
Generalization errors for Deep Learning: Going Deep

김지수 (Jisu KIM)

딥러닝의 통계적 이해 (Deep Learning: Statistical Perspective), 2024년 2학기

This lecture note is a combination of Prof. Joong-Ho Won’s “Deep Learning: Statistical Perspective” with other
lecture notes. Main references are:

Tong Zhang, Mathematical Analysis of Machine Learning Algorithms, https://tongzhang-ml.org/lt-book.html
Matus Telgarsky, Deep learning theory lecture notes, https://mjt.cs.illinois.edu/dlt/
Weinan E, Chao Ma, Stephan Wojtowytsch, Lei Wu, Towards a Mathematical Understanding of Neural Network-

Based Machine Learning: what we know and what we don’t, https://arxiv.org/abs/2009.10713/

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rd, so x = (x1, . . . , xd).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn [ℓ(Y, f(X))] = argmin
f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

1

https://tongzhang-ml.org/lt-book.html
https://mjt.cs.illinois.edu/dlt/
https://arxiv.org/abs/2009.10713/

1.2 Rademacher complexity
Random variables ξ1, . . . , ξn are called Rademacher random variables if they are independent, identically distributed
and P(ξi = 1) = P(ξi = −1) = 1/2. Define the Rademacher complexity of F by

Radn(F) = E

(
sup
f∈F

(
1

n

n∑
i=1

ξif(Zi)

))
.

Some authors use a slightly different definition, namely,

Radn(F) = E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ξif(Zi)

∣∣∣∣∣
)
.

You can use either one. They lead to essentially the same results. In fact, under mild condition, two Rademacher
complexity are closely related, as below:

Lemma 1. Let ξ = (ξ1, . . . , ξn) be i.i.d. Rademacher. Suppose that for any ξ ∈ {±1}n, supf∈F
∑n

i=1 ξif(Zi) ≥ 0.
Then

Eξ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ξif(Zi)

∣∣∣∣∣
∣∣∣∣∣Z
]
≤ 2Eξ

[
sup
f∈F

1

n

n∑
i=1

ξif(Zi)

∣∣∣∣∣Z
]
.

Proof. Left as HW.

Intuitively, Radn(F) is large if we can find functions f ∈ F that “look like” random noise, that is, they are highly
correlated with σ1, . . . , σn. Here are some properties of the Rademacher complexityd

Lemma. (a) If F ⊂ G then Radn(F , Zn) ≤ Radn(G, Zn).

(b) Let conv(F) denote the convex hull of F . Then Radn(F , Zn) = Radn(conv(F), Zn).

(c) For any c ∈ R, Radn(cF , Zn) = |c|Radn(F , Zn).

(d) Let g : R → R be such that |g(y)− g(x)| ≤ L|x− y| for all x, y. Then Radn(g ◦ F , Zn) ≤ LRadn(F , Zn).

(e) Suppose {Fi}i∈I satisfies 0 ∈ Fi for each i ∈ I. Then Radn(
⋃

i∈I F , Zn) ≤
∑

i∈I Radn(Fi, Z
n).

1.3 Two Layer Neural Networks
A two-layer neural network takes an input vector of d variables x = (x1, x2, . . . , xd) and builds a nonlinear function
f(x) to predict the response y ∈ RD. What distinguishes neural networks from other nonlinear methods is the
particular structure of the model:

f(x) = fθ(x) = g

β0 +

m∑
j=1

βjσ(bj + w⊤
j x)

 ,

where x ∈ Rd, bj ∈ R, wj ∈ Rd, β0 ∈ RD, βj ∈ RD. See Figure 1.

• θ = {[β, aj , bj , wj] : j = 1, . . . ,m} denotes the set of model parameters.

• x1, . . . , xd together is called an input layer.

• Aj := σj(x) = σ(bj + w⊤
j x) is called an activation.

• A1, . . . , Am together is called a hidden layer or hidden unit; m is the number of hidden nodes.

