
Additive models and Project Pursuit Regression

김지수 (Jisu KIM)

딥러닝의 통계적 이해 (Deep Learning: Statistical Perspective), 2024년 2학기

The lecture note is a minor modification of the lecture notes from Prof. Joong-Ho Won’s “Deep Learning:
Statistical Perspective” and Prof. Yongdai Kim’s “Statistical Machine Learning”, and Prof Larry Wasserman and
Ryan Tibshirani’s “Statistical Machine Learning”. Also, see Section 9.1 and 11.2 from [4] and Section 7.7 from [5].

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rd, so x = (x1, . . . , xd).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x), f ∈ M.

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).
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1.2 Linear Regression
For the regression, we assume the additive noise model

y = f(x) + ϵ, f ∈ M,

Linear Regression Model (선형회귀모형) is that

M = F =

β0 +

d∑
j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =

n∑
i=1

(yi − f(xi))
2

=

n∑
i=1

yi − β0 −
d∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂d) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

d∑
j=1

β̂jxj .

1.3 Notation
• We will define an empirical norm ∥ · ∥n in terms of the training points xi, i = 1, . . . , n, acting on functions
f : Rd → R, by

∥f∥2n =
1

n

n∑
i=1

f2(xi).

This makes sense no matter if the inputs are fixed or random (but in the latter case, it is a random norm)

• When the inputs are considered random, we will write PX for the distribution of X, and we will define the
L2 norm ∥ · ∥2 in terms of PX , acting on functions f : Rd → R, by

∥f∥22 = E[f2(X)] =

∫
f2(x) dPX(x).

So when you see ∥ · ∥2 in use, it is a hint that the inputs are being treated as random

• A quantity of interest will be the (squared) error associated with an estimator f̂ of f0, which can be measured
in either norm:

∥f̂ − f0∥2n or ∥f̂ − f0∥22.
In either case, this is a random quantity (since f̂ is itself random). We will study bounds in probability or in
expectation. The expectation of the errors defined above, in terms of either norm (but more typically the L2

norm) is most properly called the risk; but we will often be a bit loose in terms of our terminology and just
call this the error

2 Introduction
For low dimensions, there are various methods of estimating functions. Examples are Spline and kernel methods.

These methods do not work well for high dimensions due to the curse of dimensionality. We will see how additive
models can avoid the curse of dimensionality, specifically following:

• Generalized Additive Models(일반화가법모형)

• Projection Pursuit Regression(사영추적회귀)
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3 Hölder Spaces and Sobolev Spaces
The class of Lipschitz functions H(1, L) on T ⊂ R is the set of functions g : T → R such that

|g(y)− g(x)| ≤ L|x− y| for all x, y ∈ T.

A differentiable function is Lipschitz if and only if it has bounded derivative. Conversely a Lipschitz function is
differentiable almost everywhere.

Let T ⊂ R and let β be an integer. The Hölder space H(β, L) is the set of functions g : T → R such that g is
ℓ = β − 1 times differentiable and satisfies

|g(ℓ)(y)− g(ℓ)(x)| ≤ L|x− y| for all x, y ∈ T.

(There is an extension to real valued β but we will not need that.) If g ∈ H(β, L) and ℓ = β− 1, then we can define
the Taylor approximation of g at x by

g̃(y) = g(y) + (y − x)g′(x) + · · ·+ (y − x)ℓ

ℓ!
g(ℓ)(x)

and then |g(y)− g̃(y)| ≤ |y − x|β .
The definition for higher dimensions is similar. Let X be a compact subset of Rd. Let β and L be positive

numbers. Given a vector s = (s1, . . . , sd), define |s| = s1 + · · ·+ sd, s! = s1! · · · sd!, xs = xs1
1 · · ·xsd

d and

Ds =
∂s1+···+sd

∂xs1
1 · · · ∂xsd

d

.

Let β be a positive integer. Define the Hölder class

Hd(β, L) =

{
g : |Dsg(x)−Dsg(y)| ≤ L∥x− y∥, for all s such that |s| = β − 1, and all x, y

}
.

For example, if d = 1 and β = 2 this means that

|g′(x)− g′(y)| ≤ L |x− y|, for all x, y.

The most common case is β = 2; roughly speaking, this means that the functions have bounded second derivatives.
Again, if g ∈ Hd(β, L) then g(x) is close to its Taylor series approximation:

|g(u)− gx,β(u)| ≤ L∥u− x∥β (1)

where
gx,β(u) =

∑
|s|≤β

(u− x)s

s!
Dsg(x).

In the common case of β = 2, this means that∣∣∣∣∣p(u)− [p(x) + (x− u)T∇p(x)]

∣∣∣∣∣ ≤ L||x− u||2.

