1, Theorem 1.3.1]). Let \mathcal{A} be a collection of sets in \mathcal{S} such that

(i)
$$\{\omega \mid X(\omega) \in A\} \in \mathcal{F} \text{ for all } A \in \mathcal{A}$$

(ii)
$$\sigma(A) = S$$

Then X is measurable.

Remark. Note that $\{X \in B\} \mid B \in \mathcal{S}\}$ is a σ -field. It is the smallest σ -field on Ω that makes X a measurable map. It is called the σ -field generated by X and denoted by $\sigma(X)$

Example ([1, Exercise 1.3.2]). $(S, S) = (\mathbb{R}, \mathcal{R})$. Possible choices of \mathcal{A} in Theorem 1.3.1 are

$$\mathcal{A} = \begin{cases} \{(-\infty, x] \mid x \in \mathbb{R}\} \\ \{(-\infty, x) \mid x \in \mathbb{R}\} \\ \{(-\infty, x] \mid x \in \mathbb{Q}\} \\ \{(-\infty, x) \mid x \in \mathbb{Q}\} \end{cases}$$

Example ([1, Exercise 1.3.3]). $(S, S) = (\mathbb{R}^d, \mathcal{R}^d)$. A useful choice of A in Theorem 1.3.1 is $\{(a_1, b_1) \times \cdots \times (a_d, b_d) \mid -\infty < a_i < b_i < \infty\}$ (set of open rectangles)

Theorem ([1, Theorem 1.3.4]). If $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $f : (S, \mathcal{S}) \to (T, \mathcal{T})$ are measurable maps, then f(X) is measurable.

Theorem. $f:(S,S)\to (T,T)$ and suppose $S=\sigma(open\ sets),\ T=\sigma(open\ sets).$ Then, if f is continuous then f is measurable.

Theorem ([1, Theorem 1.3.5]). If X_1, \dots, X_n are random variables and $f : (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \dots, X_n)$ is a random variable.

Theorem ([1, Theorem 1.3.6]). If X_1, \dots, X_n are random variables then $X_1 + \dots + X_n$ is a random variable.

Remark. If X, Y are random variables, then

$$cX$$
 (c is scalar), $X \pm Y$, XY , $\sin(X)$, X^2 , ...,

are all random variables.

Theorem ([1, Theorem 1.3.7]). $\inf_{n} X_n$, $\sup_{n} X_n$, $\lim_{n} \sup_{n} X_n$, $\lim_{n} \inf_{n} X_n$ are random variables.

Integration and Expectation

Let μ be a σ -finite measure on (Ω, \mathcal{F}) .

Definition. For any predicate $Q(\omega)$ defined on Ω , we say Q is true $(\mu-)$ almost everywhere (or a.e.) if $\mu(\{\omega: Q(\omega) \text{ is } false\}) = 0$

Step 1.

Definition. φ is a simple function if $\varphi(\omega) = \sum_{i=1}^{n} a_i 1_{A_i}$ with $A_i \in \mathcal{F}$ If φ is a simple function and $\varphi \geq 0$, we let

$$\int \varphi d\mu = \sum_{i=1}^{n} a_i \mu(A_i)$$

Step 2.

Definition. If f is measurable and $f \geq 0$ then we let

$$\int f d\mu = \sup \{ \int \varphi d\mu : \ 0 \le \varphi \le f \text{ and } \varphi \text{ simple} \}$$

We define the integral of f over the set E:

$$\int_E f d\mu \coloneqq \int f \cdot 1_E d\mu$$

Step 3.

Definition. We say measurable f is integrable if $\int |f| d\mu < \infty$. Let

$$f^+(x) := f(x) \lor 0,$$
 and $f^-(x) := (-f(x)) \lor 0,$

where $a \vee b = \max(a, b)$. We define the integral of f by

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

we can also define $\int f d\mu$ if $\int f^+ d\mu = \infty$ and $\int f^- d\mu < \infty$, or $\int f^+ d\mu < \infty$ and $\int f^- d\mu = \infty$

Theorem ([1, Theorem 1.4.7]). Suppose f and g are integrable.

- (i) If $f \ge 0$ a.e. then $\int f d\mu \ge 0$
- (ii) $\forall a \in \mathbb{R}, \int afd\mu = a \int fd\mu$
- (iii) $\int f + g d\mu = \int f d\mu + \int g d\mu$
- (iv) If $g \leq f$ a.e. then $\int g d\mu \leq \int f d\mu$
- (v) If g = f a.e. then $\int g d\mu = \int f d\mu$
- $(vi) \mid \int f d\mu \mid \leq \int |f| d\mu$

Definition. $||f||_p = (\int |f|^p d\mu)^{1/p}$ for 0

 $||f||_{\infty} = \inf\{M: \ \mu(\{x: \ |f(x)| > M\}) = 0\}$

Notice that $\forall c \in \mathbb{R}, \|cf\|_p = |c| \cdot \|f\|_p$

Theorem ([1, Theorem 1.5.1]). *Jensen's inequality. Suppose* $\varphi : \mathbb{R} \to \mathbb{R}$ *is convex, that is, for all* $\lambda \in [0,1]$ *and* $x, y \in \mathbb{R}$,

$$\lambda \varphi(x) + (1 - \lambda)\varphi(y) \ge \varphi(\lambda x + (1 - \lambda)y).$$

