
Deep Learning and Geometry (and Statistics)

김지수 (Jisu KIM)

딥러닝의 통계적 이해 (Deep Learning: Statistical Perspective), 2024년 2학기

This lecture note is very premature and a combination of many different things.

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rd, so x = (x1, . . . , xd).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn [ℓ(Y, f(X))] = argmin
f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).
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Figure 1: Neural network with a single hidden layer. The hidden layer computes activations Aj = σj(x) that are
nonlinear transformations of linear combinations of the inputs x1, . . . , xd. Hence these Aj are not directly observed.
The functions σj are not fixed in advance, but are learned during the training of the network. The output layer is
a linear model that uses these activations Aj as inputs, resulting in a function f(x). Figure 10.1 from [2].

1.2 Two Layer Neural Networks
A two-layer neural network takes an input vector of d variables x = (x1, x2, . . . , xd) and builds a nonlinear function
f(x) to predict the response y ∈ RD. What distinguishes neural networks from other nonlinear methods is the
particular structure of the model:

f(x) = fθ(x) = g

β0 + m∑
j=1

βjσ(bj + w⊤
j x)

 ,

where x ∈ Rd, bj ∈ R, wj ∈ Rd, β0 ∈ RD, βj ∈ RD. See Figure 1.

• θ = {[β, aj , bj , wj ] : j = 1, . . . ,m} denotes the set of model parameters.

• x1, . . . , xd together is called an input layer.

• Aj := σj(x) = σ(bj + w⊤
j x) is called an activation.

• A1, . . . , Am together is called a hidden layer or hidden unit; m is the number of hidden nodes.

• f(x) is called an output layer.

• g is an output function. Examples are:

– softmax gi(x) = exp(xi)/
∑D

l=1 exp(xl) for classification. The softmax function estimates the conditional
probability gi(x) = P (y = i|x).

– identity/linear g(x) = x for regression.
– threshold gi(x) = I(xi > 0)

• σ is called an activation function. Examples are:

– sigmoid σ(x) = 1/(1 + e−x) (see Figure 2)
– rectified linear (ReLU) σ(x) = max {0, x} (see Figure 2)
– identity/linear σ(x) = x

– threshold σ(x) = I(x > 0), threshold gives a direct multi-layer extension of the perceptron (as considered
by Rosenblatt).

Activation functions in hidden layers are typically nonlinear, otherwise the model collapses to a linear model. So
the activations are like derived features - nonlinear transformations of linear combinations of the features.
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Figure 2: Activation functions. The piecewise-linear ReLU function is popular for its efficiency and computability.
We have scaled it down by a factor of five for ease of comparison. Figure 10.2 from [2].

2 Goal
In this note, we explore the connection of geometry and topology to deep learning, in three perspectives.

3 Geometry and Topology as Regular condition
We will see one example from [5]. Suppose a two-layer neural network without bias term:

fθ(x) =

m∑
j=1

βjσ(w
⊤
j x),

where σ is a ReLU function. And suppose we use the gradient flow optimization:

d

dt
θ(t) = −∇θL(θ(t)).

Due to the ReLU function, the loss function L is invariant to the action Tα of rescaling the parameters as wj 7→
α−1wj , βj 7→ αβj . Then, the orthogonality of the gradient with respect to the level set of the loss results as

d

dt

(
∥wj∥22 − ∥βj∥22

)
= 0, ∀j,

which implies that
∥wj(t)∥22 − ∥βj(t)∥22 = cj , ∀j = 1, . . . ,m. (1)

(1) identifies a manifold H (c), named invariant set, in the parameter space on which the training trajectory moves.
See Figure (3).

Proposition ([5, Lemma 1]). The invariant set is homeomorphic to a cartesian product of hyperquadrics, one for
each hidden neuron:

H (c) ∼= Q(c1)× · · · × Q(cm),

where
Q(cj) =

{
(w, β) : ∥w∥22 − ∥β∥22 = cj

}
.

Then we can characterize the topological behavior of the invariant set H (c) where the optimization path lies
on, also see Figure (3).