• f(x) is called an output layer.

• g is an output function. Examples are:

– softmax gi(x) = exp(xi)/
∑D

l=1 exp(xl) for classification. The softmax function estimates the conditional
probability gi(x) = P (y = i|x).

2

Figure 1: Neural network with a single hidden layer. The hidden layer computes activations Aj = σj(x) that are
nonlinear transformations of linear combinations of the inputs x1, . . . , xd. Hence these Aj are not directly observed.
The functions σj are not fixed in advance, but are learned during the training of the network. The output layer is
a linear model that uses these activations Aj as inputs, resulting in a function f(x). Figure 10.1 from [4].

– identity/linear g(x) = x for regression.

– threshold gi(x) = I(xi > 0)

• σ is called an activation function. Examples are:

– sigmoid σ(x) = 1/(1 + e−x) (see Figure 2)

– rectified linear (ReLU) σ(x) = max {0, x} (see Figure 2)

– identity/linear σ(x) = x

– threshold σ(x) = I(x > 0), threshold gives a direct multi-layer extension of the perceptron (as considered
by Rosenblatt).

Activation functions in hidden layers are typically nonlinear, otherwise the model collapses to a linear model. So
the activations are like derived features - nonlinear transformations of linear combinations of the features.

1.4 Multi Layer Neural Networks
Modern neural networks typically have more than one hidden layer, and often many units per layer. In theory
a single hidden layer with a large number of units has the ability to approximate most functions. However, the
learning task of discovering a good solution is made much easier with multiple layers each of modest size.

A deep neural network refers to the model allowing to have more than 1 hidden layers: given input x ∈ Rd and
response y ∈ RD, to predict the response y. K-layer fully connected deep neural network is to build a nonlinear
function f(x) as

• Let m(0) = d and m(K) = D

• Define recursively

x(0) = x, (x ∈ Rm(0)

),

x
(k)
j = σ(b

(k)
j + (w

(k)
j)⊤x(k−1)), w

(k)
j , x(k−1) ∈ Rm(k−1)

, bj ∈ Rm(k)

, k = 1, . . . ,K.

f(x) = g(x(K)).

• θ = {[b(k)j , w
(k)
j] : k = 1, . . . ,K, j = 1, . . . ,m(k)} denotes the set of model parameters.

• m(k) is the number of hidden units at layer k.

3

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

Figure 2: Activation functions. The piecewise-linear ReLU function is popular for its efficiency and computability.
We have scaled it down by a factor of five for ease of comparison. Figure 10.2 from [4].

2 Notation and Goal
From here, we only consider regression problem, so g(x) = x. We assume β0 = 0 and bj = 0.

For the multi-layer neural network, for k = 1, . . . ,K, write Wk ∈ Rm(k)×m(k−1)

as i-th row of Wk is (w(k)
j)⊤, i.e.,

Wk =


(w

(k)
1)⊤

...
(w

(k)

m(k))
⊤

 ∈ Rm(k)×m(k−1)

,

And for k = 1, . . . ,K − 1, write σk : Rm(k) → Rm(k)

be a multivariate activation function. For example, for a
univariate activation function σ, σk can be set as σk(x1, . . . , xm(k)) = (σ(x1), . . . , σ(xm(k))). And let σK := g. Now,
assume b

(k)
j = 0 for k = 1, . . . ,K, and g = id. Then K-layer neural network can be described as

fθ(x) = σK(WKσK−1(WK−1 · · ·σ1(W1x) · · ·)).

Or inductively,
f
(0)
θ (x) = x, f

(k)
θ (x) = σk(Wkf

(k−1)
θ (x)), fθ(x) = fK

θ (x).

