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For this lecture note, we use convergence in probability version of convergences of integrals.

Theorem (|1, Exercise 2.3.4]). Fatou’s lemma. Suppose X,, > 0 and X,, — X in probability, then liminf, . EX,, >
EX.

Theorem (|1, Exercise 2.3.5]). Dominated convergence. Suppose X, — X in probability and (a) |X,| <Y with
EY < oo or (b) there is a continuous function g with g(x) > 0 for large x with |z|/g(xz) — 0 as |z| — oo so that
Eg(X,) < C < oo for all n. Then EX,, - EX.

We will give necessary and sufficient conditions for a martingale to converge in L'. The key to this is the uniform
integrability. To motivate the definition of the uniform integrability, we will see an absolute continuity property of

a integrable random variable.

Lemma ([2]). Let X be an integrable random variable, i.e., a random variable on a probability space (2, F, P) with
E|X| < co. Then, given € > 0, there exists a § > 0 such that for F € F, P(F) < ¢ implies that E[|X|; F] < e.

Proof. If the conclusion is false, then, for some ¢y > 0, we can find a sequence {F,, },en C F such that
P(F,) <2™" and E[|X]; F.] > €.
But since |X| 1, — 0 in probability as n — oo, [1, Exercise 2.3.5] implies that

lim E[|X|;F,] = lim E[| X1z |] =0.
n—oo

n—oo
and we have arrived at the required contradiction. O

Corollary ([2]). Suppose that X is an integrable random variable and € > 0. Then there exists M € [0,00) such
that
E[|X];|X]| > M] <e.

Proof. Let 0 be as in previous Lemma. Since
MP (|X| > M) < E|X],

we can choose M such that P (|X| > M) < 4. O

This leads to the following definition of the uniformly integrable.

Definition. A collection of integrable random variables {X; : i € I} is said to be uniformly integrable (U.IL.) if

lim (supE(|Xi|; | X;| > M)) =0.
icl

M—o0



Remark. If {X;: ¢ € I} is U.L, then supE|X;| < oo. But the converse is not true.
iel

Example. (a) Any finite collection of integrable random variables is uniformly integrable.

(b) A collection of random variables that are dominated by an integrable random variable is uniformly integrable,
i.e., if there exists Y such that | X;| <Y for all i € I and EY < oc.

Our first result gives an interesting example that shows that uniformly integrable families can be very large.

Theorem (|1, Theorem 4.6.1]). Given a probability space (Q, Fo, P) and an X € L', then
{E[X|F]: F is ao-field C Fo}

s uniformly integrable.

Proof. If A, is a sequence of sets with P(A,,) — 0 then the dominated convergence theorem ([1, Exercise 2.3.5])
implies
E[|X|;An] =E[|X14,]] — 0.

From the last result, it follows that if £ > 0, we can pick § > 0 so that if P(4) < § then E [|X|; A] < . (If not, there
are sets A, with P(4,) < 1/n and E[|X|; A,] > €, a contradiction.)

Pick M large enough so that E|X|/M < §. Jensen’s inequality and the definition of conditional expectation
imply

E[[E[X]F]; [EX]F]] > M] < E[E[|X]|F];E[|X]|F] > M]
= E[IX[E[X||F] > M],

since {E[|X||F] > M} € F. Using Chebyshev’s inequality and recalling the definition of M, we have
PAE[|X[|F] > M} < E{E [|X[|F]}/M = E|X|/M < 6.
So, by the choice of §, we have
E(EX|F]; |EX|F]| > M) <e  forall F.

Since € was arbitrary, the collection is uniformly integrable. O
A common way to check uniform integrability is to use:

Theorem ([1, Theorem 4.6.2]). Let ¢ > 0 be any function with p(z)/x — 0o as x — 00, e.g., p(x) = xP with p > 1
or o(x) = xlog™ x. If Bo(|X;|) < C for alli € I, then {X; : 4 € I} is uniformly integrable.

Proof. Let ey = sup{z/p(x) : x > M}. For i € I,
E[[Xil; [ Xi| > M] < emE[p(|Xi]); [ Xi| > M] < Cenm

and epy — 0 as M — oo. O

The relevance of uniform integrability to convergence in L' is explained by:



Theorem ([1, Theorem 4.6.3]). Suppose that E|X,| < oo for all n. If X,, — X in probability then the following are

equivalent:
(i) {Xn :n >0} is uniformly integrable.
(ii) X, — X in L.

(iii) E|X,| = E|X| < co.

Proof. (i) = (ii). Let

M ifz> M,
dm(r) =1 if |x] < M,
-M ifzx<-M.

The triangle inequality implies
| X — X| < X — oM (Xo)| + o0 (Xn) — dmr (X)] + [omr (X) — X[
Since | (V) = Y| = (Y| — M)* < |Y|1(]Y| > M), taking expected value gives
E|Xy — X[ < E[pn (Xn) = on (X)| + E [ Xn|; [Xn| > M|+ E[|X];[X] > M].