Theorem ([5, Corollary 2]). If the output of the neural network is one dimension (in R), its input dimension d > 1,
and the initial parameter is that ∥wj(0)∥22 − ∥βj(0)∥22 < 0 for exactly m_ hidden neurons, then the set H (c) has
2m_ connected components, and in particular disconnected when m_ ≥ 1.
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Figure 3: (a) Illustration of Q(cj) when cj < 0 and cj > 0, and (b) Illustration of H (c). Figure 2 from [5].

Figure 4: Illustration of Betti numbers and reach, Figure 1 from [7].

This suggests that the optimum might be unreachable from the initialization.
[7] has the following results:

Theorem ([7, Main Theorem]). Let M ⊂ RD be a d-dimensional manifold (d ≤ D). There exists a ReLU net-
work classifier g with depth at most O

(
log β + log(τ−1)

)
and size at most O

(
β2 + τ−d2/2

)
, such that with large

probability, the true risk of g is small. β is the sum of Betti numbers and τ is the reach of M.

4 Geometry as Embedding space
I will first start with constant curvature space (though I am not defining what constant curvature means).

4.1 Constant curvature space
• Let Ed be the usual Rd with the usual ℓ2-metric

dEd(x, y) = ∥x− y∥2 .

This is the space with constant curvature 0.

• Let Sd be the d-dimensional sphere in Rd+1 as

Sd :=
{
x ∈ Rd+1 : ∥x∥2 = 1

}
.
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Figure 5: https://web.colby.edu/thegeometricviewpoint/2016/12/21/tessellations-of-the-hyperbolic-plane-and-m-c-
escher/

Define the distance dSd as

dSd(x, y) = arccos ⟨x, y⟩ = arccos

(
d∑

i=1

xiyi

)
∈ [0, π].

This is the space with constant curvature +1.

• Let Hd be the open ball in Rd as
Hd :=

{
x ∈ Rd : ∥x∥2 < 1

}
.

Define the distance dHd as

dHd(x, y) = arccosh

1 + 2
∥x− y∥22(

1− ∥x∥22
)(

1− ∥y∥22
)
 .

This is called the Poincare Ball model. This is the space with constant curvature −1. See Figure (5).

Our interest is Hd. This type of space is called hyperbolic space. Hyperbolic space is well-suited for embedding
tree-structured data: one key property is its exponential growth of the volume:

V olEd(BEd(x, r)) ∼ Crd, while V olHd(BHd(x, r)) ∼ C1 exp(C2r),

where for x ∈ X and r > 0, BX (x, r) = {y ∈ X : dX (x, y) < r} is the ball in X centered at x and radius r.
Hence the hyperbolic space naturally reflects the exponential growth of nodes in a tree, which is challenging to

capture in Euclidean spaces. The geometry of hyperbolic space allows for compact representations of hierarchical
relationships, preserving distances and structural similarities more effectively. This enables embeddings with lower
distortion and better scalability for tree-like data, such as taxonomies, knowledge graphs, or biological hierarchies.

Suppose we have a tree data, and we are embedding it into a hyperbolic space. One result in is that those
distances are equivalent: then those distances are equivalent:

Theorem ([3, Theorem 1]). Suppose T is a tree and x1, . . . , xn ∈ T . Then we can construct a map ψ : T → Hd so
that

dT (xi, xj) ∼ dHd(ψ(xi), ψ(xj)).

Some references for embedding tree data into hyperbolic space:

• https://medium.com/@nathan_jf/treerep-and-hyperbolic-embeddings-41312c98b264

• https://meiji163.github.io/post/combo-hyperbolic-embedding/
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5 Geometry and Topology as Information
This is a recently growing area in deep learning. Though, there are currently not many connection between utilizing
information Geometry/Topology and statistical theory. I suggest two area:

• Geometric Deep Learning: this is a field of deep learning that extends deep learning techniques to non-
Euclidean domains such as graphs, manifolds, and other structured data by leveraging their geometric prop-
erties and symmetries. It is commonly regarded as an extension of Graph Neural Network, but in fact about
more general utilization of geometry and symmetry. Good references to start are:

– https://geometricdeeplearning.com/

– Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković, Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges, 2021. https://arxiv.org/abs/2104.13478

