
Approximation for Deep Learning: Going Deep

김지수 (Jisu KIM)

딥러닝의 통계적 이해 (Deep Learning: Statistical Perspective), 2024년 2학기

This lecture note is a combination of Prof. Joong-Ho Won’s “Deep Learning: Statistical Perspective” with other
lecture notes. Main references are:

Tong Zhang, Mathematical Analysis of Machine Learning Algorithms, https://tongzhang-ml.org/lt-book.html
Matus Telgarsky, Deep learning theory lecture notes, https://mjt.cs.illinois.edu/dlt/
Weinan E, Chao Ma, Stephan Wojtowytsch, Lei Wu, Towards a Mathematical Understanding of Neural Network-

Based Machine Learning: what we know and what we don’t, https://arxiv.org/abs/2009.10713/
Antonio Álvarez López, Breaking the curse of dimensionality with Barron spaces, https://dcn.nat.fau.eu/breaking-

the-curse-of-dimensionality-with-barron-spaces/

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rd, so x = (x1, . . . , xd).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

1

https://tongzhang-ml.org/lt-book.html
https://mjt.cs.illinois.edu/dlt/
https://arxiv.org/abs/2009.10713/
https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/
https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/

1.2 Hölder Spaces and Sobolev Spaces
The class of Lipschitz functions H(1, L) on T ⊂ R is the set of functions g : T → R such that

|g(y)− g(x)| ≤ L|x− y| for all x, y ∈ T.

A differentiable function is Lipschitz if and only if it has bounded derivative. Conversely a Lipschitz function is
differentiable almost everywhere.

Let T ⊂ R and let β be an integer. The Hölder space H(β, L) is the set of functions g : T → R such that g is
ℓ = β − 1 times differentiable and satisfies

|g(ℓ)(y)− g(ℓ)(x)| ≤ L|x− y| for all x, y ∈ T.

(There is an extension to real valued β but we will not need that.) If g ∈ H(β, L) and ℓ = β− 1, then we can define
the Taylor approximation of g at x by

g̃(y) = g(y) + (y − x)g′(x) + · · ·+ (y − x)ℓ

ℓ!
g(ℓ)(x)

and then |g(y)− g̃(y)| ≤ |y − x|β .
The definition for higher dimensions is similar. Let X be a compact subset of Rd. Let β and L be positive

numbers. Given a vector s = (s1, . . . , sd), define |s| = s1 + · · ·+ sd, s! = s1! · · · sd!, xs = xs1
1 · · ·xsd

d and

Ds =
∂s1+···+sd

∂xs1
1 · · · ∂xsd

d

.

Let β be a positive integer. Define the Hölder class

Hd(β, L) =

{
g : |Dsg(x)−Dsg(y)| ≤ L∥x− y∥, for all s such that |s| = β − 1, and all x, y

}
.

For example, if d = 1 and β = 2 this means that

|g′(x)− g′(y)| ≤ L |x− y|, for all x, y.

The most common case is β = 2; roughly speaking, this means that the functions have bounded second derivatives.
Again, if g ∈ Hd(β, L) then g(x) is close to its Taylor series approximation:

|g(u)− gx,β(u)| ≤ L∥u− x∥β (1)

where
gx,β(u) =

∑
|s|≤β

(u− x)s

s!
Dsg(x).

In the common case of β = 2, this means that∣∣∣∣∣p(u)− [p(x) + (x− u)T∇p(x)]

∣∣∣∣∣ ≤ L||x− u||2.

The Sobolev class S1(β, L) on T ⊂ R is the set of β times differentiable functions (technically, it only requires
weak derivatives) g : T → R such that ∫

T

(g(β)(x))2dx ≤ L2.

Again this extends naturally to Rd. Also, there is an extension to non-integer β. It can be shown that if T is
bounded, then Hd(β, L) ⊂ Sd(β, L

′) for appropriate L and L′.

