
Deep Learning Framework

김지수 (Jisu KIM)

딥러닝의 통계적 이해 (Deep Learning: Statistical Perspective), 2024년 2학기

This lecture note is a a minor modification of the lecture notes from Prof. Joong-Ho Won’s “Deep Learning:
Statistical Perspective”. Also, see Section 11 from [1] and Section 10 from [2].

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rp, so x = (x1, . . . , xp).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functionsM. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different fromM; F can be smaller thenM.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

1

1.2 Linear Regression
From the additive noise model

y = f(x) + ϵ, f ∈M,

Linear Regression Model (선형회귀모형) is that

M = F =

β0 +

p∑
j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =

n∑
i=1

(yi − f(xi))
2

=

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂p) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

p∑
j=1

β̂jxj .

2 Introduction
• Neural networks became popular in the 1980s. Lots of successes, hype, and great conferences: NeurIPS,

Snowbird.

• Then along came SVMs, Random Forests and Boosting in the 1990s, and Neural Networks took a back seat.

• Re-emerged around 2010 as Deep Learning. By 2020s very dominant and successful.

• Part of success due to vast improvements in computing power, larger training sets, and software: Tensorflow
and PyTorch

• Much of the credit goes to three pioneers and their students: Yann LeCun, Geoffrey Hinton and Yoshua
Bengio, who received the 2019 ACM Turing Award for their work in Neural Networks.

3 Multi Layer Nueral Networks

3.1 Two Layer Neural Networks
A two-layer neural network takes an input vector of d variables x = (x1, x2, . . . , xp) and builds a nonlinear function
f(x) to predict the response y ∈ RD. What distinguishes neural networks from other nonlinear methods is the
particular structure of the model:

f(x) = fθ(x) = g

β0 +

M∑
j=1

βjσ(bj + w⊤
j x)

 ,

where x ∈ Rp, bj ∈ R, wj ∈ Rp, β0 ∈ RD, βj ∈ RD. See Figure 1.

• θ = {[β, aj , bj , wj] : j = 1, . . . ,M} denotes the set of model parameters.

• x1, . . . , xp together is called an input layer.

2

Figure 1: Neural network with a single hidden layer. The hidden layer computes activations Aj = σj(x) that are
nonlinear transformations of linear combinations of the inputs x1, . . . , xp. Hence these Aj are not directly observed.
The functions σj are not fixed in advance, but are learned during the training of the network. The output layer is
a linear model that uses these activations Aj as inputs, resulting in a function f(x). Figure 10.1 from [2].

• Aj := σj(x) = σ(bj + w⊤
j x) is called an activation.

• A1, . . . , AM together is called a hidden layer or hidden unit; M is the number of hidden nodes.

• f(x) is called an output layer.

• g is an output function. Examples are:

– softmax gi(x) = exp(xi)/
∑D

l=1 exp(xl) for classification. The softmax function estimates the conditional
probability gi(x) = P (y = i|x).

– identity/linear g(x) = x for regression.

– threshold gi(x) = I(xi > 0)

• σ is called an activation function. Examples are:

– sigmoid σ(x) = 1/(1 + e−x) (see Figure 2)

– rectified linear (ReLU) σ(x) = max {0, x} (see Figure 2)

– identity/linear σ(x) = x

– threshold σ(x) = I(x > 0), threshold gives a direct multi-layer extension of the perceptron (as considered
by Rosenblatt).

Activation functions in hidden layers are typically nonlinear, otherwise the model collapses to a linear model. So
the activations are like derived features - nonlinear transformations of linear combinations of the features.

3.2 Multi Layer Neural Networks
Modern neural networks typically have more than one hidden layer, and often many units per layer. In theory
a single hidden layer with a large number of units has the ability to approximate most functions. However, the
learning task of discovering a good solution is made much easier with multiple layers each of modest size.

A deep neural network refers to the model allowing to have more than 1 hidden layers: given input x ∈ Rp and
response y ∈ RD, to predict the response y. K-layer fully connected deep neural network is to build a nonlinear
function f(x) as

• Let m(0) = p and m(K) = D

3

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

Figure 2: Activation functions. The piecewise-linear ReLU function is popular for its efficiency and computability.
We have scaled it down by a factor of five for ease of comparison. Figure 10.2 from [2].