We impose the condition that ∥Wk∥ ≤ B for each k, where ∥·∥ is an appropriate matrix norm. Hence, for K-layer
neural network, the function space we consider is F (K)

σ , with F (0)
σ = {id} and

F (k)
σ =

{
f
(k)
θ : f

(k)
θ (x) = σk(Wkf

(k−1)
θ (x)), f

(k−1)
θ ∈ F (k−1)

σ , ∥Wk∥ ≤ B
}
.

Suppose the true regression function f∗ is in a function class M, so

y ≈ f∗(x), f∗ ∈ M.

Suppose are using the ℓ2-loss, so we find f among deep neural network class F that minimizes the expected risk
(평균위험),

f0 = argmin
f∈F

E(Y,X)∼P

[
(y − f(x))2

]
.

f0 is the expected risk mimizing function (평균위험최소함수). And we estimate f0 by f̂ using data by minimizes
on the empirical risk (경험위험) on training dataset, so

f̂ = argmin
f∈F

1

n

n∑
i=1

(yi − f(xi))
2.

4

Figure 3: Diagram representing the learning procedure, the three main paradigms and their corresponding errors.
Figure 2 from https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/.

f̂ is the empirical risk mimizing function (경험위험최소함수). And we set f̃ be the approximation of f̂ by optimization(최
적화); f̃ is the learned function (학습된 함수).

So there are three sources of errors: approximation error, generalization error, and optimization error. See
Figure 3.

f∗ − f̃ = f∗ − f0︸ ︷︷ ︸
approximation error

+ f0 − f̂︸ ︷︷ ︸
generalization error

+ f̂ − f̃︸ ︷︷ ︸
optimization error

.

3 Matrix norm, Sampling in Hilbert spaces, and basic Rademacher-
covering relationship

For a matrix M , the norm ∥M∥b,c for b, c ≥ 1 means that, by letting M (j) be j-th column of M , then first apply
b-norm to columns, and then c-norm to resulting vector, i.e.,

∥M∥b,c =

∑
j

∥∥∥M (j)
∥∥∥c
b

1/c

=

∑
j

(∑
i

|Mij |

)c/b
1/c

.

Frobenius norm ∥M∥F is ∥M∥2,2, i.e.

∥M∥F =

∑
i,j

|Mij |2
1/2

.

For q ≥ 1, the operator norm is defined as

∥M∥q = sup
x ̸=0

∥Mx∥q
∥x∥q

= sup
x:∥x∥q=1

∥Mx∥q .

Suppose µ = EV , where a random variable V is supported on a set S. A natural way to “simplify” µ is to instead
consider V̄ := 1

N

∑N
i=1 Vi, whre (V1, . . . , VN) are sampled i.i.d.. We want to argue V̄ ≈ µ; since we’re considering a

Hilbert space, we’ll try to make the Hilbert norm
∥∥µ− V̄

∥∥ small.

Lemma 2. Let µ = EV be given, with V supported on S, and let (V1, . . . , VN) be i.i.d. draws from the same
distribution. Then

EV1,...,VN

∥∥∥∥∥µ− 1

N

N∑
i=1

Vi

∥∥∥∥∥
2

≤ E ∥V ∥2

N
≤

supU∈S ∥U∥2

N
,

and moreover ther exist (U1, . . . , UN) in S so that∥∥∥∥∥µ− 1

N

N∑
i=1

Ui

∥∥∥∥∥
2

≤ EV1,...,VN

∥∥∥∥∥µ− 1

N

N∑
i=1

Vi

∥∥∥∥∥
2.

5

https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/

Proof. Let (V1, . . . , VN) be i.i.d. as stated. Then

EV1,...,VN

∥∥∥∥∥µ− 1

N

N∑
i=1

Vi

∥∥∥∥∥
2

= EV1,...,VN

∥∥∥∥∥ 1

N

N∑
i=1

(Vi − µ)

∥∥∥∥∥
2

= EV1,...,VN

1

N2

 N∑
i=1

∥Vi − µ∥2 +
∑
i ̸=j

⟨Vi − µ, Vj − µ⟩


= EV

1

N
∥V − µ∥2

= EV
1

N

(
∥V ∥2 − ∥µ∥2

)
≤ EV

1

N
∥V ∥2 ≤

supU∈S ∥U∥2

N
.

