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For this lecture note, we use convergence in probability version of convergences of integrals.

Theorem ([1, Exercise 2.3.4]). Fatou’s lemma. Suppose Xn ≥ 0 and Xn → X in probability, then lim infn→∞ EXn ≥
EX.

Theorem ([1, Exercise 2.3.5]). Dominated convergence. Suppose Xn → X in probability and (a) |Xn| ≤ Y with
EY < ∞ or (b) there is a continuous function g with g(x) > 0 for large x with |x|/g(x) → 0 as |x| → ∞ so that
Eg(Xn) ≤ C <∞ for all n. Then EXn → EX.

We will give necessary and sufficient conditions for a martingale to converge in L1. The key to this is the uniform
integrability. To motivate the definition of the uniform integrability, we will see an absolute continuity property of
a integrable random variable.

Lemma ([2]). Let X be an integrable random variable, i.e., a random variable on a probability space (Ω,F , P ) with
E |X| <∞. Then, given ϵ > 0, there exists a δ > 0 such that for F ∈ F , P (F ) < δ implies that E [|X| ;F ] < ϵ.

Proof. If the conclusion is false, then, for some ϵ0 > 0, we can find a sequence {Fn}n∈N ⊂ F such that

P (Fn) < 2−n and E [|X| ;Fn] ≥ ϵ0.

But since |X| 1Fn
→ 0 in probability as n→ ∞, [1, Exercise 2.3.5] implies that

lim
n→∞

E [|X| ;Fn] = lim
n→∞

E [|X1Fn |] = 0.

and we have arrived at the required contradiction.

Corollary ([2]). Suppose that X is an integrable random variable and ϵ > 0. Then there exists M ∈ [0,∞) such
that

E [|X| ; |X| > M ] < ϵ.

Proof. Let δ be as in previous Lemma. Since

MP (|X| > M) ≤ E|X|,

we can choose M such that P (|X| > M) < δ.

This leads to the following definition of the uniformly integrable.

Definition. A collection of integrable random variables {Xi : i ∈ I} is said to be uniformly integrable (U.I.) if

lim
M→∞

(
sup
i∈I

E(|Xi|; |Xi| > M)

)
= 0.
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Remark. If {Xi : i ∈ I} is U.I., then sup
i∈I

E|Xi| <∞. But the converse is not true.

Example. (a) Any finite collection of integrable random variables is uniformly integrable.

(b) A collection of random variables that are dominated by an integrable random variable is uniformly integrable,

i.e., if there exists Y such that |Xi| ≤ Y for all i ∈ I and EY <∞.

Our first result gives an interesting example that shows that uniformly integrable families can be very large.

Theorem ([1, Theorem 4.6.1]). Given a probability space (Ω,F0, P ) and an X ∈ L1, then

{E [X|F ] : F is a σ-field ⊂ F0}

is uniformly integrable.

Proof. If An is a sequence of sets with P (An) → 0 then the dominated convergence theorem ([1, Exercise 2.3.5])
implies

E [|X|;An] = E [|X1An
|] → 0.

From the last result, it follows that if ε > 0, we can pick δ > 0 so that if P (A) ≤ δ then E [|X|;A] ≤ ε. (If not, there
are sets An with P (An) ≤ 1/n and E [|X|;An] > ε, a contradiction.)

Pick M large enough so that E|X|/M ≤ δ. Jensen’s inequality and the definition of conditional expectation
imply

E [|E[X|F ]|; |E[X|F ]| > M ] ≤ E [E [|X||F ] ;E [|X||F ] > M ]

= E [|X|;E [|X||F ] > M ] ,

since {E [|X||F ] > M} ∈ F . Using Chebyshev’s inequality and recalling the definition of M , we have

P{E [|X||F ] > M} ≤ E{E [|X||F ]}/M = E|X|/M ≤ δ.

So, by the choice of δ, we have

E(|E[X|F ]|; |E[X|F ]| > M) ≤ ε for all F .

Since ε was arbitrary, the collection is uniformly integrable.

A common way to check uniform integrability is to use:

Theorem ([1, Theorem 4.6.2]). Let φ ≥ 0 be any function with φ(x)/x→ ∞ as x→ ∞, e.g., φ(x) = xp with p > 1

or φ(x) = x log+ x. If Eφ(|Xi|) ≤ C for all i ∈ I, then {Xi : i ∈ I} is uniformly integrable.

Proof. Let εM = sup{x/φ(x) : x ≥M}. For i ∈ I,

E [|Xi|; |Xi| > M ] ≤ εME [φ(|Xi|); |Xi| > M ] ≤ CεM

and εM → 0 as M → ∞.

The relevance of uniform integrability to convergence in L1 is explained by:
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Theorem ([1, Theorem 4.6.3]). Suppose that E|Xn| <∞ for all n. If Xn → X in probability then the following are
equivalent:

(i) {Xn : n ≥ 0} is uniformly integrable.

(ii) Xn → X in L1.

(iii) E|Xn| → E|X| <∞.

Proof. (i) ⇒ (ii). Let

ϕM (x) =


M if x ≥M,

x if |x| ≤M,

−M if x ≤ −M.

The triangle inequality implies

|Xn −X| ≤ |Xn − ϕM (Xn)|+ |ϕM (Xn)− ϕM (X)|+ |ϕM (X)−X|.

Since |ϕM (Y )− Y | = (|Y | −M)+ ≤ |Y |1(|Y | > M), taking expected value gives

E|Xn −X| ≤ E|ϕM (Xn)− ϕM (X)|+ E [|Xn|; |Xn| > M ] + E [|X|; |X| > M ] .