If μ is a probability measure, and f and $\varphi(f)$ are integrable, then

$$\varphi\left(\int f d\mu\right) \leq \int \varphi(f) d\mu.$$

Theorem ([1, Theorem 1.5.2]). Holder's inequality. If $p, q \in [1, \infty]$ with 1/p + 1/q = 1, then

$$\int |fg|d\mu \le ||f||_p ||g||_q.$$

Remark. The special case p = q = 2 is called the Cauchy-Schwarz inequality

Definition. We say $f_n \to f$ in measure if $\forall \epsilon > 0$, $\lim_{n \to \infty} \mu\{x : |f_n(x) - f(x)| > \epsilon\} = 0$

Theorem ([1, Theorem 1.5.3]). Bounded convergence theorem. Let E be a set with $\mu(E) < \infty$. Suppose f_n vanishes on E^{\complement} , $|f_n(x)| \leq M$, and $f_n \to f$ in measure. Then

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu.$$

Theorem ([1, Theorem 1.5.5]). Fatou's lemma. If $f_n \geq 0$ then

$$\liminf_{n} \int f_n d\mu \ge \int \left(\liminf_{n} f_n \right) d\mu.$$

Theorem ([1, Theorem 1.5.7]). Monotone convergence theorem. If $f_n \geq 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

Theorem ([1, Theorem 1.5.8]). Dominated convergence theorem. If $f_n \to f$ a.e., $|f_n| \le g$ for all n, and g is integrable, then

$$\int f_n d\mu \to \int f d\mu.$$

Definition. If X is a random variable on (Ω, \mathcal{F}, P) , we define its expected value to be $\mathbb{E}(X) = \int_{\Omega} X dP$. We also write $\mathbb{E}(X; A) = \int_{A} X dP$.

Theorem ([1, Theorem 1.6.4]). Chebyshev's inequality. Suppose $\varphi : \mathbb{R} \to \mathbb{R}$ has $\varphi \geq 0$, let $A \in \mathcal{R}$ and let $i_A = \inf\{\varphi(y) : y \in A\}$

$$i_A P(X \in A) \le \mathbb{E}(\varphi(X); X \in A) \le \mathbb{E}E\varphi(X)$$

Remark. if $\varphi(x) = x^2$ and $A = \{x : |x| \ge a\}$:

$$a^2 P(|X| \ge a) \le \mathbb{E}X^2$$
.

Several techniques of integration

• The pushforward measure of a transformation T is $T_*\mu := \mu(T^{-1}(A))$. The change of variables formula for pushforward measures is

$$\int_{\Omega} f \circ T d\mu = \int_{T(\Omega)} f dT_* \mu.$$

Now, consider a probability space (Ω, \mathcal{F}, P) , and consider a measurable map $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ as a transformation. Then the distribution measure μ_X of X is in fact the pushforward measure $\mu_X(A) = P(X \in A) = P(X^{-1}(A))$, and hence the change of variable formula becomes

$$\mathbb{E}_{P}\left[f(X)\right] = \int_{\Omega} f(X(\omega)) dP(\omega) = \int_{X(\Omega)} f(x) d\mu_{X}(x).$$

- For Lebesgue measure λ and Riemann integrable function f, $\int_{[a,b]} f d\lambda$ is the same as the Riemann integral $\int_a^b f(x) dx$.
- $\int f d\delta_x = f(x)$, where δ_x is the Dirac-delta measure, i.e., $\delta_x(A) = I(x \in A)$.
- For a random variable $X \geq 0$,

$$\mathbb{E}_{P}[X] = \int_{\Omega} X(\omega) dP(\omega) = \int_{\Omega} \int_{[0,X(\omega)]} dt dP(\omega)$$

$$= \int_{\{(\omega,t)\in\Omega\times[0,\infty):0\leq t\leq X(\omega)\}} dt \times dP(\omega)$$

$$= \int_{0}^{\infty} \int_{\{\omega\in\Omega:X(\omega)\geq t\}} dP(\omega) dt$$

$$= \int_{0}^{\infty} P(X\geq t) dt.$$

Product Measures, Fubini's Theorem

Let $\{(\Omega_i, \mathcal{F}_i, \mu_i)\}_{i=1}^n$ be a sequence of σ -finite measure spaces.

Let
$$\Omega = \Omega_1 \times \cdots \times \Omega_n = \{(\omega_1, \cdots, \omega_n) | \omega_i \in \Omega_i\}$$

Let $\mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_n$ =the σ -field generated by $A_1 \times \cdots \times A_n$, where $A_i \in \mathcal{F}_i$

Then there exists a unique measure μ on \mathcal{F} with

$$\mu(A_1 \times \cdots \times A_n) = \mu_1(A_1) \cdots \mu_n(A_n).$$

Let (X, \mathcal{A}, μ_1) and (Y, \mathcal{B}, μ_2) be two σ -finite measure spaces. Let $\mu = \mu_1 \times \mu_2$.