2

1.3 Rademacher complexity
Random variables σ1, . . . , σn are called Rademacher random variables if they are independent, identically distributed
and P(σi = 1) = P(σi = −1) = 1/2. Define the Rademacher complexity of F by

Radn(F) = E

(
sup
f∈F

(
1

n

n∑
i=1

σif(Zi)

))
.

Some authors use a slightly different definition, namely,

Radn(F) = E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

σif(Zi)

∣∣∣∣∣
)
.

You can use either one. They lead to essentially the same results.
Intuitively, Radn(F) is large if we can find functions f ∈ F that “look like” random noise, that is, they are highly

correlated with σ1, . . . , σn. Here are some properties of the Rademacher complexity.

Lemma. 1. If F ⊂ G then Radn(F , Zn) ≤ Radn(G, Zn).

2. Let conv(F) denote the convex hull of F . Then Radn(F , Zn) = Radn(conv(F), Zn).

3. For any c ∈ R, Radn(cF , Zn) = |c|Radn(F , Zn).

4. Let g : R → R be such that g(0) = 0 and, |g(y) − g(x)| ≤ L|x − y| for all x, y. Then Radn(g ◦ F , Zn) ≤
2LRadn(F , Zn).

1.4 Two Layer Neural Networks
A two-layer neural network takes an input vector of d variables x = (x1, x2, . . . , xd) and builds a nonlinear function
f(x) to predict the response y ∈ RD. What distinguishes neural networks from other nonlinear methods is the
particular structure of the model:

f(x) = fθ(x) = g

β0 +

m∑
j=1

βjσ(bj + w⊤
j x)

 ,

where x ∈ Rd, bj ∈ R, wj ∈ Rd, β0 ∈ RD, βj ∈ RD. See Figure 1.

• θ = {[β, aj , bj , wj] : j = 1, . . . ,m} denotes the set of model parameters.

• x1, . . . , xd together is called an input layer.

• Aj := σj(x) = σ(bj + w⊤
j x) is called an activation.

• A1, . . . , Am together is called a hidden layer or hidden unit; m is the number of hidden nodes.

• f(x) is called an output layer.

• g is an output function. Examples are:

– softmax gi(x) = exp(xi)/
∑D

l=1 exp(xl) for classification. The softmax function estimates the conditional
probability gi(x) = P (y = i|x).

– identity/linear g(x) = x for regression.
– threshold gi(x) = I(xi > 0)

• σ is called an activation function. Examples are:

– sigmoid σ(x) = 1/(1 + e−x) (see Figure 2)
– rectified linear (ReLU) σ(x) = max {0, x} (see Figure 2)
– identity/linear σ(x) = x

– threshold σ(x) = I(x > 0), threshold gives a direct multi-layer extension of the perceptron (as considered
by Rosenblatt).

Activation functions in hidden layers are typically nonlinear, otherwise the model collapses to a linear model. So
the activations are like derived features - nonlinear transformations of linear combinations of the features.

3

Figure 1: Neural network with a single hidden layer. The hidden layer computes activations Aj = σj(x) that are
nonlinear transformations of linear combinations of the inputs x1, . . . , xd. Hence these Aj are not directly observed.
The functions σj are not fixed in advance, but are learned during the training of the network. The output layer is
a linear model that uses these activations Aj as inputs, resulting in a function f(x). Figure 10.1 from [1].

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

Figure 2: Activation functions. The piecewise-linear ReLU function is popular for its efficiency and computability.
We have scaled it down by a factor of five for ease of comparison. Figure 10.2 from [1].

4

1.5 Multi Layer Neural Networks
Modern neural networks typically have more than one hidden layer, and often many units per layer. In theory
a single hidden layer with a large number of units has the ability to approximate most functions. However, the
learning task of discovering a good solution is made much easier with multiple layers each of modest size.

A deep neural network refers to the model allowing to have more than 1 hidden layers: given input x ∈ Rd and
response y ∈ RD, to predict the response y. K-layer fully connected deep neural network is to build a nonlinear
function f(x) as

• Let m(0) = d and m(K) = D

• Define recursively

x(0) = x, (x ∈ Rm(0)

),

x
(k)
j = σ(b

(k)
j + (w

(k)
j)⊤x(k−1)), w

(k)
j , x(k−1) ∈ Rm(k−1)

, bj ∈ Rm(k)

, k = 1, . . . ,K.

f(x) = g(x(K)).