[1, Theorem 2.3.4] implies that ¢as(X,) = ¢ar(X) in probability as M — oo, so the first term — 0 by the bounded
convergence theorem [1, Exercise 2.3.5]. If ¢ > 0 and M is large, uniform integrability implies that the second term
< e. To bound the third term, we observe that uniform integrability implies sup E|X,,| < oo, so Fatou’s lemma [1,

Exercise 2.3.4] implies
E|X| <liminf E|X,| < oo,
n—oo

and by making M larger we can make the third term < e. Combining the last three facts shows limsup E|X,, — X| <
2e. Since € is arbitrary, this proves (ii).

(ii) = (iii). Jensen’s inequality implies
E[Xn| - EIX]| < E[|Xn] - [X]] < E|[X, — X| = 0.
(iii) = (i). Let
x on [0, M —1],

Ym(r) =40 on [M, ),
linear on [M — 1, M].

Then ¥ps(z) — x as M — oo, so the dominated convergence theorem implies that if M is large, E| X | —Eva (| X]|) <
€/2. As in the first part of the proof, the bounded convergence theorem implies Etpps(| X, |) — Evoas (| X]), so using
(iii) we get that if n > no,

B [|X, s X, ] > M] < E|X,| — Ens (X)) < EIX| — Egpr(|X]) + /2 < c.

By choosing M larger, we can make E [|X,];|X,| > M] < e for 0 <n < ng, so X,, is uniformly integrable. O

We are now ready to state the main theorems of this section. We have already done all the work, so the proofs

are short.

Theorem ([1, Theorem 4.6.4]). For a submartingale, the following are equivalent:



(i) It is uniformly integrable.
(ii) It converges a.s. and in L'.
(iii) It converges in L*.

Proof. (i) = (ii). Uniform integrability implies supE|X,| < oo so the martingale convergence theorem implies
X,, — X as., and |1, Theorem 4.6.3] implies X,, — X in L.

(ii) = (iii). Trivial.

(iii) = (i). X, — X in L' implies X,, — X in probability |1, Lemma 2.2.2], so this follows from [1, Theorem
46.3). O

Before proving the analogue of [1, Theorem 4.6.4] for martingales, we will isolate two parts of the argument that

will be useful later.

Lemma (|1, Lemma 4.6.5]). If integrable random variables X,, — X in L' then
E[X,; A] — E[X; A].

Proof.
[EX 14 —EX14| <E|X,,14 — X14] <E|X,,, — X| = 0.

Lemma (|1, Lemma 4.6.6]). If a martingale X,, — X in L' then X,, = E[X|F,].

Proof. The martingale property implies that if m > n, E[X,,|F,] = X, so if A € F,,, E[X,;; A] = E[X,,; A]. [1,
Lemma 4.6.5] implies E[X,,; A] — E[X; A], so we have E[X,,; A] = E[X; A] for all A € F,,. Recalling the definition
of conditional expectation, it follows that X,, = E[X|F,]. O

Theorem ([1, Theorem 4.6.7]). For a martingale, the following are equivalent:
(i) It is uniformly integrable.
(ii) It converges a.s. and in L'.
(iii) It converges in L.
(iv) There is an integrable random variable X so that X, = E(X|F,).

Proof. (i) = (ii). Since martingales are also submartingales, this follows from [1, Theorem 4.6.4].
(ii) = (iii). Trivial.
(iii) = (iv). Follows from [1, Lemma 4.6.6].
(iv) = (i). This follows from [1, Theorem 4.6.1]. O

The next result is related to [1, Lemma 4.6.6] but goes in the other direction.

Theorem ([1, Theorem 4.6.8]). Lévy’s "Upward’ Theorem. Suppose F, T Foo, i.€., Fp is an increasing sequence of
o-fields and Foo = 0(UpFy). As n — oo,

E[X|F.] = E[X|Fs] a.s. and in L*.



Proof. The first step is to note that if m > n then [1, Theorem 4.1.13] implies

so Y, = E[X|F,] is a martingale. [1, Theorem 4.6.1] implies that Y, is uniformly integrable, so [1, Theorem 4.6.7]
implies that Y,, converges a.s. and in L! to a limit Y... The definition of Y;, and [1, Lemma 4.6.6] imply

E[X|Fn] = Yo = E[Yso | Fal,

and hence
/ XdP:/ Y..dP for all A € F,.
A A

Since X and Y, are integrable, and U, F,, is a m-system, the 7=\ theorem implies that the last result holds for all
A € Fuo. Since Yo, € Foo, it follows that Yoo = E[X|F). O

Theorem ([1, Theorem 4.6.9]). Lévy’s 01 law. If F,, T Foo and A € Foo then
E(1A|]:n) — 14 a.s.

From Chung: “The reader is urged to ponder over the meaning of this result and judge for himself whether it is

obvious or incredible.” We will now argue for the two points of view.

“It is obvious.” 14 € Foo, and F,, T Foo, so our best guess of 14 given the information in F, should approach
14 (the best guess given F).
“It is incredible.” Let X1, X5, ... be independent and suppose A € T, the tail o-field. For each n, A is independent
of F,, so E(14]F,) = P(A). As n — oo, the left-hand side converges to 14 a.s., so P(A) = 14 a.s., and it follows
that P(A) € {0,1}, i.e., we have proved Kolmogorov’s 0-1 law.

References

[1] Rick Durrett. Probability—theory and examples, volume 49 of Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge, 2019. Fifth edition.

[2] David Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press,
Cambridge, 1991.