Theorem ([1, Theorem 1.7.2]). Fubini's theorem. Let f be a mesaurable function. If $f \ge 0$ or $\int |f| d\mu < \infty$, then

$$\int_{X} \int_{Y} f(x, y) \mu_{2}(dy) \mu_{1}(dx) = \int_{X \times Y} f d\mu = \int_{Y} \int_{X} f(x, y) \mu_{1}(dx) \mu_{2}(dy)$$

Example ([1, Example 1.7.5]). Let $X = Y = \{1, 2, \dots\}$ with $\mathcal{A} = \mathcal{B}$ =all subsets and $\mu_1 = \mu_2$ =counting measure.

$$f(m,n) = \begin{cases} 1 & m = n \\ -1 & m = n+1 \\ 0 & o.w \end{cases}$$

Then,

Example ([1, Example 1.7.6]). Let X = (0,1), $Y = (1,\infty)$, both equipped with the Borel sets and Lebesque measure. Let $f(x,y) = e^{-xy} - 2e^{-2xy}$

$$\int_0^1 \int_1^\infty f(x,y) dy dx = \int_0^1 x^{-1} (e^{-x} - e^{-2x}) dx > 0,$$
$$\int_0^1 \int_1^\infty f(x,y) dy dx = \int_0^1 x^{-1} (e^{-2x} - e^{-x}) dx < 0.$$

Example ([1, Example 1.7.7]). Let X = (0,1) with \mathcal{A} =the Borel sets and μ_1 =Lebesque measure. Let Y = (0,1) with \mathcal{B} =all subsets and μ_2 =counting measure. Let f(x,y) = 1 if x = y and 0 otherwise

$$\int_{Y} f(x,y)\mu_{2}(dy) = 1 \text{ for all } x \text{ so } \int_{X} \int_{Y} f(x,y)\mu_{2}(dy)\mu_{1}(dx) = 1,$$

$$\int_{X} f(x,y)\mu_{1}(dx) = 0 \text{ for all } y \text{ so } \int_{Y} \int_{X} f(x,y)\mu_{2}(dy)\mu_{1}(dx) = 0.$$

Independence (독립)

Definition. Let (Ω, \mathcal{F}, P) be probability space. Two events $A, B \in \mathcal{F}$ are independent (독립) if

$$P(A \cap B) = P(A)P(B)$$
.

Two random variables X and Y are independent if for all $C, D \in \mathcal{R}$,

$$P(X \in C, Y \in D) = P(X \in C)P(Y \in D).$$

Two σ -fields \mathcal{F}_1 and \mathcal{F}_2 ($\subset \mathcal{F}$) are independent if for all $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$, A and B are independent.

Remark. An infinite collection of objects (σ -fields, random variables, or sets) is said to be independent if every finite subcollection is.

Definition. σ -fields $\mathcal{F}_1, \dots, \mathcal{F}_n$ are independent if for all $A_i \in \mathcal{F}_i$,

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i),$$

Random variables X_1, \dots, X_n are independent if for all $B_i \in \mathcal{R}$,

$$P\left(\bigcap_{i=1}^{n} \{X_i \in B_i\}\right) = \prod_{i=1}^{n} P(X_i \in B_i).$$

Sets A_1, \dots, A_n are independent if for all $I \subset \{1, \dots, n\}$,

$$P\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}P(A_i)$$

Remark. the definition of independent events is not enough to assume pairwise independent, which is $P(A_i \cap A_j) = P(A_i)P(A_j)$, $i \neq j$. It is clear that independent events are pairwise independent, but converse is not true.

Example. Let X_1 , X_2 , X_3 be independent random variables with $P(X_i = 0) = P(X_i = 1) = \frac{1}{2}$ Let $A_1 = \{X_2 = X_3\}$, $A_2 = \{X_3 = X_1\}$ and $A_3 = \{X_1 = X_2\}$. These events are pairwise independent but not independent.

Theorem ([1, Theorem 2.1.7]). Suppose A_1, \dots, A_n are independent and A_i are π -systems. Then $\sigma(A_1), \dots, \sigma(A_n)$ are independent.

Theorem ([1, Theorem 2.1.8]). (X_1, \dots, X_n) are independent if and only if for all $x_i \in (-\infty, \infty]$,

$$P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^{n} P(X_i \le x_i)$$

Theorem ([1, Theorem 2.1.9]). Suppose $\mathcal{F}_{i,j}$, $1 \leq i \leq n$, $1 \leq j \leq m(i)$ are independent and let $\mathcal{G}_i = \sigma(\bigcup_j \mathcal{F}_{i,j})$. Then $\mathcal{G}_1, \dots, \mathcal{G}_n$ are independent.

Theorem ([1, Theorem 2.1.10]). If for $1 \le i \le n$, $1 \le j \le m(i)$, $X_{i,j}$ are independent and $f_i : \mathbb{R}^{m(i)} \to \mathbb{R}$ are measurable then $f_i(X_{i,1}, \dots, X_{i,m(i)})$ are independent.

Theorem ([1, Theorem 2.1.11]). Suppose X_1, \dots, X_n are independent random variables and X_i has distribution μ_i . Then (X_1, \dots, X_n) has distribution $\mu_1 \times \dots \times \mu_n$.