• θ = {[b(k)j , w
(k)
j] : k = 1, . . . ,K, j = 1, . . . ,m(k)} denotes the set of model parameters.

• m(k) is the number of hidden units at layer k.

2 Notation and Goal
For k = 1, . . . ,K, write b(k) = (b

(k)
1 , . . . , b

(k)

m(k)) ∈ Rm(k)

, and write Wk ∈ Rm(k)×m(k−1)

as i-th row of Wk is (w
(k)
j)⊤,

i.e.,

Wk =


(w

(k)
1)⊤

...
(w

(k)

m(k))
⊤

 ∈ Rm(k)×m(k−1)

,

And for k = 1, . . . ,K − 1, write σk : Rm(k) → Rm(k)

be coordinatewise application of σ, i.e., σk(x1, . . . , xm(k)) =
(σ(x1), . . . , σ(xm(k))), and let σK := g. Now, assume g = id. Then K-layer neural network can be described as

fθ(x) = σK(WKσK−1(WK−1 · · ·σ1(W1x+ b(1)) · · ·+ b(K−1)) + b(K)).

Or inductively,
f
(0)
θ (x) = x, f

(k)
θ (x) = σk(Wkf

(k−1)
θ (x) + b(k−1)), fθ(x) = fK

θ (x).

Hence, for K-layer neural network, the function space we consider is F (K)
σ , with F (0)

σ = {id} and

F (k)
σ =

{
f
(k)
θ : f

(k)
θ (x) = σk(Wkf

(k−1)
θ (x) + b(k−1)), f

(k−1)
θ ∈ F (k−1)

σ

}
.

Suppose the true regression function f∗ is in a function class M, so

y ≈ f∗(x), f∗ ∈ M.

Suppose are using the ℓ2-loss, so we find f among deep neural network class F that minimizes the expected risk
(평균위험),

f0 = argmin
f∈F

E(Y,X)∼P

[
(y − f(x))2

]
.

f0 is the expected risk mimizing function (평균위험최소함수). And we estimate f0 by f̂ using data by minimizes
on the empirical risk (경험위험) on training dataset, so

f̂ = argmin
f∈F

1

n

n∑
i=1

(yi − f(xi))
2.

f̂ is the empirical risk mimizing function (경험위험최소함수). And we set f̃ be the approximation of f̂ by optimization(최
적화); f̃ is the learned function (학습된 함수).

5

Figure 3: Diagram representing the learning procedure, the three main paradigms and their corresponding errors.
Figure 2 from https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/.

So there are three sources of errors: approximation error, generalization error, and optimization error. See
Figure 3.

f∗ − f̃ = f∗ − f0︸ ︷︷ ︸
approximation error

+ f0 − f̂︸ ︷︷ ︸
generalization error

+ f̂ − f̃︸ ︷︷ ︸
optimization error

.

3 Intro: Going Deep
• We have seen that a single hidden layer MLP is sufficient to uniformly approximate continuous functions on

a compact set, and can mitigate the curse of dimensinality for some class of smooth functions.

• What if we use more than one hidden layer? What is the role of the depth in this case?

4 Separating shallow and deep networks

Theorem 1 ([2]). For any K ≥ 2. f = ∆K2+2 is a ReLU network with 3K2 +6 nodes and 2K2 +4 layers, but any
ReLU network g with ≤ 2K nodes and ≤ K layers cannot approximate it:∫ 1

0

|f(x)− g(x)| dx ≥ 1

32
.

Remark 2. (why L1 metric?)
Previously, we used L2 and L∞ to state good upper bounds on approximation; for bad approximation, we want

to argue there is a large region where we fail, not just a few points, and that’s why we use an L1 norm.
To be able to argue that such a large region exists, we don’t just need the hard function f = ∆K2+2 to have

many regions, we need them to be regularly spaced, and not bunch up. In particular, if we replaced ∆ with the
similar function 4x(1− x), then this proof would need to replace 1

32 with something decreasing with K.

