
Generalization errors for Deep Learning

김지수 (Jisu KIM)

딥러닝의 통계적 이해 (Deep Learning: Statistical Perspective), 2024년 2학기

This lecture note is a combination of Prof. Joong-Ho Won’s “Deep Learning: Statistical Perspective” with other
lecture notes. Main references are:

Tong Zhang, Mathematical Analysis of Machine Learning Algorithms, https://tongzhang-ml.org/lt-book.html
Matus Telgarsky, Deep learning theory lecture notes, https://mjt.cs.illinois.edu/dlt/
Weinan E, Chao Ma, Stephan Wojtowytsch, Lei Wu, Towards a Mathematical Understanding of Neural Network-

Based Machine Learning: what we know and what we don’t, https://arxiv.org/abs/2009.10713/

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rd, so x = (x1, . . . , xd).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn [ℓ(Y, f(X))] = argmin
f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

1

https://tongzhang-ml.org/lt-book.html
https://mjt.cs.illinois.edu/dlt/
https://arxiv.org/abs/2009.10713/

1.2 Rademacher complexity
Random variables ξ1, . . . , ξn are called Rademacher random variables if they are independent, identically distributed
and P(ξi = 1) = P(ξi = −1) = 1/2. Define the Rademacher complexity of F by

Radn(F) = E

(
sup
f∈F

(
1

n

n∑
i=1

ξif(Zi)

))
.

Some authors use a slightly different definition, namely,

Radn(F) = E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ξif(Zi)

∣∣∣∣∣
)
.

You can use either one. They lead to essentially the same results. In fact, under mild condition, two Rademacher
complexity are closely related, as below:

Lemma 1. Let ξ = (ξ1, . . . , ξn) be i.i.d. Rademacher. Suppose that for any ξ ∈ {±1}n, supf∈F
∑n

i=1 ξif(Zi) ≥ 0.
Then

Eξ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ξif(Zi)

∣∣∣∣∣
∣∣∣∣∣Z
]
≤ Eξ

[
sup
f∈F

1

n

n∑
i=1

ξif(Zi)

∣∣∣∣∣Z
]
.

Proof. Left as HW.

Intuitively, Radn(F) is large if we can find functions f ∈ F that “look like” random noise, that is, they are highly
correlated with σ1, . . . , σn. Here are some properties of the Rademacher complexity.

Lemma. 1. If F ⊂ G then Radn(F , Zn) ≤ Radn(G, Zn).

2. Let conv(F) denote the convex hull of F . Then Radn(F , Zn) = Radn(conv(F), Zn).

3. For any c ∈ R, Radn(cF , Zn) = |c|Radn(F , Zn).

4. Let g : R → R be such that |g(y)− g(x)| ≤ L|x− y| for all x, y. Then Radn(g ◦ F , Zn) ≤ LRadn(F , Zn).

5. Suppose {Fi}i∈I satisfies 0 ∈ Fi for each i ∈ I. Then Radn(
⋃

i∈I F , Zn) ≤
∑

i∈I Radn(Fi, Z
n).

1.3 Two Layer Neural Networks
A two-layer neural network takes an input vector of d variables x = (x1, x2, . . . , xd) and builds a nonlinear function
f(x) to predict the response y ∈ RD. What distinguishes neural networks from other nonlinear methods is the
particular structure of the model:

f(x) = fθ(x) = g

β0 +

m∑
j=1

βjσ(bj + w⊤
j x)

 ,

where x ∈ Rd, bj ∈ R, wj ∈ Rd, β0 ∈ RD, βj ∈ RD. See Figure 1.

• θ = {[β, aj , bj , wj] : j = 1, . . . ,m} denotes the set of model parameters.

• x1, . . . , xd together is called an input layer.

• Aj := σj(x) = σ(bj + w⊤
j x) is called an activation.

• A1, . . . , Am together is called a hidden layer or hidden unit; m is the number of hidden nodes.

• f(x) is called an output layer.

• g is an output function. Examples are:

– softmax gi(x) = exp(xi)/
∑D

l=1 exp(xl) for classification. The softmax function estimates the conditional
probability gi(x) = P (y = i|x).

2

Figure 1: Neural network with a single hidden layer. The hidden layer computes activations Aj = σj(x) that are
nonlinear transformations of linear combinations of the inputs x1, . . . , xd. Hence these Aj are not directly observed.
The functions σj are not fixed in advance, but are learned during the training of the network. The output layer is
a linear model that uses these activations Aj as inputs, resulting in a function f(x). Figure 10.1 from [3].