Theorem ([1, Theorem 2.1.12]). Suppose X and Y are independent and have distribution μ and ν . If $h: \mathbb{R}^2 \to \mathbb{R}$ is a measurable function with $h \geq 0$ or $E|h(X,Y)| < \infty$, then

$$\mathbb{E}h(X,Y) = \int \int h(x,y) d\mu(x) d\nu(y).$$

In particular, when h(x,y) = f(x)g(y) with $f,g \ge 0$ or $\mathbb{E}|f(X)|, \mathbb{E}|g(Y)| < \infty$, then

$$\mathbb{E}_P[f(X)g(Y)] = \mathbb{E}_P[f(X)]\mathbb{E}_P[g(Y)].$$

Theorem ([1, Theorem 2.1.13]). If X_1, \dots, X_n are independent and have (a) $X_i \geq 0$ for all i, or $\mathbb{E}|X_i| < \infty$ for

all i, then

$$\mathbb{E}\left(\prod_{i=1}^{n} X_i\right) = \prod_{i=1}^{n} \mathbb{E} X_i.$$

Example ([1, Exercise 2.1.14]). It can happen that $\mathbb{E}(XY) = \mathbb{E}X \cdot \mathbb{E}Y$ with X and Y are dependent. Suppose joint distribution of X and Y is given by the following table:

where a, b > 0, $c \ge 0$ and 2a + 2b + c = 1. Then E(XY) = 0 = EXEY but

$$P(X = 1, Y = 1) = 0 < ab = P(X = 1)P(Y = 1).$$

Definition. Two random variables X and Y with $\mathbb{E}X^2$, $\mathbb{E}Y^2 < \infty$ that have $\mathbb{E}XY = \mathbb{E}X\mathbb{E}Y$ are said to be uncorrelated.

Theorem ([1, Theorem 2.1.15]). If X and Y are independent, $F(x) = P(X \le x)$, and $G(y) = P(Y \le y)$, then

$$P(X + Y \le z) = \int F(z - y)dG(y)$$

The integral on the right-hand side is called the convolution of F and G and is denoted F * G(z)

Theorem ([1, Theorem 2.1.16]). Suppose X with density f and Y with distribution function G are independent. Then X + Y has density

$$h(x) = \int f(x - y)dG(y)$$

When Y has density g, the last formula can be written as

$$h(x) = \int f(x - y)g(y)dy$$

Now, we consider constructing independent random variables.

[1] finite many random variables

Objective: Construct n many independent random variables whose distributions are F_i , $i=1,\dots,n$ Let $\Omega=\mathbb{R}^n$, $\mathcal{F}=\mathcal{R}^n$ and $X_i(\omega)=X_i(\omega_1,\dots,\omega_n)=\omega_i$. Then we let

$$P([a_1, b_1] \times \cdots \times [a_n, b_n]) = \prod_{i=1}^n (F_i(b_i) - F_i(a_i)).$$

[2] Countably many random variables

Notation. $\Omega = \mathbb{R}^{\mathbb{N}} = \{(\omega_1, \omega_2, \cdots) | \omega_i \in \mathbb{R}\}$

 $\mathcal{B}(\mathbb{R}^{\mathbb{N}}) = \mathcal{R}^{\mathbb{N}}$: the smallest σ -fields generated by collection of finite dimensional rectangles $\{\omega | \omega_i \in B_i, B_i \in \mathcal{R}, i = 1, \dots, n\}$ $n = 1, 2, \dots$

We want to specify P on $(\mathbb{R}^{\mathbb{N}}, \mathcal{R}^{\mathbb{N}})$ by specifying P on finite dimensional rectangles

Theorem ([1, Theorem 2.1.21]). Kolmogorov's extension theorem. Suppose we are given probability measures μ_n on $(\mathbb{R}^n, \mathcal{R}^n)$ that are consistent, that is,

$$\mu_{n+1}((a_1,b_1]\times\cdots\times(a_n,b_n]\times\mathbb{R})=\mu_n((a_1,b_1]\times\cdots\times(a_n,b_n]).$$

Then, there is a unique probability measure P on $(\mathbb{R}^{\mathbb{N}}, \mathcal{R}^{\mathbb{N}})$ with

$$P(\omega : \omega_i \in (a_i, b_i], \ 1 \le i \le n) = \mu_n((a_1, b_1] \times \cdots \times (a_n, b_n]).$$

Weak laws of large numbers (큰 수의 약법칙)

Various modes of convergence

 $\{X_n\}$ and X are random variables defined on (Ω, \mathcal{F}, P)

Definition. $X_n \to X$ almost surely (a.s.) (with probability 1(w.p. 1), almost everywhere (a.e.)) if $P\{\omega : X_n(\omega) \to X(\omega)\} = 1$

Equivalent definition :
$$\forall \epsilon$$
, $\lim_{m \to \infty} P\{\omega : |X_n(\omega) - X(\omega)| \le \epsilon \ \forall n \ge m\} = 1$ or $\forall \epsilon$, $\lim_{m \to \infty} P\{\omega : |X_n(\omega) - X(\omega)| > \epsilon \ \forall n \ge m\} = 0$

Definition. $X_n \to X$ in probability (확률수렴) (in pr, $\stackrel{p}{\longrightarrow}$) if $\lim_{n\to\infty} P\{|X_n - X| > \epsilon\} = 0$

Theorem. $X_n \to X$ a.s. $\Longrightarrow X_n \stackrel{p}{\longrightarrow} X$

Remark. $X_n \stackrel{p}{\longrightarrow} X \not\Rightarrow X_n \to X$ a.s.