The Sobolev class S1(β, L) on T ⊂ R is the set of β times differentiable functions (technically, it only requires
weak derivatives) g : T → R such that ∫

T

(g(β)(x))2dx ≤ L2.

Again this extends naturally to Rd. Also, there is an extension to non-integer β. It can be shown that if T is
bounded, then Hd(β, L) ⊂ Sd(β, L

′) for appropriate L and L′.
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4 Generalized Additive Models(일반화가법모형)

4.1 Motivation and definition
Computational efficiency and statistical efficiency are both very real concerns as the dimension d grows large, in
nonparametric regression. If you’re trying to fit a kernel, thin-plate spline, or RKHS estimate in > 20 dimensions,
without any other kind of structural constraints, then you’ll probably be in trouble (unless you have a very fast
computer and tons of data).

Recall that the minimax rate over the Hölder class Hd(α,L) is

inf
f̂

sup
f0∈Hd(α,L)

E∥f̂ − f0∥22 ≳ n−2α/(2α+d), (2)

which has an exponentially bad dependence on the dimension d. This is usually called the curse of dimensionality
(though the term apparently originated with [1], who encountered an analogous issue but in a separate context—
dynamic programming).

What can we do? One answer is to change what we’re looking for, and fit estimates with less flexibility in high
dimensions. Think of a linear model in d variables: there is a big difference between this and a fully nonparametric
model in d variables. Is there some middle man that we can consider, that would make sense?

Additive models play the role of this middle man. Instead of considering a full d-dimensional function of the
form

f(x) = f(x(1), . . . , x(d)) (3)

we restrict our attention to functions of the form

f(x) = f1(x(1)) + · · ·+ fd(x(d)). (4)

As each function fj , j = 1, . . . , d is univariate, fitting an estimate of the form (4) is certainly less ambitious than
fitting one of the form (3). On the other hand, the scope of (4) is still big enough that we can capture interesting
(marginal) behavior in high dimensions.

There is a theoretical justification for doing this. It had been known since the 1950s (via the Kolmogorov–Arnold
representation theorem) that any multivariate continuous function f : [0, 1]d → R could be represented as sums and
compositions of univariate functions,

f(x) =

2d∑
i=1

Φi

 d∑
j=1

ϕi,j(x(j))

 .

Unfortunately, though the Kolmogorov–Arnold representation theorem asserts the existence of a function of this
form, it gives no mechanism whereby one could be constructed. Certain constructive proofs exist, but they tend to
require highly complicated (i.e. fractal) functions, and thus are not suitable for modeling approaches. Therefore, the
generalized additive model drops the outer sum, and demands instead that the function belong to a simpler class,

f(x) = Φ

 d∑
j=1

ϕi,j(x(j))

 ,

where Φ is a smooth monotonic function. Writing g for the inverse of Φ, this is traditionally written as

g(f(x)) =

d∑
j=1

fj(x(j)).

When this function is approximating the expectation of some observed quantity, it could be written as

g(E[Y ]) = β0 + f1(x(1)) + · · ·+ fd(x(d)),

which is the standard formulation of a generalized additive model. We consider the case β0 = 0 and g(y) = y for
convenience.

There is also a link to naive-Bayes classification (not covered in this class).
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The choice of estimator of the form (4) need not be regarded as an assumption we make about the true function
f0, just like we don’t always assume that the true model is linear when using linear regression. In many cases, we
fit an additive model because we think it may provide a useful approximation to the truth, and is able to scale well
with the number of dimensions d.

A classic result by [6] encapsulates this idea precisely. He shows that, while it may be difficult to estimate an
arbitrary regression function f0 in multiple dimensions, we can still estimate its best additive approximation f̄add

well. Assuming each component function f̄add
j , j = 1, . . . , d lies in the Hölder class H1(α,L), for constant L > 0,

and we can use an additive model, with each component f̂j , j = 1, . . . , d estimated using an appropriate kth degree
spline, to give

E∥f̂j − f̄add
j ∥22 ≲ n−2α/(2α+1), j = 1, . . . , d.

Hence each component of the best additive approximation f̄add to f0 can be estimated at the optimal univariate
rate. Loosely speaking, though we cannot hope to recover f0 arbitrarily, we can recover its major structure along
the coordinate axes.

4.2 Backfitting
Estimation with additive models is actually very simple; we can just choose our favorite univariate smoother
(i.e., nonparametric estimator), and cycle through estimating each function fj , j = 1, . . . , d individually (like
a block coordinate descent algorithm). Denote the result of running our chosen univariate smoother to regress
Y = (Y1, . . . , Yn) ∈ Rn over the input points Z = (Z1, . . . , Zn) ∈ Rn as

f̂ = Smooth(Z, Y ).

