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1. Preliminaries



Preliminaries

To make your own model, you need. . .

• Hardware: Computer
• Software: Computing environment
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Preliminaries

To make your own model, you need. . .

• Hardware: (Fast) Computer (possibly with fast GPU)
• Software: (Python) Computing environment (with IDE and

deep learning framework package such as Tensorflow or
PyTorch, possibly with API for GPGPU)
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Preliminaries

Google Colab (https://colab.research.google.com/) provides an
envrionment convinient for machine learning.

5

https://colab.research.google.com/


Preliminaries

• Colab Session is temporary.
• Mount your Google Drive to preserve codes and data.
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Preliminaries

Upload all .ipynb and data files.
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Preliminaries

You should be able to handle basic Python:

1. Data types
2. Basic control flow, Functions and Classes
3. Modules and Packages (Numpy, Matplotlib, Pandas,

Scikit-Learn)
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2. Why do we need DL frameworks?



How do we make deep learning model?

• “Model training” can be understood as finding

θ∗ := argminθEX∼PXℓ(f (X; θ)),

where f (x ; θ) = f θL
L ◦ · · · ◦ f θ2

2 ◦ f θ1
1 (x).

• Sthocastic gradient descent (SGD) update

θk = θk−1 − γk

N∑
i=1

∇θℓ(f (Xi ; θk−1)), Xi
i.i.d∼ PX

can estimate θ∗ for proper γk , f , and ℓ.
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How do we get the gradients?

Backpropagation can derive the analytic gradient

∂ℓ
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Backpropagation example: Numpy
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Can we make some models now?

Deep learning networks need lots of computations. . .
Ref. Canziani et al. “An Analysis of Deep Neural Network Models for Practical
Applications.”
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Why do we need DL frameworks?

DL frameworks provide. . .

• Easy construction of computational graphs
• Automated gradient computing (by backpropagation) for

common operations
• Acceleration with parallel computation (GPGPU)
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GPU accelerates the training

To render 3D images, we need to do:

• Projection of 3D coordinate into 2D surface
• Compute lighting and shading (on each pixel)
• Apply texture to the object (on each pixel)

⇒ Parallelizable operations
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GPU accelerates the training

• GPU can also handle General Purpose computing.
• GPU has slower but more cores than CPU, which make

parallel tasks faster.
• GPGPU relevant API: CUDA (for NVIDA GPU), OpenCL

Ref. Nvidia
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CPU vs GPU Benchmark
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CPU vs GPU Benchmark
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3. DL frameworks



DL frameworks

Source: https://www.slideshare.net/noumfone/deep-learning-
state-of-the-art-2019-mit-by-lex-fridman
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DL frameworks

We will use Tensorflow 2 and PyTorch.

• In Google Colab, TF2, PyTorch is already installed.
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Using GPU on Google Colab

RunTime -> Change Runtime type
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Using GPU on Google Colab
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DL frameworks: Terminology

Tensorflow 2 and PyTorch use simliar concepts.

• Tensor: A coumputation node. Similar with numpy array, but
can be stored on GPU.

• Automatic differentiation: Usually denotes backpropagation
with tensor.

• Tensorflow 2 uses GradientTape
• PyTorch stores gradient in tensor

• Module: A class representing a neural network; may store
Tensors and learnable weights.

22



Backpropagation example: Tensorflow
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Backpropagation example: PyTorch

More examples are in ‘4. Computational_graph and example’
Notebook!
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4. Training a neural network



TensorFlow and Pytorch

5. simple_NN_with_TF_and_Pytorch.ipynb

• TensorFlow
• Module can organize all attributes necessary for defining a

neural network.
• Using Keras, we can skip the implementation of a layer or a

low-level training loop.
• Keras also has useful utilities.

• Pytorch
• nn.Module is similar with tf.Module.
• PyTorchLightning module generate a training loop by defining

a training loss.
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Example

Examples for ‘MNIST’ dataset with Keras and Pytorch.

• ‘6. keras_mnist_classfication.ipynb’
• ‘7. torch_mnist_classification.ipynb’
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Further considerations

• What if the layer we need is not implemented?
• How do we implement customized optimization algorithm?
• What if data are given in individual files (e.g. image)?

Read the tutorials, documentations, and codes of others!
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