• Topological Data Analysis (TDA): this is a field that uses tools from topology to extract, analyze, and
interpret the shape and structure of data, focusing on its topological features like connectedness and holes
across multiple scales. TDA usually refers to mapper and persistent homology, and with respect to applications
to machine learning or deep learning, it is mostly about persistent homology. Good references to start are:

– https://jkim82133.github.io/321.621A/2023F/

– Larry Wasserman, Topological Data Analysis, 2018. https://www.annualreviews.org/doi/abs/10.1146/annurev-
statistics-031017-100045/

– Frédéric Chazal, Bertrand Michel, An introduction to Topological Data Analysis: fundamental and prac-
tical aspects for data scientists, 2021. https://www.frontiersin.org/articles/10.3389/frai.2021.667963/

– Felix Hensel, Michael Moor, Bastian Rieck, A Survey of Topological Machine Learning Methods, 2021.
https://doi.org/10.3389/frai.2021.681108

References
[1] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153.

Springer-Verlag New York Inc., New York, 1969.

[2] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning—
with applications in R. Springer Texts in Statistics. Springer, New York, [2021] ©2021. Second edition [of
3100153].

[3] Ya-Wei Eileen Lin, Ronald R. Coifman, Gal Mishne, and Ronen Talmon. Hyperbolic diffusion embedding and
distance for hierarchical representation learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages
21003–21025. PMLR, 2023.

[4] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high
confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–441, 2008.

[5] Marco Nurisso, Pierrick Leroy, and Francesco Vaccarino. Topological obstruction to the training of shallow relu
neural networks. CoRR, abs/2410.14837, 2024.

[6] A. Singer and H.-T. Wu. Vector diffusion maps and the connection Laplacian. Comm. Pure Appl. Math.,
65(8):1067–1144, 2012.

[7] Jiachen Yao, Mayank Goswami, and Chao Chen. A theoretical study of neural network expressive power via
manifold topology. CoRR, abs/2410.16542, 2024.

6 Appendix: Reach
For this lecture note, for A ⊂ Rd, we use the notation Ar :=

{
x ∈ Rd : d(x,A) < r

}
for the r-offset of A.
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Definition of reach
First introduced by Federer [1], the reach is a regularity parameter defined as follows. Given a closed subset A ⊂ Rd,
the medial axis of A, denoted by Med(A), is the subset of Rd composed of the points that have at least two nearest
neighbors on A. Namely, denoting by dA(x) = d(x,A) = infq∈A ∥q − x∥ the distance function to A,

Med(A) =
{
x ∈ Rd|∃q1 ̸= q2 ∈ A, ||q1 − x|| = ||q2 − x|| = d(x,A)

}
. (2)

The reach of A is then defined as the minimal distance from A to Med(A). See Figure

Definition ([1, 4.1 Definition]). The reach of a closed subset A ⊂ Rd is defined as

τA = inf
q∈A

d (q,Med(A)) = inf
q∈A,x∈Med(A)

||q − x||. (3)

τM

Med(M)

M

Figure 6: The medial axis of a set M is the set of points that have at least two nearest neighbors on the set M , and
the reach is the distance between the set and its medial axis.

Definition. Some authors refer to τ−1
A as the condition number [4, 6]. From the definition of the medial axis in (2),

the projection πA(x) = argminp∈A ∥p− x∥ onto A is well defined outside Med(A). The reach is the largest distance
r ≥ 0 such that πA is well defined on the r-offset. Hence, the reach condition can be seen as a generalization of
convexity, since a set A ⊂ Rd is convex if and only if τA = ∞.

In the case of submanifolds, one can reformulate the definition of the reach in the following manner.

Theorem ([1, Theorem 4.18]). For all submanifold M ⊂ Rd,

τM = inf
q1 ̸=q2∈M

∥q1 − q2∥22
2d(q2 − q1, Tq1M)

. (4)

This formulation has the advantage of involving only points on M and its tangent spaces, while (3) uses the
distance to the medial axis Med(M), which is a global quantity.

The ratio appearing in (4) can be interpreted geometrically, as suggested in Figure 7. This ratio is the radius of
an ambient ball, tangent to M at q1 and passing through q2.
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Figure 7: Geometric interpretation of quantities involved in (4).
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