Definition. $X_n \to X$ in L_p , $0 if <math>\lim_{n \to \infty} E(|X_n - X|^p) = 0$ provided $E|X_n|^p < \infty$, $E|X|^p < \infty$.

Theorem. $X_n \to X$ in $L_p \Longrightarrow X_n \stackrel{p}{\longrightarrow} X$

Theorem. (Chebyshev inequality, 체비셰프 부등식)

$$P(|X| \ge \epsilon) \le \frac{E|X|^p}{\epsilon^p}$$

Remark. $X_n \stackrel{p}{\longrightarrow} X \not\Rightarrow X_n \to X \text{ in } L_p$

Example.
$$\Omega = [0, 1], \ \mathcal{F} = \mathcal{B}[0, 1], \ P = Unif[0, 1]$$

 $X(\omega) = 0, \ X_n(\omega) = nI(0 \le \omega \le \frac{1}{n})$
Then $P\{|X_n(\omega) - X(\omega)| > \epsilon\} = P\{0 \le \omega \le \frac{1}{n}\} = \frac{1}{n} \to 0$
But $\mathbb{E}|X_n - X| = E|X_n| = 1$

Theorem. $X_n \xrightarrow{p} X$ and there exists a random variables Z s.t.

$$|X_n| \le Z \text{ and } \mathbb{E}|Z|^p < \infty$$

Then $X_n \to X \text{ in } L_p$.

Remark. If
$$\mathbb{E}|X| < \infty$$
, then
$$\lim_{n \to \infty} \int_{A_n} |X| dP \to 0 \text{ whenever } P(A_n) \to 0$$

L_2 weak law

Theorem ([1, Theorem 2.2.3]). Let X_1, X_2, \cdots be uncorrelated random variables with $EX_i = \mu$ and $Var(X_i) \leq C < \infty$ Let $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to \mu$ in L_2 and also in probability.

Theorem ([1, Theorem 2.2.14]). Weak law of large numbers (큰 수의 약법칙, 대수의 약법칙) Let X_1, X_2, \cdots be i.i.d. random variables with $E|X_i| < \infty$. Let $S_n = X_1 + \cdots + X_n$ and let $\mu = EX_1$. Then $\frac{S_n}{n} \to \mu$ in probability.

Borel-Canteli lemma

Let $\{A_n\}$ be a sequence of subsets of Ω .

Definition. $\limsup A_n = \lim_{m \to \infty} \bigcup_{n=m}^{\infty} A_n = \{ \omega \text{ that are in infinitely many } A_n \} = \{ A_n \text{ i.o.} \}$

 $\liminf A_n = \lim_{m \to \infty} \bigcap_{n=m}^{\infty} A_n = \{ \omega \text{ that are in all but finite } A_n \} = \{ A_n \text{ a.b.f.} \}$

Theorem ([1, Theorem 2.3.1]). Borel-Canteli lemma (보렐-칸텔리 보조정리)

If
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
, then

$$P(A_n i.o.) = 0.$$

Theorem ([1, Theorem 2.3.2]). $X_n \to X$ in probability (확률수렴) if and only if for every subsequence $X_{n(m)}$, there is a further subsequence $X_{n(m_k)}$ that converges almost surely to X.

Theorem ([1, Theorem 2.3.3]). For a given sequence $\{y_n\}$ of a topological space, if any subsequence $y_{n(m)}$ has a convergent subsequence $y_{n(m_k)}$ which converges to y, then $y_n \to y$

Theorem ([1, Theorem 2.3.4]). If f is continuous and $X_n \to X$ in probability (확률수렴), then $f(X_n) \to f(X)$ in probability (확률수렴). If in addition f is bounded, then $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$.

Theorem ([1, Theorem 2.3.5]). Let $\{X_n\}$ be i.i.d. random variables with $E(X_n) = \mu$ and $EX_1^4 < \infty$. If $S_n = \sum_{i=1}^n X_i$ then $\frac{S_n}{n} \to \mu$ a.s..

Example ([1, Example 2.3.6]). $\Omega = [0,1]$ $\mathcal{F} = \mathcal{B}[0,1]$, $P \sim unif(0,1)$. Let $A_n = (0,\frac{1}{n})$, then $P(A_n \ i.o.) = 0$ but $\sum P(A_n) = \infty$.