Proof plans for Theorem 1:

1. (Shallow networks have low complexity.) First we will upper bound the number of oscillations in ReLU
networks. The key part of the story is that oscillations will grow polynomially in width, but exponentially in
depth.

2. (There exists a regular, high complexity deep network.) Then we will show there exists a function, realized
by a slightly deeper network, which has many oscillations, which are moreover regularly spaced. The need for
regular spacing will be clear at the end of the proof. We have already handled this part of the proof: the hard
function is ∆K2+2.

3. Lastly, we will use a region-counting argument to combine the preceding two facts to prove the theorem. This
step would be easy for the L∞ norm, and takes a bit more effort for the L1 norm.

6

https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/

Figure 4: Figure from https://mjt.cs.illinois.edu/dlt/.

Proceeding with the proof, first we want to argue that shallow networks have low complexity. Our notion of
complexity is simply the number of affine pieces.

Definition 3. For any univariate function f : R → R, let NA(f) denote the number of affine pieces of f : the
minimum cardinality (or ∞) of a partition of R so that f is affine when restricted to each piece.

Lemma 4. Let f : R → R be a ReLU network with L layers of widths (m1, . . . ,mK) with m =
∑

i mi. Let g : R → R
denote the output of some node in layer i as a function of the input. Then the number of affine pieces NA(g) satisfies

NA(g) ≤ 2i
∏
j<i

mj .

Hence

NA(f) ≤
(
2m

K

)K

.

Remark 5. This immediately hints a “power of composition”: we increase the “complexity” multiplicatively rather
than additively.

Remark 6. It is natural and important to wonder if this exponential increase is realized in practice. Preliminary
work reveals that, at least near initialization, the effective number of pieces is much smaller (Hanin and Rolnick
2019).

This completes part 1 of our proof plan, upper bounding the number of affine pieces polynomially in width and
exponentially in depth.

The second part of the proof was to argue that ∆K gives a high complexity, regular function. For this, consider
the ∆ function:

∆(x) = 2Relu(x)− 4Relu(x− 1/2) + 2Relu(x− 1) =


2x, 0 ≤ x ≤ 1/2,

2− 2x, 1/2 ≤ x < 1,

0 otherwise.

When ∆K = ∆ ◦ · · · ◦∆ is considered, ∆K has 2K−1 copies of itself, uniformly shrunk down. In a sense, complexity
has increased exponentially as a function of the the number of nodes and layers (both O(K)). Later, it will matter
that we not only have many copies, but that they are identical (giving uniform spacing).

The third part is a counting argument which ensures the preceding two imply the claimed separation in L1

distance.
The proof proceeds by “counting triangles.”

• Draw the line x 7→ 1/2 (as in the figure). The “triangles” are formed by seeing how this line intersects
f = ∆K2+2. There are 2K

2+1 copies of ∆, which means 2K
2+2 − 1 (half-)triangles since we get two (half-

)triangles for each ∆ but one is lost on the boundary of [0, 1]. Each (half-)triangle has area 1
4 ·

1
2K2+2

= 2−K2−4.

7

https://mjt.cs.illinois.edu/dlt/

• We will keep track of when g passes above and below this line; when it is above, we will count the triangles
below; when it is above, we’ll count the triangles below. Summing the area of these triangles forms a lower
bound on

∫
[0,1]

|f − g|

• Using the earlier lemma, g has NA(g) ≤ (2 · 2K/K)K ≤ 2K
2

.

• Let If :=
{
x ∈ [0, 1] : f(x) = 1

2

}
and Ig :=

{
x ∈ [0, 1] : g(x) = 1

2

}
. Note that

If =
{
(1) · 2−K2−3, (3) · 2−K2−3, . . . , (2K

2+3 − 1) · 2−K2−3
}

has 2K
2+2 points. Enumerate Ig = {t1, . . . , tN} with t1 < · · · < tN , then N ≤ NA(g). Now, define {(lj , uj)}Nj=0

as

l0 = min If , lj = min {t ∈ Ig : t ≥ tj} , for j = 1, . . . , N.

uj = max {t ∈ Ig : t ≤ tj+1} , for j = 0, . . . , N − 1, uN = max If .