E.g., we might choose Smooth(·, ·) to be a cubic smoothing spline with some fixed value of the tuning parameter λ,
or even with the tuning parameter selected by generalized cross-validation

Once our univariate smoother has been chosen, we initialize f̂1, . . . , f̂d (say, to all to zero) and cycle over the
following steps for j = 1, . . . , d, 1, . . . , d, . . .:

1. define ri = Yi −
∑

ℓ ̸=j f̂l(Xi(l)), i = 1, . . . , n;

2. smooth f̂j = Smooth(x(j), r);

3. center f̂j = f̂j − 1
n

∑n
i=1 f̂j(Xi(j)).

This algorithm is known as backfitting. In last step above, we are removing the mean from each fitted function f̂j ,
j = 1, . . . , d, otherwise the model would not be identifiable. Our final estimate therefore takes the form

f̂(x) = Ȳ + f̂1(x(1)) + · · ·+ f̂(x(d))

where Ȳ = 1
n

∑n
i=1 Yi. [3] provide a very nice exposition on the some of the more practical aspects of backfitting

and additive models.
In many cases, backfitting is equivalent to blockwise coordinate descent performed on a joint optimization

criterion that determines the total additive estimate. E.g., for the additive cubic smoothing spline optimization
problem,

f̂1, . . . , f̂d = argminf1,...,fd

n∑
i=1

(
Yi −

d∑
j=1

fj(xij)

)2

+

d∑
j=1

λj

∫ 1

0

f ′′
j (t)

2 dt,

backfitting is exactly blockwise coordinate descent (after we reparametrize the above to be in finite-dimensional
form, using a natural cubic spline basis).

The beauty of backfitting is that it allows us to think algorithmically, and plug in whatever we want for the
univariate smoothers. This allows for several extensions. One extension: we don’t need to use the same univariate
smoother for each dimension, rather, we could mix and match, choosing Smoothj(·, ·), j = 1, . . . , d to come from
entirely different methods or giving estimates with entirely different structures.

Another extension: to capture interactions, we can perform smoothing over (small) groups of variables instead
of individual variables. For example we could fit a model of the form

f(x) =
∑
j

fj(x(j)) +
∑
j<k

fjk(x(j), x(k)).
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4.3 Error rates
Error rates for additive models are in the simplest form can be described as follows: if the underlying function f0 is
additive, and we place standard assumptions on its component functions, such as f0,j ∈ S1(α,L), j = 1, . . . , d, for
a constant L > 0, a somewhat straightforward argument building on univariate minimax theory gives us the lower
bound

inf
f̂

sup
f0∈⊕d

j=1S1(α,L)

E∥f̂ − f0∥22 ≳ dn−2α/(2α+1).

This is simply d times the univariate minimax rate. (Note that we have been careful to track the role of d here, i.e.,
it is not being treated like a constant.) Also, standard methods like backfitting with univariate smoothing splines
of polynomial order k = 2α− 1, will also match this upper bound in error rate (though the proof to get the sharp
linear dependence on d is a bit trickier).

4.4 Pros and Cons of Generalized Additive Models
• GAMs allow us to fit a non-linear fj to each Xj , so that we can automatically model non-linear relationships

that standard linear regression will miss. This means that we do not need to manually try out many different
transformations on each variable individually.

• The non-linear fits can potentially make more accurate predictions for the response Y .

• Because the model is additive, we can examine the effect of each Xj on Y individually while holding all of
the other variables fixed.

• The smoothness of the function fj for the variable Xj can be summarized via degrees of freedom.

• The main limitation of GAMs is that the model is restricted to be additive. With many variables, important
interactions can be missed. However, as with linear regression, we can manually add interaction terms to the
GAM model by including additional predictors of the form Xj ×Xk. In addition we can add low-dimensional
interaction functions of the form fjk(Xj , Xk) into the model; such terms can be fit using two-dimensional
smoothers such as local regression, or two-dimensional splines.

5 Projection Pursuit Regression(PPR, 사영추적회귀)
Projection Pursuit Regression(PPR,사영추적회귀) is evolved in the domain of semiparametric statistics and smooth-
ing, by [2]. Assume we have an input vector x ∈ Rd, and a target y ∈ Y ⊂ R. The projection pursuit regression
(PPR) model has the form

y = β0 +

M∑
m=1

βmϕm(a⊤mx) + ϵ, ϕm : R → Y.

Sometimes we assume E(ϕm(a⊤mx)) = 0,E(ϕ2
m(a⊤mx)) = 1 for m = 1, . . . ,M. Parameters are: (β0, . . . , βM ;ϕ1, . . . , ϕM ; a1, . . . , aM ).

