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The lecture note is a minor modification of the lecture notes from Prof. Joong-Ho Won’s “Deep Learning:
Statistical Perspective” and Prof. Yongdai Kim’s “Statistical Machine Learning”.Also, see Section 2.1-2.6, 2.9 and
Section 4 from [1].

1 Statistical Machine Learning
There are several fields in machine learning.

• Supervised Learning (지도학습)

– Predict outcome variable (출력변수) using input variable (입력변수)
– 회귀(regression), 분류(classification), etc

• Unsupervised Learning (비지도학습)

– Clarify relations within input variables.
– 군집분석(clustering), 주성분분석(principal component analysis), 요인분석(factor analysis), etc

• Reinforcement Learning (강화학습)

– Learn decision making where environment changes according to actions
– multi-armed bandit problem, markov decision process, etc

This class mostly covers supervised learning.
Data(자료) always comes with random noise(잡음). To see the effect of random noise and whether the algorithm

works correctly, we need statistical analysis. In machine learning, statistical theory provides the following:

• understanding overfitting (과적합)

• understanding curse of dimensionality (차원의 저주)

• statistical theory for algorithm: consistency(일치성), optimality(최적합), uncertaintly quantification(불확실성
의 정량화)

2 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rp, so x = (x1, . . . , xp).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x), f ∈ M.

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.
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• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

3 Linear Regression Models and Nearest Neighbors
For the regression, we assume the additive noise model

y = f(x) + ϵ, f ∈ M.

Linear Regression Model (선형회귀모형) is to find the function f among

F =

β0 +

p∑
j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =

n∑
i=1

(yi − f(xi))
2

=

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂p) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

p∑
j=1

β̂jxj .

k-Nearest Neighbor(k-NN, k-최근접이웃) is to use those observations in the training set T closest in input space
to x to form f̂(x). For an input x ∈ Rp, let Nk(x) be the neighborhood of x defined by the k closest points among
the training sample x1, . . . , xn. Then the predicted function for k-nearest neighbor is

f̂(x) =
1

k

∑
xi∈Nk(x)

yi.
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4 Statistical Decision Theory
Let the training data T = {(yi, xi), i = 1, . . . , n} be i.i.d. from P , or y|X = x is i.i.d. (weaker). We seek a function
f(X) for predicting Y given values of the input X.

The Loss function ℓ : Y × Y → [0,∞) is used for penalizing errors in prediction.
The Risk (위험) or Expected Prediction Error (평균예측오차) is the expected loss as

R(f) = E(Y,X)∼P [ℓ(Y, f(X))]

= EX

[
EY |X [ℓ(Y, f(X)) |X]

]
.

Since we are trying to find f as a function of X, it suffices to minimize conditional risk EY |X [ℓ(Y, f(X)) |X = x]
pointwise. Hence the best predictor is

f0(x) = argmin
c∈Y

EY |X [ℓ(Y, c) |X = x] .

For the regression, the most common loss is the square loss

ℓ(y, a) = (y − a)2.

Then the conditional risk is factorized as

EY |X [ℓ(Y, f(X)) |X] = EY |X
[
(Y − f(X))2 |X

]
= EY |X

[
(Y − E [Y |X])

2 |X
]
+ (E [Y |X]− f(X))

2
,

so R(f) is minimized when f0(x) = E [Y |X = x] . This conditional expectation is called the regression function
(회귀함수). Still, E [Y |X = x] is usually unknown.

The nearest neighbor directly implement this using the training data:

f̂(x) = Ave (yi|xi ∈ Nk(x)) ,

where “Ave” denotes average, and Nk(x) is the neighbor containing the k points in the training dataset T closest
to x. Two approximations are happening here:

• expectation is approximated by averaging over sample data;

• conditioning at a point is relaxed to conditioning on some region close to the target point x, i.e., neighbor of
x.