– identity/linear g(x) = x for regression.

– threshold gi(x) = I(xi > 0)

• σ is called an activation function. Examples are:

– sigmoid σ(x) = 1/(1 + e−x) (see Figure 2)

– rectified linear (ReLU) σ(x) = max {0, x} (see Figure 2)

– identity/linear σ(x) = x

– threshold σ(x) = I(x > 0), threshold gives a direct multi-layer extension of the perceptron (as considered
by Rosenblatt).

Activation functions in hidden layers are typically nonlinear, otherwise the model collapses to a linear model. So
the activations are like derived features - nonlinear transformations of linear combinations of the features.

1.4 Multi Layer Neural Networks
Modern neural networks typically have more than one hidden layer, and often many units per layer. In theory
a single hidden layer with a large number of units has the ability to approximate most functions. However, the
learning task of discovering a good solution is made much easier with multiple layers each of modest size.

A deep neural network refers to the model allowing to have more than 1 hidden layers: given input x ∈ Rd and
response y ∈ RD, to predict the response y. K-layer fully connected deep neural network is to build a nonlinear
function f(x) as

• Let m(0) = d and m(K) = D

• Define recursively

x(0) = x, (x ∈ Rm(0)

),

x
(k)
j = σ(b

(k)
j + (w

(k)
j)⊤x(k−1)), w

(k)
j , x(k−1) ∈ Rm(k−1)

, bj ∈ Rm(k)

, k = 1, . . . ,K.

f(x) = g(x(K)).

• θ = {[b(k)j , w
(k)
j] : k = 1, . . . ,K, j = 1, . . . ,m(k)} denotes the set of model parameters.

• m(k) is the number of hidden units at layer k.

3

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

Figure 2: Activation functions. The piecewise-linear ReLU function is popular for its efficiency and computability.
We have scaled it down by a factor of five for ease of comparison. Figure 10.2 from [3].

2 Notation and Goal
From here, we only consider regression problem, so g(x) = x. We assume β0 = 0 and bj = 0.

For the two-layer neural network with the width of the hidden layer m and activation function σ, the function
space we consider is

Fm,σ =

fθ : fθ(x) =

m∑
j=1

βjσ(w
⊤
j x)

 ,

and if we consider all two-layer neural network with arbitrary width, then

Fσ =

∞⋃
m=1

Fm,σ =

fθ : fθ(x) =

m∑
j=1

βjσ(w
⊤
j x), m ∈ N

 .

For the multi-layer neural network, for k = 1, . . . ,K, write Wk ∈ Rm(k)×m(k−1)

as i-th row of Wk is (w(k)
j)⊤, i.e.,

Wk =


(w

(k)
1)⊤

...
(w

(k)

m(k))
⊤

 ∈ Rm(k)×m(k−1)

,

And for k = 1, . . . ,K − 1, write σk : Rm(k) → Rm(k)

be coordinatewise application of σ, i.e., σk(x1, . . . , xm(k)) =

(σ(x1), . . . , σ(xm(k))), and let σK := g. Now, assume b
(k)
j = 0 for k = 1, . . . ,K, and g = id. Then K-layer neural

network can be described as
fθ(x) = σK(WKσK−1(WK−1 · · ·σ1(W1x) · · ·)).

Or inductively,
f
(0)
θ (x) = x, f

(k)
θ (x) = σk(Wkf

(k−1)
θ (x)), fθ(x) = fK

θ (x).

We impose the condition that ∥Wk∥ ≤ B for each k, where ∥·∥ is an appropriate matrix norm. Hence, for K-layer
neural network, the function space we consider is F (K)

σ , with F (0)
σ = {id} and

F (k)
σ =

{
f
(k)
θ : f

(k)
θ (x) = σk(Wkf

(k−1)
θ (x)), f

(k−1)
θ ∈ F (k−1)

σ , ∥Wk∥ ≤ B
}
.

Suppose the true regression function f∗ is in a function class M, so

y ≈ f∗(x), f∗ ∈ M.

4

Figure 3: Diagram representing the learning procedure, the three main paradigms and their corresponding errors.
Figure 2 from https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/.

Suppose are using the ℓ2-loss, so we find f among deep neural network class F that minimizes the expected risk
(평균위험),

f0 = argmin
f∈F

E(Y,X)∼P

[
(y − f(x))2

]
.

f0 is the expected risk mimizing function (평균위험최소함수). And we estimate f0 by f̂ using data by minimizes
on the empirical risk (경험위험) on training dataset, so

f̂ = argmin
f∈F

1

n

n∑
i=1

(yi − f(xi))
2.

f̂ is the empirical risk mimizing function (경험위험최소함수). And we set f̃ be the approximation of f̂ by optimization(최
적화); f̃ is the learned function (학습된 함수).