Theorem ([1, Theorem 2.3.7]). The second Borel Cantelli lemma If A_n are independent, then $\sum P(A_n) = \infty$ implies that

$$P(A_n \ i.o.) = 1.$$

Theorem ([1, Theorem 2.3.8]). Let X_n be i.i.d. random variables with $E|X_1| = \infty$, then $P\{|X_n| \ge n \text{ i.o}\} = 1$. So if $S_n = X_1 + \cdots + X_n$, then

$$P\left(\lim \frac{S_n}{n} \in (-\infty, \infty)\right) = 0.$$

Strong Law of Large Numbers (큰 수의 강법칙)

Theorem ([1, Theorem 2.4.1]). Let X_1, X_2, \cdots be pairwise independent and identically distributed random variables with $E|X_1| < \infty$. Let $\mu = E(X_1)$ and $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to \mu$ a.s..

Theorem ([1, Theorem 2.4.5]). Let X_1, X_2, \cdots be i.i.d. with $EX_i^+ = \infty$ and $EX_1^- < \infty$. If $S_n = X_1 + \cdots + X_n$ then $\frac{S_n}{n} \to \infty$ a.s.

Example ([1, Example 2.4.8]). Empirical distribution functions

Let $X_1, X_2, \cdots \stackrel{iid}{\sim} F$, and let

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x).$$

- 1) For given x, $E(F_n(x)) = F(x)$ unbiased
- 2) For given $x, F_n(x) \to F(x)$ consistency
- 3) asymptotic efficient?

Theorem ([1, Theorem 2.4.9]). Glivenko-Cantellli theorem (글리벤코-칸텔리 정리)

$$\sup_{x} |F_n(x) - F(x)| \to 0 \ a.s. \ as \ n \to \infty.$$

Weak Convergence

We define weak convergence for random variables, but most of the results can be generalized to measurable maps $X_n, X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$, where S is equipped with a metric ρ .

Definition. A sequence of random vectors $\{X_n\}$ converges weakly or converges in distribution (분포수렴) to a limit X $(X_n \Rightarrow X, X_n \xrightarrow{w} X, X_n \xrightarrow{d} X)$ if

$$\mathbb{E}_P [g(X_n)] \to \mathbb{E}_P [g(X)], \quad \text{for all } g \in C_b(\mathbb{R}),$$

where $C_b(\mathbb{R})$ is a set of continuous and bounded functions. We analogously define $P_n \stackrel{d}{\longrightarrow} P$ for probability measures $\{P_n\}$ and P, i.e., $\int g(x)dP_n(x) \to \int g(x)dP(x)$ for all $g \in C_b(\mathbb{R})$. We also analogously define $F_n \stackrel{d}{\longrightarrow} F$ ($F_n \Rightarrow F$) for distribution functions $\{F_n\}$ and F, i.e., $\int g(x)dF_n(x) \to \int g(x)dF(x)$ for all $g \in C_b(\mathbb{R})$.

Theorem ([1, Theorem 3.2.9]). A sequence of distribution function F_n converges weakly to a limit F if and only if $F_n(y) \to F(y)$ for all continuity points of F.

Example ([1, Example 3.2.1]). Let X_1, X_2, \cdots be i.i.d. with $P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$, and let $S_n = X_1 + \cdots + X_n$. Then

$$F_n(y) = P(S_n/\sqrt{n} \le y) \to \int_{-\infty}^y \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \ \forall y \in \mathbb{R}.$$

That is, $F_n \xrightarrow{w} \mathcal{N}(0,1)$.

Example ([1, Example 3.2.3]). Let $X \sim F$ and $X_n = X + \frac{1}{n}$. Then

$$F_n(x) = P(X_n \le x) = F(x - \frac{1}{n}) \to F(x - 1).$$

Hence $F_n(x) \to F(x)$ only when F(x) = F(x-), i.e. only if x is a continuity point of F. Still, $X_n \stackrel{d}{\longrightarrow} X$.

Example ([1, Example 3.2.4]). Let $X_p \sim Geo(p)$, i.e. $P(X_p \ge m) = (1-p)^{m-1}$. Then

$$P(X_p > \frac{x}{p}) = (1-p)^{\frac{x}{p}} \to e^{-x}, \quad \text{as } p \to 0.$$

In words, pX_p converges weakly to an exponential distribution.

Theorem. Scheffe's theorem. Let $\{f_n\}$ be a sequence of densities and let f_{∞} be a density. If $f_n \to f_{\infty}$ pointwisely, then

$$\|\mu_n - \mu_\infty\|_{TV} := \sup_{B} |\mu_n(B) - \mu_\infty(B)| \to 0,$$

when μ_n and μ_{∞} are probability measure corresponding to f_n and f_{∞} .

 $\|\mu_n - \mu_\infty\|_{TV}$ is called the total variation norm. If $\mu_n \to \mu_\infty$ in the total variation norm, then $\mu_n \xrightarrow{w} \mu_\infty$ (i.e. $F_n \xrightarrow{w} F_\infty$) However, the converse is not true.

Theorem ([1, Theorem 3.2.8]). (Skorohod representation theorem)

Suppose $F_n \xrightarrow{d} F$. Then, there exists a probability space (Ω, \mathcal{F}, P) , a sequence of random variables $\{Y_n\}$ and a random variables Y on (Ω, \mathcal{F}, P) so that $Y_n \sim F_n$, $Y \sim F$, and $Y_n \to Y$ a.s..