• Define recursively

x(0) = x, (x ∈ Rm(0)

),

x
(k)
j = σ(b

(k)
j + (w

(k)
j)⊤x(k−1)), w

(k)
j , x(k−1) ∈ Rm(k−1)

, bj ∈ Rm(k)

f(x) = g(x(K)) = g

β0 +

m(K−1)∑
j=1

βjx
(K−1)
j

 ,

• θ = {[β0, βj , b
(k)
j , w

(k)
j] : k = 1, . . . ,K − 1, j = 1, . . . ,m(k)} denotes the set of model parameters.

• m(k) is the number of hidden units at layer k.

3.3 Multi Layer Neural Networks
If K = 1 and g is linear, then the (single hidden layer) MLP model is a regression model. It is a special case of the
PPR model with

ϕj(a
⊤
k x) = σ(bj + w⊤

j x).

Conversely, if we have a general PPR model

y = β0 +

M∑
j=1

βjϕj(ω
⊤
j x), ϕj : R→ Y,

we can approximate each smooth function ϕj as a sum of shifted logistic functions (more on this later) so that

y ≈ β0 +
∑
m,l

γjlσ(δjl + ζjlx).

This explains why MLP needs more M (say 100) than PPR (say 5).

4 Fitting Multi-Layer Neural Networks
Suppose we have training sample of size n: {(xi, yi)}ni=1, xi ∈ X ⊂ Rp, yi ∈ Y ⊂ RD. Complete set of parameters
(weights) are θ = {W 1→2,W 2→3}, where

W 1→2 = {bj ∈ R, wj ∈ Rp : j = 1, 2, . . . ,M}, M × (p+ 1) weights,

W 2→3 = {β0 ∈ RD, βk ∈ RD : k = 1, 2, . . . ,M}, D × (M + 1) weights.

4

For the loss function, typically squared error is used for regression, and cross entropy is used for classification. Let
yik = I(yi = k) if yi’s are categorical. then

L(θ) =

{
1
n

∑n
i=1

∑K
k=1(yik − fk(xi))

2, (squared error)
− 1

n

∑n
i=1

∑K
k=1 yik log fk(xi), (cross entropy or deviance)

Typically the model is fitted by gradient descent:

θ ← θ − γ∇θL(θ).

Write L(θ) = 1
n

∑n
i=1 Ei, so that

∇θL =
1

n

n∑
i=1

∇θEi.

In computing the gradient ∇θE, recall that each unit takes input vj =
∑

i wijui and outputs u+
j = hj(vj) for some

function hj (equals to either σ or gm).
We regard E as a function of all the weights, so changes in a weight wij affect the input and output of unit j

and all units connected to j, including some output unit(s).

∂E

∂wij
=

∂E

∂vj

∂vj
∂wij

=
∂E

∂vj
ui = h′

j(vj)
∂E

∂u+
j

ui = uiδj .

• The first equality comes from the dependence of E on the weights only through the outputs.

• The second equality comes from vj =
∑

i wijui.

• We evaluate ∂E/∂vj by noting that vj only affects the outputs through u+
j , and this only acts through

connections to output units:

δj =
∂E

∂vj
=

∂E

∂u+
j

∂u+
j

∂vj
= h′

j(vj)
∂E

∂u+
j

.

• For output units ∂E/∂u+
j can be calculated directly from the form of E:

– For K = 2 and cross-entropy loss, E = −y log u − (1 − y) log(1 − u), where u = h(v) is the predicted
probabilty of Y = 1. If h is sigmoid, then h′(v) = u(1− u), yielding δj = y − u.

– Likewise,

δj =


(
∑K

k=1 I(Y = k))u− I(Y = j), softmax, cross entropy,
2(u− y), linear, squared error,
I(u ≥ 0) u−y

u(1−u) , ReLU, cross entropy, K = 2.

• For units in earlier layers

δj = h′
j(vj)

∂E

∂u+
j

= h′
j(vj)

∑
k:j→k

∂E

∂vk

∂vk

∂u+
j

= h′
j(vj)

∑
k:j→k

∂E

∂vk
wjk

= h′
j(vj)

∑
k:j→k

wjkδk, vk =
∑
j

wjku
+
j ,

the sum being over units k fed by unit j.

– The second equality traces the effect of the output of an internal unit via the units to which it is connected.