To conclude, there must exists (U1, . . . , UN) in S so that
∥∥∥µ− 1

N

∑N
i=1 Ui

∥∥∥2 ≤ EV1,...,VN

∥∥∥µ− 1
N

∑N
i=1 Vi

∥∥∥2. (“Prob-
abilistic method”)

Proposition 3. Given U ⊂ Rn,

E

(
sup
a∈U

(
1

n

n∑
i=1

ξiai

))
≤ inf

ϵ>0

(
ϵ√
n
+

1

n

(
sup
a∈U

∥a∥2

)√
2 logN (ϵ, U, ∥·∥2)

)
.

Proof. Let ϵ > 0 be arbitrary, and suppose N (ϵ, U, ∥·∥2) < ∞. Let V be the minimal cover, and V (a) be its closest
element to a ∈ U . Then

E sup
a∈U

(
1

n

n∑
i=1

ξiai

)
=

1

n
E sup

a∈U
⟨ξ, a− V (a) + V (a)⟩

=
1

n
E sup

a∈U
(⟨ξ, a⟩+ ∥ϵ∥ ∥a− V (a)∥)

≤ 1

n
E sup

a∈V

(
n∑

i=1

ξiai

)
+

ϵ√
n

≤ 1

n

(
sup
a∈V

∥a∥2

)√
2 log |V |+ ϵ√

n

≤ 1

n

(
sup
a∈U

∥a∥2

)√
2 log |V |+ ϵ√

n

4 Generalization error for multi layer network, Radamecher complexity
We will give one Rademacher complexity bound, obtained by inductively peeling off layers. This will depend on∥∥W⊤

i

∥∥
1,∞. This bound has a pretty clean proof, and appeared in [2].

4.1 First “layer peeling” proof: (1,∞) norm
Theorem 4. Let L-Lipschitz activations σi satisfy σi(0) = 0, and

F =
{
f : f(x) = σK(WKσK−1(· · ·σ1(W1x) · · ·)),

∥∥W⊤
k

∥∥
1,∞ ≤ B

}
,

i.e., F = F (K)
σ with the norm ∥Wk∥ =

∥∥W⊤
k

∥∥
1,∞. Then

Rad(F , Z) ≤ ∥Z∥2,∞ (2LB)K
√

2 log d.

6

Remark 5. Many newer bounds replace
∥∥W⊤

k

∥∥ with a distance to initialization. (The NTK is one regime where this
helps.)

(LB)K is roughly a Lipschitz constant of the network according to ∞-norm bounded inputs. Ideally we’d have
“average Lipschitz” not “worst case”, but we’re still far from that.

The factor 2K is not good and the next section removes it.
We’ll prove this with an induction “peeling” off layers. This peeling uses Lemma 1.2, which collects many standard

Rademacher properties.

Proof. Let Fk be the collection of functions computed by each node in kth layer, i.e.,

Fk =
{
(f

(k)
θ)j : Rm(k−1)

→ R : f
(k)
θ ∈ F (k)

σ , j = 1, . . . ,m(k)
}

=
{
x 7→ σk(Wkf

(k−1)
θ (x)), f

(k−1)
θ ∈ F (k−1)

σ ,
∥∥W⊤

k

∥∥
1,∞ ≤ B

}
.

It’ll be shown by induction that

Rad(Fk, Z) ≤
∥Z∥2,∞ (2LB)k

√
2 log d

n
.

Base case (k = 0):

Rad(F0, Z) = Rad ({x 7→ xj , 1 ≤ j ≤ d} , Z)

= E

[
sup

1≤j≤d

1

n

n∑
i=1

ξiZij

∣∣∣∣∣Zn

]

≤ 1

n

(
max
1≤j≤d

∥∥Zj
∥∥
2

)√
2 log d

=
∥Z∥2,∞

√
2 log d

n
.