So there are three sources of errors: approximation error, generalization error, and optimization error. See
Figure 3.

f∗ − f̃ = f∗ − f0︸ ︷︷ ︸
approximation error

+ f0 − f̂︸ ︷︷ ︸
generalization error

+ f̂ − f̃︸ ︷︷ ︸
optimization error

.

We focus on approximation error and generalization error. What we would like to achieve is that:
For the approximation error: we would like to control

∥∥f∗ − f0
∥∥
L2(P)

appropriately in terms of the width of
the neural network m. Ideally, we would like to restrict the function class M where f∗comes from, and define an
appropriate norm ∥f∗∥∗, so that

inf
f∈Fm,h

∥∥f∗ − f0
∥∥2
L2(P)

≲
∥f∗∥2∗
m

.

For the generalization error: we have seen from the concentration lecture note that with probability at least
1− δ,

sup
f∈Fm,h

∣∣∣∣∣ 1n
n∑

i=1

f(xi)− E[f]

∣∣∣∣∣ ≤ 2Rad(Fm,σ) +

√
1

2n
log

(
2

δ

)
.

Hence we would like to see that, with appropriate norm ∥f∥∗∗ for f ∈ Fm,σ, define Fm,σ,Q := {f ∈ Fm,σ : ∥f∥∗∗ ≤
Q}, and then

Rad(Fm,σ,Q) ≲
Q√
n
.

If both holds, then ∥∥∥f∗ − f̂
∥∥∥2
L2(P)

= OP

(
∥f∗∥2∗
m

+
Q√
n

)
.

5

https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/

3 Generalization error: two layer network
We now compute a bound for the Rademacher complexity of two-layer neural networks.

Theorem 2. For some constants Bw > 0 and Bβ > 0 , let

Fm,σ,B =
{
fθ ∈ Fm,σ : ∥β∥2 ≤ Bβ , ∥wj∥2 ≤ Bw, j = 1, . . . ,m

}
,

and suppose ∥Zi∥2 ≤ C for all i = 1, . . . , n. Let σ be 1-Lipschitz. Then,

Rad(Fm,σ,B ;Z
n) ≤ 2BβBuC

√
m

n
.

This bound is not ideal as it depends on the number of neurons m. Empirically, it has been found that the
generalization error does not increase monotonically with m. As more neurons are added to the model, thereby
giving it more expressive power, studies have shown that generalization is improved [Belkin et al., 2019]. This
contradicts the bound above, which states that more neurons leads to worse generalization.

Next, we look at a finer bound that results from dening a new complexity measure. A recurring theme in subse-
quent proofs will be the functional invariance of two-layer neural networks under a class of rescaling transformations.
The key ingredient will be the positive homogeneity of the ReLU function, i.e.,

ασ(x) = σ(αx), ∀α > 0.

This implies that for any λi > 0 (i = 1, . . . ,m), the transformation θ = {(βj , wj)}1≤j≤m 7→ θ′ = {(λjβj , wj/λj)}1≤j≤m

has no net effect on the neural network’s functionality (i.e., fθ = fθ′) since

βj · ϕ
(
w⊤

j x
)
= (λjβj) · ϕ

((
wj

λj

)⊤

x

)
.

In light of this, we devise a new complexity measure ∥ · ∥1 that is also invariant under such transformations and use
it to prove a better bound for the Rademacher complexity. For fθ ∈ Fm,σ, we can write fθ(x) =

∑m
j=1 βjσ(w

⊤
j x).

Define a complexity of θ as

C(θ) :=

m∑
j=1

|βj | ∥wj∥2 .

Theorem 3. For some constant B > 0 consider the function class

Fm,σ,B = {fθ ∈ Fm,σ : C(θ) ≤ B} . (1)

If ∥Zi∥2 ≤ C for all i = 1, . . . , n. Let σ be ReLU function, then

Rad(Fm,σ,B ;Z
n) ≤ 2BC√

n
.

Remark 4. Compared to Theorem 2, this bound does not explicitly depend on the number of neurons m. Thus, it
is possible to use more neurons and still maintain a tight bound if the value of the new complexity measure ∥θ∥1 is
reasonable. In contrast, the bound of Theorem 2 explicitly grows with the total number of neurons.