Theorem ([1, Theorem 3.2.10]). Continuous mapping theorem.

Let g be a measurable function and $D_g = \{x : g \text{ is continuous at } x\}$. If $X_n \xrightarrow{d} X$ and $P(X \in D_g) = 0$, then $g(X_n) \xrightarrow{d} g(X)$. If in addition g is bounded, then $\mathbb{E}g(X_n) \to \mathbb{E}g(X)$.

Theorem ([1, Theorem 3.2.11]). The following statements are equivalent

- (i) $X_n \stackrel{d}{\longrightarrow} X$
- (ii) $\forall open \ set \ G$, $\liminf P(X_n \in G) \ge P(X \in G)$
- (iii) $\forall closed \ set \ G, \ \limsup P(X_n \in F) \leq P(X \in F)$
- (iv) For all set A with $P(X \in \partial A) = 0$, $\lim P(X_n \in A) = P(X \in A)$, where $\partial A = clA intA$.

Theorem ([1, Theorem 3.2.12]). Helly's selection theorem

For every sequence F_n of distribution functions, there exists a subsequence $F_{n(k)}$ and a right continuous nondecreasing function F so that

$$F_{n(k)}(y) \to F(y)$$
, for all continuity points y of F.

Remark. The limit may not be a distribution function.

Theorem ([1, Theorem 3.2.13]). Every subsequential limit of Helly's selection theorem is a distribution function if and only if the sequence F_n is tight, i.e., for all $\epsilon > 0$ there exists $M_{\epsilon} > 0$ so that

$$\limsup_{n \to \infty} \{1 - F_n(M_{\epsilon}) + F_n(-M_{\epsilon})\} \le \epsilon.$$

Theorem ([1, Theorem 3.2.14]). If there is a $\varphi \geq 0$ so that $\varphi(x) \to \infty$ as $|x| \to \infty$ and

$$C = \sup_{n} \int \varphi(x) dF_n(x) < \infty,$$

then F_n is tight.

Exercise ([1, Theorem 3.2.15]). Lévy metric for cumulative distribution functions is

$$\rho(F,G) = \inf \left\{ \epsilon : F(x-\epsilon) - \epsilon \le G(x) \le F(x+\epsilon) + \epsilon \text{ for all } x \in \mathbb{R} \right\}.$$

Then $\rho(F_n, F) \to 0$ if and only if $F_n \xrightarrow{d} F$. So, convergence in distribution can be thought as convergence in metric space.

The fact that convergence in distribution comes from a metric immediately implies

Theorem ([1, Theorem 3.2.15]). If each subsequence of X_n has a further subsequence that converges to X then $X_n \xrightarrow{d} X$.

Characteristic Functions

Definition. The characteristic function (ch.f.) of a random variable X is defined by

$$\varphi(t) = \mathbb{E}e^{itX} = E(\cos(tX)) + iE(\sin(tX))$$

Theorem ([1, Theorem 3.3.1]). All characteristic functions have the following properties:

- (a) $\varphi(0) = 1$
- (b) $\varphi(-t) = \overline{\varphi(t)}$, where $\overline{z} = a bi$ if z = a + bi
- (c) $|\varphi(t)| \leq 1$
- (d) $\varphi(t)$ is uniformly continuous on $(-\infty, \infty)$
- (e) $\mathbb{E}e^{it(aX+b)} = e^{itb}\varphi(at)$

Theorem ([1, Theorem 3.3.2]). If X_1 and X_2 are two independent random variables with the ch.f. φ_1 and φ_2 , then $X_1 + X_2$ has the ch.f. $\varphi_1(t) \cdot \varphi_2(t)$

Theorem ([1, Theorem 3.3.11]). *Inversion formula*.

Let $\varphi(t) = \int e^{itX} \mu(dx)$, where μ is a probability measure. If a < b, then

$$\lim_{T\to\infty}\frac{1}{2\pi}\int_{-T}^T\frac{e^{-ita}-e^{-itb}}{it}\varphi(t)dt=\mu(a,b)+\frac{1}{2}\mu\{a,b\}.$$

Theorem ([1, Theorem 3.3.14]). If $\int |\varphi(t)| dt < \infty$, then μ has bounded continuous density f so that

$$f(y) = \frac{1}{2\pi} \int e^{-ity} \varphi(t) dt.$$

Theorem ([1, Theorem 3.3.17]). Let μ_n be a sequence of probability measures with the ch.f.s $\{\varphi_n\}$.

- (i) If $\mu_n \Rightarrow \mu_\infty$, then $\varphi_n(t) \to \varphi_\infty(t)$ for all t
- (ii) Suppose $\varphi_n(t) \to \varphi(t)$ pointwisely. If φ is continuous at 0, then the associated distributions μ_n is tight, and converges weakly to the probability measure μ_{∞} with the ch.f. φ .

Remark. The continuity of φ at 0 implies that that μ_{∞} is a probability measure.