Inductive step. Note that

Fk =

{
x 7→

(
σk(Wkf

(k−1)
θ (x))

)
j
, f

(k−1)
θ ∈ F (k−1)

σ , ∥Wk∥ ≤ B

}
.

Now for a ∈ Rm(k−1) with ∥a∥1 ≤ 1,

a⊤f
(k−1)
θ (x) =

m(k−1)∑
j=1

aj(f
(k−1)
θ)j(x),

so
x 7→ a⊤f

(k−1)
θ (x) ∈ conv(−Fk ∪ Fk).

Now note that, for Wk with
∥∥W⊤

k

∥∥
1,∞ ≤ B, Wk

B has its each row with 1 norm bounded by 1, so x 7→ 1
BWkf

(k−1)
θ (x)

has its component functions (i.e.,
(

1
BWkf

(k−1)
θ (x)

)
j
) in conv(−Fk ∪ Fk). And therefore,

Fk = {x 7→ σ(Bg(x)), g ∈ conv(−Fk−1 ∪ Fk−1)} .

Hence by applying Lipschitz peeling (Lemma 1.2 (d)),

Rad(Fk, Z) = Rad ({x 7→ σ(Bg(x)), g ∈ conv(−Fk−1 ∪ Fk−1)} , Z)

≤ LBRad (−Fk−1 ∪ Fk−1, Z) .

And then from 0 ∈ Fk, from multi-part lemma (Lemma 1.2 (e)),

Rad(Fk, Z) ≤ LBRad (−Fk−1 ∪ Fk−1, Z) .

≤ (2LB)Rad (Fk−1, Z)

≤
(2LB)k ∥Z∥2,∞

√
2 log d

n
.

7

4.2 Second “layer peeling” proof: Frobenius norm
Theorem 6 ([3]). Let 1-Lipschitz homogeneous activation σk be given, and

F =
{
f : f(x) = σK(WKσK−1(· · ·σ1(W1x) · · ·)),

∥∥W⊤
k

∥∥
F
≤ B

}
,

i.e., F = F (K)
σ with the norm ∥Wk∥ = ∥Wk∥F . Then

Rad(F , Z) ≤
BK ∥Z∥F

(
1 +

√
2K log 2

)
n

.

Remark 7. The criticisms of the previous layer peeling proof still apply, except we’ve removed 2K .

5 Generalization error for multi layer network, covering number
We will give two generalization bounds.

• The first will be for arbitrary Lipschitz functions, and will be horifically loose (exponential in dimension).

• The second will be, afaik, the tightest known bound for ReLU networks.

5.1 First covering number bound: Lipschitz functions
This bound is intended as a point of contrast with our deep network generalization bounds.

Theorem 8. Let R,B > 0, and let F denote all L-lipschitz functions from [−R,+R]
d → [B,B], where Lipschitz is

measured with respect to ∥·∥∞. Then the covering number N satisfies

logN (ϵ,F , ∥·∥∞) ≤ max

{
0,

⌈
4L(R+ ϵ)

ϵ

⌉d
log

⌈
2B

ϵ

⌉}
.

Remark 9. Exponential in dimension.
Revisiting the “point of contrast” comment above, our deep network generalization bounds are polynomial and

not exponential in dimension; consequently, we really are doing much better than simply treating the networks as
arbitrary Lipschitz functions.

5.2 “Spectrally-normalized” covering number bound

Theorem 10 ([1]). Fix multivariate activations {σk}Kk=1 with σk being Lk-Lipschitz and σk(0) = 0, and fix data
Z ∈ Rn×d, and define

Fn :=
{
σK(WKσK−1(· · ·σ1(W1Z

⊤) · · ·)),
∥∥W⊤

k

∥∥
2
≤ si,

∥∥W⊤
k

∥∥
2,1

≤ bi

}
,

and all matrix dimensions are at most m. Then

logN (ϵ,Fn, ∥·∥F) ≤
∥Z∥2F

∏K
k=1 L

2
ks

2
k

ϵ2

(
K∑

k=1

(
bk
sk

)2/3
)3

log(2m2).