Then l0 ≤ u0 ≤ l1 ≤ u1 ≤ · · · ≤ lN ≤ uN holds, and uj−1 and lj can differ at most by 2−K2−2.

• For j = 0, . . . , N , between lj and uj , (lj , uj) ∩ Ig = ∅, and hence g is constantly above 1
2 or below 1

2 . When g

is above 1
2 , (the number of small triangles below 1

2) is lower bounded by 2K
2+2 uj−lj−2−K2−2

2 . When g is below
1
2 , (the number of small triangles above 1

2) is also lower bounded by 2K
2+2 uj−lj−2−K2−2

2 . Hence∫ uj

lj

|f − g| ≥ [number of surviving triangles] · [area of triangle]

≥ 2K
2+1(uj − lj − 2−K2−2) · 2−K2−4 = 2−3(uj − lj − 2−K2−2).

Hence together ∫ 0

0

|f − g| ≥
N∑
j=0

∫ uj

lj

|f − g|

≥ 2−3
N∑
j=0

(uj − lj − 2−K2−2)

= 2−3

uN − l0 −
N∑
j=1

(uj − lj)−N2−K2−2


= 2−3

((
1− 2−K2−2

)
−N2−K2−2 −N2−K2−2

)
= 2−3

(
1− (2N + 1)2−K2−2

)
.

• Now use the relation N ≤ NA(g) ≤ 2K
2

to conclude∫ 0

0

|f − g| ≥ 2−3
(
1− (2K

2+1 + 1)2−K2−2
)

≥ 2−3

(
1− 1

2
− 2−K2−2

)
≥ 1

32
.

5 Uniform approximation by deep networks

Consider the case approximating f : [0, 1]d → R by a ReLU MLP (Multi-Layer Perceptron). If f̂ approximates f ,
we let

∥f̂ − f∥∞ = sup
x∈[0,1]d

|f̂(x)− f(x)|.

We consider K-layer MLP. A single hidden layer MLP corresponds to K = 2.

8

Theorem 7 ([4]). Suppose d, β ∈ N and ϵ ∈ (0, 1). (In fact, β ≥ 1 is enough) Suppose f ∈ Hd(β, 1). Then there is
an K-layer ReLU MLP f̂ such that ∥∥∥f̂ − f

∥∥∥
∞

< ϵ,

with K ≤ c(log(1/ϵ)+1) and at most cϵ−d/β(log(1/ϵ)+1) number of weights and activation units, where c = c(d, β).

Theorem 8 ([4]). Let f ∈ C2([0, 1]d) be a nonlinear function (i.e., not of the form f(x1, . . . , xd) ≡ a0+
∑d

k=1 akxk

on the whole [0, 1]d). Then, for any fixed K, a depth-K ReLU MLP approximating f with error ϵ ∈ (0, 1) must have
at least cϵ−1/[2(K−1)] weights and activation units, with some constant c = c(f,K) > 0.

• Functions in the Hölder space Hd(β, 1) can be ϵ-approximated by a ReLU MLP with depth O(log(1/ϵ)) and
the number of activation units O(ϵ−d/β log(1/ϵ)).

• In contrast, a nonlinear function from C2([0, 1]d) cannot be ϵ-approximated by a ReLU MLP of fixed depth
K with the number of units less than Ω(ϵ−1/[2(K−1)]).

• Hd(β, 1) ⊂ C2([0, 1]d) if β > 2. In this case, in terms of the required number of activation units, unbounded-
depth approximation of functions in Hd(β, 1) is asymptotically strictly more efficient than approximations
with a fixed depth L when

d

β
<

1

2(K − 1)
.

which is true if β ≫ d, i.e., the target function is smooth enough.