Moreover, Theorem 3 is stronger as we have more neurons - this is because the function class Fm,σ,B as defined
in 1 is bigger as m increases. Because of this, it’s possible to obtain a generalization guarantee that decreases as m
increases, as we will see later.

Proof. Due to the positive homogeneity of the ReLU function , it will be useful to define the ℓ2-normalized weight
vector w̄j := wj/∥wj∥2 so that ϕ(w⊤

j x) = ∥wj∥2ϕ(w̄⊤
j x). Let ξi = ±1 being i.i.d. with probability 1/2 be Rademacher

6

variables, then the empirical Rademacher complexity satisfies

Rad(Fm,σ,B ;Z
n) = Eξ

[
sup

fθ∈Fm,σ,B

1

n

n∑
i=1

ξifθ(Zi)

∣∣∣∣∣Z
]

= Eξ

 sup
θ:C(θ)≤B

1

n

n∑
i=1

ξi

m∑
j=1

βjσ
(
w⊤

j Zi

)∣∣∣∣∣∣Z


=
1

n
Eξ

 sup
θ:C(θ)≤B

n∑
i=1

ξi

m∑
j=1

βj ∥wj∥2 σ
(
w̄⊤

j Zi

)∣∣∣∣∣∣Z
 (by positive homogeneity of σ)

=
1

n
Eξ

 sup
θ:C(θ)≤B

m∑
j=1

βj ∥wj∥2
n∑

i=1

ξiσ
(
w̄⊤

j Zi

)∣∣∣∣∣∣Z


≤ 1

n
Eξ

 sup
θ:C(θ)≤B

m∑
j=1

βj ∥wj∥2 max
1≤k≤m

∣∣∣∣∣
n∑

i=1

ξiσ
(
w̄⊤

k Zi

)∣∣∣∣∣
∣∣∣∣∣∣Z
 ,

since
∑

j αjβj ≤
∑

j |αj |maxk |βk|. Then from C(θ) ≤ B, we can further bound as

Rad(Fm,σ,B ;Z
n) ≤ B

n
Eξ

[
sup

θ:C(θ)≤B

max
1≤k≤m

∣∣∣∣∣
n∑

i=1

ξiσ
(
w̄⊤

k Zi

)∣∣∣∣∣
∣∣∣∣∣Z
]

=
B

n
Eξ

[
sup

w̄:∥w̄∥2=1

∣∣∣∣∣
n∑

i=1

ξiσ
(
w̄⊤Zi

)∣∣∣∣∣
∣∣∣∣∣Z
]

≤ B

n
Eξ

[
sup

w̄:∥w̄∥2≤1

∣∣∣∣∣
n∑

i=1

ξiσ
(
w̄⊤Zi

)∣∣∣∣∣
∣∣∣∣∣Z
]

≤ 2B

n
Eξ

[
sup

w̄:∥w̄∥2≤1

n∑
i=1

ξiσ
(
w̄⊤Zi

)∣∣∣∣∣Z
]

= 2BRad(H;Zn),

where the last inequality is from Lemma 1, and H =
{
x 7→ σ(w̄⊤x) : w̄ ∈ Rd, ∥w̄∥2 ≤ 1

}
. Since the ReLU function

σ is 1-Lipschitz, Rad(H;Zn) ≤ Rad(H′;Zn), where H′ =
{
x 7→ w̄⊤x : w̄ ∈ Rd, ∥w̄∥2 ≤ 1

}
. Then Rad(H′;Zn) ≤ C√

n

from below concludes the proof.

Proposition 5. Let F =
{
x 7→ ⟨w, x⟩ : w ∈ Rd, ∥w∥2 ≤ B

}
for some constant B > 0, and suppose ∥Zi∥2 ≤ C for

all i = 1, . . . , n. Then

Rad(F ;Zn) ≤ BC√
n
.

Proof. Left as HW.

Then as suggested in the concentration lecture not, with probability at least 1− δ,

sup
f∈Fm,σ,B

∣∣∣∣∣ 1n
n∑

i=1

f(xi)− E[f]

∣∣∣∣∣ ≤ 2Rad(Fm,σ,B) +

√
1

2n
log

(
2

δ

)

≤ 4BC√
n

+

√
1

2n
log

(
2

δ

)
.

There is a direct result with Barron class as well.

Theorem ([2, Theorem 15]). Let Fm,σ,Q := {f ∈ Fm,σ : ∥f∥B ≤ Q}. Then we have

Rad(Fm,σ,Q;Z
n) ≤ 2Q

√
2 log(2d)

n
.