Remark 11. Applying Proposition 3 gives

Rad(F , Z) = Õ

∥Z∥F
n

K∏
k=1

Lksk

(
K∑

k=1

(
bk
sk

)2/3
)3/2

 .

Proof uses ∥σ(M)− σ(M ′)∥F ≤ L ∥M −M ′∥F if σ is L-Lipschitz; in particular, it allows multi-variate gates
like max-pooling.

8

Let’s compare to our best “layer peeling” proof from Theorem 6, which had
∏

k ∥Wk∥F ≲ mK/2
∏

k ∥Wk∥2. If
we assume Lj = 1, then the comparison becomes

mK/2

(∏
k

∥Wk∥2

)
vs.

∑
k

∥∥W⊤
k

∥∥2/3
2,1

∥Wk∥2/32

3/2(∏
k

∥Wk∥2

)
.

Then from K ≤
∑

k

∥W⊤
k ∥2/3

2,1

∥Wk∥2/3
2

≤ Km2/3, the bound is better but still leaves a lot to be desired, and is loose in
practice.

The proof, as with Rademacher peeling proofs, is an induction on layers, similarly one which does not “coordinate”
the behavior of the layers; this is one source of looseness.

The first step of the proof is a covering number for individual layers.

Lemma 12. Fora fixed Z ∈ Rn×d,

logN
(
ϵ,
{
WZ⊤ :

∥∥W⊤∥∥
2,1

≤ b,W ∈ Rm×d
}
, ∥·∥F

)
≤

⌈
∥Z∥2F b2

ϵ2

⌉
log(2dm).

Proof. Let W ∈ Rm×d be given with
∥∥W⊤

∥∥
2,1

≤ b. Define sij := Wij/ |Wij |, and note that

WZ⊤ =
∑
i,j

eie
⊤
i Weje

⊤
j Z

⊤ =
∑
i,j

eiWij(Zej)
⊤ =

∑
i,j

|Wij | ∥Zej∥2
b ∥Z∥F

b ∥Z∥F sijei(Zej)
⊤

∥Zej∥2
.

Note by Cauchy-Schwarz that

∑
i,j

qij ≤
1

b ∥Z∥F

∑
i

√∑
j

W 2
ij

√∑
j

∥Zej∥22 =

∥∥W⊤
∥∥
2,1

∥Z∥F
b ∥Z∥F

≤ 1,

potentially with strict inequality, which we will want later. To remedy this, construct probability vector p from q
by adding in, with equal weight, some Uij and −Uij , so that the above summation form of WZ⊤ goes through
equally with p as with q.

Now define i.i.d. random variables (V1, . . . , VN), where

P (Vl = Uij) = pij ,

EVl =
∑
i,j

pijUij =
∑
i,j

qijUij = WZ⊤,

∥Uij∥ =

∥∥∥∥sijei(Zej)
⊤

∥Zej∥2

∥∥∥∥
F

· b ∥Z∥F = |sij | ∥ei∥2

∥∥∥∥ Zej
∥Zej∥2

∥∥∥∥
2

b ∥Z∥F = b ∥Z∥F ,

E ∥Vl∥2 =
∑
i,j

pij ∥Uij∥2 ≤
∑
i,j

pijb
2 ∥Z∥2F = b2 ∥Z∥2F .

By Lemma 2, there exist (V̂1, . . . , V̂N) with∥∥∥∥∥WZ⊤ − 1

N

∑
l

V̂l

∥∥∥∥∥
2

≤ E

∥∥∥∥∥EV1 −
1

N

∑
l

Vl

∥∥∥∥∥
2

≤ 1

N
E ∥V1∥2 ≤

b2 ∥Z∥2F
N

.