• The efficiency of depth is even more pronounced for very smooth functions such as polynomials, which can be
implemented by deep networks using only O(log(1/ϵ)) units.

6 Approximating x2

We in particular look at x2. We will have something like following:

Theorem 9 ([4]). The function f(x) = x2 on [0, 1] can be approximated with any error ϵ > 0 by a ReLU network
having the depth and the number of weights and computation units O(log(1/ϵ)).

Why x2?

• Why it should be easy: because x2 =
∫∞
0

2σ(x− b)db, so we need only to uniformly place ReLUs.

– We’ll use an approximate construction due to (Yarotsky 2016). It will need only poly log poly log(1/ϵ)
nodes and depth to ϵ-close.

– By contrast, our shallow univariate approximation theorems needed 1/ϵ nodes.

• Why we care: with x2, polarization gives us multiplication:

xy =
1

2

(
(x+ y)2 − x2 − y2

)
.

From that, we get monomials, polynomials, Taylor expansions.

Define Si :=
(

0
2i ,

1
2i , . . . ,

2i

2i

)
; let hi be the linear interpolation of x2 on Si. See Figure 5.

Then:

• hi = hi+1 on Si.

• For x ∈ Si+1\Si, defining ϵ = 2−i−1,

hi(x)− hi+1(x) =
1

2
(hi(x− ϵ) + hi(x+ ϵ))− hi+1(x))

=
1

2

(
(x− ϵ)2 + (x+ ϵ)2

)
− x2 = ϵ2.

Key point: no dependence on x.

9

Figure 5: Figure from https://mjt.cs.illinois.edu/dlt/.

Figure 6: Figure from https://mjt.cs.illinois.edu/dlt/.

• For any x ∈ Si+1,

hi+1(x) = hi(x)−
1

4i+1
1(x ∈ Si+1\Si).

• Since hi+1 linearly interpolates, then hi+1 − hi must also linearly interpolate. See Figure 6. The linear inter-
polation of 1[x ∈ Si+1\Si] is ∆i+1. Thus

hi+1 = hi −
∆i+1

4i+1
.

• Since h0(x) = x, then hi(x) = x−
∑i

j=1
∆j(x)
4j .

Theorem 10 ([4]). 1. hi is the piecewise-affine interpolation of x2 along [0, 1] with interpolation points Si.

2. hi can be written as a ReLU network consisting of 2i layers and 3i nodes using “skip connections,” or a pure
ReLU network with 2i layers and 4i nodes.

3. supx∈[0,1]

∣∣hi(x)− x2
∣∣ ≤ 4−i−1.

4. Any ReLU network f with ≤ K layers and N nodes satisfies∫
[0,1]

(f(x)− x2)2dx ≥ 1

5760(2N/K)4K
.

From squaring we can get many other things (still with O (log(1/ϵ)) depth and size.

• Multiplication (via “polarization”):

(x, y) 7→ xy =
1

2

(
(x+ y)2 − x2 − y2

)
.

• Multiplications gives polynomials.

• 1
x and rational functions ([3])

• Functions with “nice Taylor expansions” (Sobolev spaces) (Yarotsky 2016); though now we’ll need size bigger
than log

(
1
ϵ

)
.

10

https://mjt.cs.illinois.edu/dlt/
https://mjt.cs.illinois.edu/dlt/

References
[1] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning—

with applications in R. Springer Texts in Statistics. Springer, New York, [2021] ©2021. Second edition [of
3100153].

[2] Matus Telgarsky. Benefits of depth in neural networks. CoRR, abs/1602.04485, 2016.

[3] Matus Telgarsky. Neural networks and rational functions. CoRR, abs/1706.03301, 2017.

[4] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–114, 10
2017.

11

	Review
	Basic Model for Supervised Learning
	Hölder Spaces and Sobolev Spaces
	Rademacher complexity
	Two Layer Neural Networks
	Multi Layer Neural Networks

	Notation and Goal
	Intro: Going Deep
	Separating shallow and deep networks
	Uniform approximation by deep networks
	Approximating x2