Central Limit Theorem (중심극한정리)

Theorem ([1, Theorem 3.4.1]). Let X_1, X_2, \cdots be i.i.d. with $\mathbb{E}X_i = \mu$ and $Var(X_i) = \sigma^2 > 0$. If $S_n = X_1 + \cdots + X_n$, then

$$(S_n - n\mu)/(\sqrt{n}\sigma) \xrightarrow{d} \mathcal{N}(0,1).$$

Theorem ([1, Theorem 3.4.10]). Lindeberg-Feller theorem

For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random variables with $EX_{n,m} = 0$. Suppose

(i)
$$\sum_{m=1}^{n} EX_{n,m}^2 \to \sigma^2 > 0$$
,

(ii)
$$\forall \epsilon > 0$$
, $\lim_{n \to \infty} \sum_{m=1}^{n} E(|X_{n,m}|^2 I(|X_{n,m}| > \epsilon)) = 0$.

Then
$$S_n = X_{n,1} + \dots + X_{n,n} \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$
 as $n \to \infty$.

Remark. We can prove the first CLT using the Lindeberg-Feller theorem.

Exercise ([1, Exercise 3.4.12]). Lyapunov's theorem

Let $\{X_{n,m}\}$ be a triangular array of independent random variables satisfying

(i)
$$\mathbb{E} |X_{n,m}|^{2+\delta} < \infty$$
 for some $\delta > 0$
(ii) $\lim_{n \to \infty} \sum_{m=1}^{n} \mathbb{E} |X_{n,m} - \mathbb{E} |X_{n,m}||^{2+\delta} / s_n^{2+\delta} = 0$, where $s_n^2 = Var(S_n)$

Then $(S_n - \mathbb{E}S_n)/\sqrt{s_n^2} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$.

Theorem. (Feller)

Let $\{X_{n,k}\}$ be an array of independent random variables.

Lindeberg's condition holds if and only if CLT holds and $\max_{1 \le k \le n} \sigma_{nk}^2/s_n^2 \to 0$ as $n \to \infty$.

Theorem ([1, Theorem 3.4.14]). Let X_1, X_2, \cdots be i.i.d. and $S_n = X_1 + \cdots + X_n$. Then there exist $a_n, b_n > 0$ so that $(S_n - a_n)/b_n \xrightarrow{d} \mathcal{N}(0,1)$ if and only if

$$y^2 P(|X_1| > y) / \mathbb{E}(|X_1|^2; |X_1| \le y) \to 0$$

Theorem ([1, Theorem 3.4.17]). Berry-Essen theorem

Let X_1, X_2, \cdots be i.i.d. with $EX_i = 0$, $EX_i^2 = \sigma^2$ and $E|X_1|^3 = \rho < \infty$. Let $F_n(x)$ be the distribution function of $(X_1 + \cdots + X_n)/(\sigma \sqrt{n})$ and $\Phi(x)$ be the standard normal distribution. Then

$$\sup_{x} |F_n(x) - \Phi(x)| \le 3\rho/(\sigma^3 \sqrt{n}).$$

Stochastic Order Notation

The classical order notation should be familiar to you already.

- 1. We say that a sequence $a_n = o(1)$ if $a_n \to 0$ as $n \to \infty$. Similarly, $a_n = o(b_n)$ if $a_n/b_n = o(1)$.
- 2. We say that a sequence $a_n = O(1)$ if the sequence is eventually bounded, i.e. for all n large, $|a_n| \leq C$ for some constant $C \ge 0$. Similarly, $a_n = O(b_n)$ if $a_n/b_n = O(1)$.
- 3. If $a_n = O(b_n)$ and $b_n = O(a_n)$ then we use either $a_n = \Theta(b_n)$ or $a_n \times b_n$.

When we are dealing with random variables we use stochastic order notation.

1. We say that $X_n = o_P(1)$ if for every $\epsilon > 0$, as $n \to \infty$

$$\mathbb{P}\left(|X_n| \ge \epsilon\right) \to 0,$$

i.e. X_n converges to zero in probability.

2. We say that $X_n = O_P(1)$ if for every $\epsilon > 0$ there is a finite $C(\epsilon) > 0$ such that, for all n large enough:

$$\mathbb{P}\left(|X_n| > C(\epsilon)\right) < \epsilon.$$

The typical use case: suppose we have X_1, \ldots, X_n which are i.i.d. and have finite variance, and we define:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- 1. $\hat{\mu} \mu = o_P(1)$ (Weak Law of Large Number)
- 2. $\hat{\mu} \mu = O_P(1/\sqrt{n})$ (Central Limit Theorem)

Proposition. 1. $X_n \stackrel{P}{\longrightarrow} X$ implies $X_n \stackrel{d}{\longrightarrow} X$, and this implies $X_n = O_p(1)$. Also, $X_n = o_p(1)$ implies $X_n = O_p(1)$.

- 2. (a) $O_p(1) + O_p(1) = O_p(1)$
 - (b) $O_p(1) + o_p(1) = O_p(1)$
 - (c) $o_p(1) + o_p(1) = o_p(1)$
 - (d) $O_p(1) \cdot O_p(1) = O_p(1)$
 - (e) $O_p(1) \cdot o_p(1) = o_p(1)$
 - (f) $o_p(1) \cdot o_p(1) = o_p(1)$

References

[1] Rick Durrett. Probability—theory and examples, volume 49 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019. Fifth edition.