Furthermore, the matrices V̂l have the form

1

N

∑
l

V̂l =
1

N

∑
l

sleil(Zejl)
⊤

∥Zejl∥2
=

1

N

∑
l

sleile
⊤
jl

∥Zejl∥2
Z⊤;

by this form, there are at most (2md)N choices for V̂1, . . . , V̂N .

9

Lemma 13. Let Fn be the same image vectors as in Theorem 10, and let per-layer tolerances (ϵ1, . . . , ϵK) be given.
Then

logN

 K∑
k=1

Lkϵk

K∏
j=k+1

Lksk,Fn, ∥·∥F

 ≤
K∑

k=1

⌈
∥Z∥2F

∏
j<k L

2
js

2
j

ϵ2k

⌉
log(2m2).

Sketch of the proof. Let Z(k)denote the output of layer k of the network, using weights (Wk, . . . ,W1), meaning

Z(0) := Z and Z(k) := σk(Z
(k−1)W⊤

k).

The proof recursively constructs cover elements Ẑ(k) and weights Ŵk for each layer with the following basic
properties.

• Define Ẑ(0) := Z(0), and Ẑ(k) :=
∏

Bk
σk(Ẑ

(k−1)Ŵ⊤
k), where Bk is the Frobenius-norm ball of radius ∥Z∥F

∏
j<k Ljsj .

• Due to the projection
∏

Bk
,
∥∥∥Ẑ(k)

∥∥∥
F
≤ ∥Z∥F

∏
j<k Ljsj . Similarly, using σk(0) = 0,

∥∥Z(k)
∥∥
F
≤ ∥Z∥F

∏
j<k Ljsj .

• Given Ẑ(k−1), choose Ŵk via Lemma 12 so that
∥∥∥Ẑ(k−1)W⊤

k − Ẑ(k−1)Ŵ⊤
k

∥∥∥
F
≤ ϵk, whereby the corresponding

covering number Nk for this layer satisfies

logNk ≤


∥∥∥Ẑ(k−1)

∥∥∥2
F
b2k

ϵ2k

 log(2m2) ≤

⌈
∥Z∥2F b2k

∏
j<k L

2
js

2
j

ϵ2k

⌉
log(2m2).

• Since each cover element Ẑk depends on the full tuple (Ŵk, . . . , Ŵ1), the final cover is the product of the
individual covers (and not their union), and the final cover log cardinality is upper bounded by

log

K∏
k=1

Nk ≤
K∑

k=1

⌈
∥Z∥2F b2k

∏
j<k L

2
js

2
j

ϵ2k

⌉
log(2m2).

It remains to prove, by induction, an error guarantee

∥∥∥Z(k) − Ẑ(k)
∥∥∥
F
≤

k∑
j=1

Ljϵj

k∏
i=j+1

Lisi.

which is omitted here.

Once these Lemmas are shown, the proof for Theorem 10 is a parameter optimization, and I will omit the proof.

References
[1] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural

networks. CoRR, abs/1706.08498, 2017.

[2] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. J. Mach. Learn. Res., 3:463–482, 2002.

[3] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural networks.
Inf. Inference, 9(2):473–504, 2020.

[4] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning—
with applications in R. Springer Texts in Statistics. Springer, New York, [2021] ©2021. Second edition [of
3100153].

10

	Review
	Basic Model for Supervised Learning
	Rademacher complexity
	Two Layer Neural Networks
	Multi Layer Neural Networks

	Notation and Goal
	Matrix norm, Sampling in Hilbert spaces, and basic Rademacher-covering relationship
	Generalization error for multi layer network, Radamecher complexity
	First “layer peeling” proof: (1,) norm
	Second “layer peeling” proof: Frobenius norm

	Generalization error for multi layer network, covering number
	First covering number bound: Lipschitz functions
	“Spectrally-normalized” covering number bound