This is an additive model, but in the derived features a⊤mx rather than the inputs x themselves. For the name “Pro-
jection Pursuit”, “Projection” indicates that x is projected onto the direction vectors a1, . . . , aM to get the lengths
a⊤mx of the projection. “Pursuit” indicates that an optimization technique is used to find “good” direction vectors
a1, . . . , aM . The function ϕm(a⊤m(·)) is called a ridge function. It varies only in the direction defined by am.

6



390 Neural Networks

g(V )

X1
X2

g(V )

X1
X2

FIGURE 11.1. Perspective plots of two ridge functions.
(Left:) g(V ) = 1/[1 + exp(−5(V − 0.5))], where V = (X1 +X2)/

√
2.

(Right:) g(V ) = (V + 0.1) sin(1/(V/3 + 0.1)), where V = X1.

mated along with the directions ωm using some flexible smoothing method
(see below).
The function gm(ωT

mX) is called a ridge function in IRp. It varies only
in the direction defined by the vector ωm. The scalar variable Vm = ωT

mX
is the projection of X onto the unit vector ωm, and we seek ωm so that
the model fits well, hence the name “projection pursuit.” Figure 11.1 shows
some examples of ridge functions. In the example on the left ω=(1/

√
2)(1, 1)T ,

so that the function only varies in the direction X1 +X2. In the example
on the right, ω = (1, 0).

The PPR model (11.1) is very general, since the operation of forming
nonlinear functions of linear combinations generates a surprisingly large
class of models. For example, the product X1 ·X2 can be written as [(X1+
X2)2 − (X1 −X2)2]/4, and higher-order products can be represented simi-
larly.
In fact, if M is taken arbitrarily large, for appropriate choice of gm the

PPR model can approximate any continuous function in IRp arbitrarily
well. Such a class of models is called a universal approximator. However
this generality comes at a price. Interpretation of the fitted model is usually
difficult, because each input enters into the model in a complex and multi-
faceted way. As a result, the PPR model is most useful for prediction, and
not very useful for producing an understandable model for the data. The
M = 1 model, known as the single index model in econometrics, is an
exception. It is slightly more general than the linear regression model, and
offers a similar interpretation.
How do we fit a PPR model, given training data (xi, yi), i = 1, 2, . . . , N?

We seek the approximate minimizers of the error function

N∑

i=1

[
yi −

M∑

m=1

gm(ωT
mxi)

]2
(11.2)

Operation of forming nonlinear functions of linear combinations generates a surprisingly large class of models.

Example. PPR can include interaction terms: Suppose E(Y |x) = x1x2. Then we can represent the regression
function by β1ϕ1(a

⊤
1 x) + β2ϕ2(a

⊤
2 x) where

β1 = β2 = 1/4
a1 = (1, 1)⊤, a2 = (1,−1)⊤

ϕ1(t) = t2, ϕ2(t) = −t2.

PPR model is a universal approximator (covered later). The price is that, interpretation of the fitted model is
usually difficult, because each input enters into the model in a complex and multi-faceted way. PPR model is most
useful for prediction, and not very useful for producing an understandable model for the data.

For the estimation, we have to solve the following optimization problem:

minimizeβ0,...,βM ;ϕ1,...,ϕM ;a1,...,aM

n∑
i=1

(
yi −

(
β0 +

M∑
m=1

βmϕm(a⊤mxi)

))2

.

The optimization is done by Foward-Backward method.

1. Choose Mmin > 0 and choose M > Mmin.

2. Forward stepwise procedure

(a) For k = 1,M

i. Choose ak arbitrary.
ii. Let ri = yi −

∑k−1
l=1 β̂lϕ̂l(a

t
lxi).

iii. Construct ϕ̂k with ri as response and a⊤k x as input.
iv. Let ϕ̂k(t) = ϕ̂k(t)/∥ϕ̂k(t)∥, β̂k = ∥ϕ̂k(t)∥ where ∥ϕ̂k(t)∥2 =

∑n
i=1 ϕ̂

2
k(a

t
kxi)/n.

v. Adjust ak by

â = argmin

n∑
i=1

(ri − β̂kϕ̂k(a
Txi))

2.

vi. Repeat (c)− (e) until converge.

(b) End For

3. Backward stepwise procedure

(a) Among M terms ϕ̂1, . . . , ϕ̂M , delete least significant terms (based on |β̂k|) one by one until Mmin many
terms remain.

4. Model Selection

(a) After Forward stepwise procedure and Backward stepwise procedure, we have M−Mmin+1 many models.
We choose one optimal model by use of various model selection techniques such as AIC, BIC etc.
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