7

Instead of minimizing the training error, we can also consider the regularized term. For fθ ∈ Fm,σ, we can write
fθ(x) =

∑m
j=1 βjσ(w

⊤
j x). Define the 1-norm of θ as

∥θ∥1 :=
1

m

m∑
j=1

|βj | ∥wj∥1 .

And consider the minimization problem

L(θ) = 1

n

n∑
i=1

(yi − fθ(xi))
2 + λ

√
log(2d)

n
∥θ∥1 ,

and let θ̂(1) be its minimizer.

Theorem ([2, Theorem 16]). Suppose X ⊂ Rd is compact, and assume f∗ : X → [0, 1]. There exists some λ0 > 0
such that for λ ≥ λ0, with probability 1− δ,

1

n

n∑
i=1

(yi − fθ̂(1)(xi))
2 ≲

∥f∗∥2B
m

+ λ ∥f∗∥B

√
log(2d)

n
+

√
log(n/δ)

n
.

4 Generalization error: multi layer network
We will give one Rademacher complexity bound, obtained by inductively peeling off layers. This will depend on∥∥W⊤

i

∥∥
1,∞. This bound has a pretty clean proof, and appeared in [1].

4.1 First “layer peeling” proof
We’ll prove this with an induction “peeling” off layers. This peeling will use the following lemma, which collects
many standard Rademacher properties.

Proof. Let Fk be the collection of functions computed by each node in kth layer, i.e.,

Fk =
{
(f

(k)
θ)j : Rm(k−1)

→ R : f
(k)
θ ∈ F (k)

σ , j = 1, . . . ,m(k)
}

=
{
x 7→ σk(Wkf

(k−1)
θ (x)), f

(k−1)
θ ∈ F (k−1)

σ , ∥Wk∥ ≤ B
}
.

Then It’ll be shown by induction that

Rad(Fk, Z) ≤ ∥Z∥2,∞ (2LB)k
√

2 log d.

Base case (i = 0):

Rad(F (k)
σ , Z) = Rad ({x 7→ xj , 1 ≤ j ≤ d} , Z)

E

[
sup

1≤j≤d

1

n

n∑
i=1

σiZij

∣∣∣∣∣Zn

]

≤
(

max
1≤j≤d

∥∥Zj
∥∥
2

)√
2 log d

= ∥Z∥2,∞
√

2 log d.

Inductive step. Note that

Fk =

{
x 7→

(
σk(Wkf

(k−1)
θ (x))

)
j
, f

(k−1)
θ ∈ F (k−1)

σ , ∥Wk∥ ≤ B

}
.

Now for a ∈ Rm(k−1) with ∥a∥1 ≤ 1,

a⊤f
(k−1)
θ (x) =

m(k−1)∑
j=1

aj(f
(k−1)
θ)j(x),

8

so
x 7→ a⊤f

(k−1)
θ (x) ∈ conv(−Fk ∪ Fk).

Now note that, for Wk with
∥∥W⊤

k

∥∥
1,∞ ≤ B, Wk

B has its each row with 1 norm bounded by 1, so x 7→ 1
BWkf

(k−1)
θ (x)

has its component functions (i.e.,
(

1
BWkf

(k−1)
θ (x)

)
j
) in conv(−Fk ∪ Fk). And therefore,

Fk = {x 7→ σ(Bg(x)), g ∈ conv(−Fk−1 ∪ Fk−1)} .

Hence by applying Lipschitz peeling,

Rad(Fk, Z) = Rad ({x 7→ σ(Bg(x)), g ∈ conv(−Fk−1 ∪ Fk−1)} , Z)

≤ LBRad (−Fk−1 ∪ Fk−1, Z)

≤ (2LB)Rad (Fk−1, Z)

≤ (2LB)k ∥Z∥2,∞
√

2 log d.

References
[1] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural

results. J. Mach. Learn. Res., 3:463–482, 2002.

[2] Weinan E, Chao Ma, Stephan Wojtowytsch, and Lei Wu. Towards a mathematical understanding of neural
network-based machine learning: what we know and what we don’t. CoRR, abs/2009.10713, 2020.

[3] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning—
with applications in R. Springer Texts in Statistics. Springer, New York, [2021] ©2021. Second edition [of
3100153].

9

	Review
	Basic Model for Supervised Learning
	Rademacher complexity
	Two Layer Neural Networks
	Multi Layer Neural Networks

	Notation and Goal
	Generalization error: two layer network
	Generalization error: multi layer network
	First “layer peeling” proof