[1, Theorem 2.3.4] implies that ϕM (Xn) → ϕM (X) in probability as M → ∞, so the first term → 0 by the bounded
convergence theorem [1, Exercise 2.3.5]. If ε > 0 and M is large, uniform integrability implies that the second term
≤ ε. To bound the third term, we observe that uniform integrability implies supE|Xn| < ∞, so Fatou’s lemma [1,
Exercise 2.3.4] implies

E|X| ≤ lim inf
n→∞

E|Xn| <∞,

and by making M larger we can make the third term ≤ ε. Combining the last three facts shows lim supE|Xn−X| ≤
2ε. Since ε is arbitrary, this proves (ii).

(ii) ⇒ (iii). Jensen’s inequality implies

|E|Xn| − E|X|| ≤ E ||Xn| − |X|| ≤ E|Xn −X| → 0.

(iii) ⇒ (i). Let

ψM (x) =


x on [0,M − 1],

0 on [M,∞),

linear on [M − 1,M ].

Then ψM (x) → x as M → ∞, so the dominated convergence theorem implies that if M is large, E|X|−EψM (|X|) ≤
ε/2. As in the first part of the proof, the bounded convergence theorem implies EψM (|Xn|) → EψM (|X|), so using
(iii) we get that if n ≥ n0,

E [|Xn|; |Xn| > M ] ≤ E|Xn| − EψM (|Xn|) ≤ E|X| − EψM (|X|) + ε/2 < ε.

By choosing M larger, we can make E [|Xn|; |Xn| > M ] ≤ ε for 0 ≤ n < n0, so Xn is uniformly integrable.

We are now ready to state the main theorems of this section. We have already done all the work, so the proofs
are short.

Theorem ([1, Theorem 4.6.4]). For a submartingale, the following are equivalent:
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(i) It is uniformly integrable.

(ii) It converges a.s. and in L1.

(iii) It converges in L1.

Proof. (i) ⇒ (ii). Uniform integrability implies supE|Xn| < ∞ so the martingale convergence theorem implies
Xn → X a.s., and [1, Theorem 4.6.3] implies Xn → X in L1.

(ii) ⇒ (iii). Trivial.
(iii) ⇒ (i). Xn → X in L1 implies Xn → X in probability [1, Lemma 2.2.2], so this follows from [1, Theorem

4.6.3].

Before proving the analogue of [1, Theorem 4.6.4] for martingales, we will isolate two parts of the argument that
will be useful later.

Lemma ([1, Lemma 4.6.5]). If integrable random variables Xn → X in L1 then

E[Xn;A] → E[X;A].

Proof.
|EXm1A − EX1A| ≤ E |Xm1A −X1A| ≤ E|Xm −X| → 0.

Lemma ([1, Lemma 4.6.6]). If a martingale Xn → X in L1 then Xn = E[X|Fn].

Proof. The martingale property implies that if m > n, E[Xm|Fn] = Xn, so if A ∈ Fn, E[Xn;A] = E[Xm;A]. [1,
Lemma 4.6.5] implies E[Xm;A] → E[X;A], so we have E[Xn;A] = E[X;A] for all A ∈ Fn. Recalling the definition
of conditional expectation, it follows that Xn = E[X|Fn].

Theorem ([1, Theorem 4.6.7]). For a martingale, the following are equivalent:

(i) It is uniformly integrable.

(ii) It converges a.s. and in L1.

(iii) It converges in L1.

(iv) There is an integrable random variable X so that Xn = E(X|Fn).

Proof. (i) ⇒ (ii). Since martingales are also submartingales, this follows from [1, Theorem 4.6.4].
(ii) ⇒ (iii). Trivial.
(iii) ⇒ (iv). Follows from [1, Lemma 4.6.6].
(iv) ⇒ (i). This follows from [1, Theorem 4.6.1].

The next result is related to [1, Lemma 4.6.6] but goes in the other direction.

Theorem ([1, Theorem 4.6.8]). Lévy’s ’Upward’ Theorem. Suppose Fn ↑ F∞, i.e., Fn is an increasing sequence of
σ-fields and F∞ = σ(∪nFn). As n→ ∞,

E[X|Fn] → E[X|F∞] a.s. and in L1.
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Proof. The first step is to note that if m > n then [1, Theorem 4.1.13] implies

E [E[X|Fm]|Fn] = E[X|Fn],

so Yn = E[X|Fn] is a martingale. [1, Theorem 4.6.1] implies that Yn is uniformly integrable, so [1, Theorem 4.6.7]
implies that Yn converges a.s. and in L1 to a limit Y∞. The definition of Yn and [1, Lemma 4.6.6] imply

E[X|Fn] = Yn = E[Y∞|Fn],

and hence ∫
A

XdP =

∫
A

Y∞dP for all A ∈ Fn.

Since X and Y∞ are integrable, and ∪nFn is a π-system, the π–λ theorem implies that the last result holds for all
A ∈ F∞. Since Y∞ ∈ F∞, it follows that Y∞ = E[X|F∞].

Theorem ([1, Theorem 4.6.9]). Lévy’s 0–1 law. If Fn ↑ F∞ and A ∈ F∞ then

E(1A|Fn) → 1A a.s.

From Chung: “The reader is urged to ponder over the meaning of this result and judge for himself whether it is
obvious or incredible.” We will now argue for the two points of view.

“It is obvious.” 1A ∈ F∞, and Fn ↑ F∞, so our best guess of 1A given the information in Fn should approach
1A (the best guess given F∞).

“It is incredible.” Let X1, X2, . . . be independent and suppose A ∈ T , the tail σ-field. For each n, A is independent
of Fn, so E(1A|Fn) = P (A). As n → ∞, the left-hand side converges to 1A a.s., so P (A) = 1A a.s., and it follows
that P (A) ∈ {0, 1}, i.e., we have proved Kolmogorov’s 0–1 law.
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