Since this formula only contains terms in later layers, it is clear that it can be calculated from output to input on
the network (backpropagation). It is often discussed as a forward pass to calculate the outputs from the inputs,
followed by a backward pass to calculate (δj) and hence ∂E/∂wij .

In practice 1
n

∑n
i=1∇θEi is replaced by 1

|B|
∑

i∈B Ei where B is a minibatch (stochatic gradient descent).

5

z−1

z0

z1

z3

z2

z4

x1

x2

y = f(x1, x2)

z̄1

z̄1

z̄3

z̄2

z̄4

z̄4

x̄1 = z̄−1

x̄2 = z̄0

ȳ

Figure 3: Computational graph for evaluating function f(x1, x2) = log(x1 + x2) − x2
2. Dashed arrows indicate the

direction of backpropagation evaluating ∇f(x1, x2). Figure from [3].

4.1 Automatic differentiation and Computation graphs
The backpropagation rule is an instance of automatic differentiation (AD). AD refers to a collection of techniques
that evaluate the derivatives of a function specified by a computer program accurately. Modern deep learning
software features AD to train complex models via SGD.

Most AD techniques rely on decomposition of the target function into elementary functions (primitives) whose
derivatives are known, and the computational graph, either explicitly or implicitly, that describes the dependency
among the primitives.

Example. See Figure 3. The internal nodes represent intermediate variables corresponding to the primitives:
z−1 = x1, z0 = x2, z1 = z−1 + z0, z2 = log z1, z3 = z20 , and z4 = z2 − z3; y = z4. Suppose we want to evaluate ∇f
at (3, 2).

1. Forward-mode AD: evaluate from input to output

• Evaluating ∂f/∂x1 and ∂f/∂x2 requires separate passes. Inefficient if the whole gradient of a function
with many input variables is needed, e.g., the loss function of a high-dimensional model.

2. Reverse-mode AD: generalization of backpropagation

• Forward pass: the original function and the associated intermediate variables zi are evaluated from input
to output.

• Backward pass: the “adjoint” variables z̄i ≡ ∂y
∂zi

are initialized to zero and updated from output to input.

• In the previous computational graph, z̄4+= ∂y
∂z4

= 1, z̄3+= z̄4
∂z4
∂z3

= −1, z̄2+= z̄4
∂z4
∂z2

= 1, z̄0+= z̄3
∂z3
∂z0

=

z̄3(2z0) = −4, z̄1+= z̄2
∂z2
∂z1

= z̄2
z2

= 1/5, z̄0+= z̄1
∂z1
∂z0

= 1/5, and z̄−1+= z̄1
∂z1
∂z−1

= 1/5.

• Finally, ∂f
∂x1

= x̄1 = z̄−1 = 0.2 and ∂f
∂x2

= x̄2 = z̄0 = −3.8.

5 Example: MNIST
Example. MNIST dataset is a handwritten digit dataset. It is to classify images into digit class 0-9. Every image
has 28× 28 = 784 pixels of grayscale values ∈ (0, 255). There are 60,000 train images and 10,000 test images.

• The goal is to build a classifier to predict the image class.

• We build a deep neural network with 256 units at first layer, 128 units at second layer, and 10 units at output
layer.

• Along with intercepts (called biases) there are 235,146 parameters (referred to as weights).

• The output finction g(x) is the softmax function: gi(x) = exp(xi)/
∑D

l=1 exp(xl).

6

• We fit the model by minimizing the negative multinomial log-likelihood (or cross-entropy):

−
m∑
j=1

9∑
i=0

yji log(fi(xj)),

where yji is 1 if true class for observation j is i, else 0: one-hot encoded.

Method Test Error
Neural Network + Ridge Regularization 2.3%

Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

This is an early success for neural networks in the 1990s. With so many parameters, regularization is essential.
Also, this is very overworked problem - best reported rates are < 0.5%. Human error rate is reported to be around
0.2%, or 20 of the 10, 000 test images.

References
[1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning. Springer Series

in Statistics. Springer, New York, second edition, 2009. Data mining, inference, and prediction.

[2] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning—
with applications in R. Springer Texts in Statistics. Springer, New York, [2021] ©2021. Second edition [of
3100153].

[3] Seyoon Ko, Hua Zhou, Jin J. Zhou, and Joong-Ho Won. High-performance statistical computing in the computing
environments of the 2020s. Statistical Science, 37(4):494–518, 11 2022.

7