In fact, under mild regularity conditions on the joint probability distribution P (X,Y ), one can show that as
n, k → ∞ such that k/n → 0, then [3]

f̂(x)
p→ E [Y |X = x] .

The condition k/n → 0 means that the model complexity k should grow slower than the sample size n.
The linear regression is a model-based approach. We assume that the regression function f0(x) is approximately

linear. For notational convenience, write x = (1, x1, . . . , xp)
⊤ so that the constant is also included in x. Then we

assume

E [Y |X = x] ≈ x⊤β =

p∑
j=0

βjxj .

This is a model-based approach - we specify a model for the regression function. We try to minimize risk among
functions of the form f(x) = x⊤β. Let

β∗ :=
(
E
[
XX⊤])−1 E [XY ] ,

then the risk of f becomes

E
[
(Y −X⊤β)2

]
= E

[(
Y −X⊤β∗

)2]
+ E

[(
X⊤β∗ −X⊤β

)2]
,

So β∗ is minimizing the risk. And the least square β̂ = (X⊤X)−1X⊤Y can be thought as the average over empirical
distribution of training data.
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Neural networks are also model based, although far more flexible than the rigid linear model.
For the classification, assume y ∈ Y = {1, . . . ,K}. Then the risk becomes

R(f) = EX

[
EY |X [ℓ(Y, f(X)) |X]

]
= EX

[
K∑

k=1

ℓ(k, f(X))P (Y = k|X)

]
.

Hence the conditional risk is minimized when

f0(x) = argmin
c∈Y

K∑
k=1

ℓ(k, c)P (Y = k|X = x).

For the classification, the most common loss is the 0-1 loss

ℓ(y, a) = I(y ̸= a) =

{
0, if y = a,

1, if y ̸= a.

With the 0-1 loss, the optimal prediction function is

f0(x) = argmin
c∈Y

K∑
k=1

I(k ̸= c)P (Y = k|X = x).

= arg max
k=1,...,K

P (Y = k|X = x).

This optimal classifier is called Bayes rule / Bayes classifier (베이즈분류 / 베이즈모형), and the risk is called the
Bayes risk (베이즈위험). Still, P (Y = k|X = x) is usually unknown.

Again, k-NN can directly approximate Bayes rule. The conditional probability P (Y = k|X = x) is approximated
as

1

k

∑
xi∈Nk(x)

I(yi = k),

so k-NN classifier becomes

f̂(x) = arg max
k=1,...,K

 ∑
xi∈Nk(x)

I(yi = k)

 .

5 Curse of Dimensionality
Suppose X = (X1, . . . , Xp) ∼ Uniform([0, 1]p). Suppose we want to set a hypercubical neighbor of a target point
x ∈ [0, 1]p to capture a fraction r of the observations. For this, the side length of the hypercube should be

ep(r) = r1/p.

e10(0.01) = 0.63 and e10(0.1) = 0.80, so to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighbor is no longer “local”.

Consider X = (X1, . . . , Xp) ∼ Uniform(BRp(0, 1)), where BRp(0, 1) = {x ∈ Rp : ∥x∥2 = 1} is the unit ball in
R2. For i-th data Xi = (Xi1, . . . , Xip), Ri :=

√∑p
j=1 X

2
ij is the distance of Xi to the origin, and R(1) = min1≤i≤n Ri

is the distance from the origin to the nearest neighbor. Since R(1) is also a random variable, then the median of
R(1) is

Med(R(1)) =
(
1− (1/2)1/n

)1/p

.

If n = 5000 and p = 10, then Med(R(1)) ≈ 0.52, more than halfway to the boundary. Hence most data points are
closer to the boundary of the sample space than to any other data point. This presents a problem since prediction
is much more difficult near the edges of the training sample.

Beyond statistical difficulty for inference, high dimension is very counter-intuitive: reference https://marckhoury.github.io/blog/counterintuitive-
properties-of-high-dimensional-space/
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Figure 1: The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit
cube. The figure on the right shows the side-length of the subcube needed to capture a fraction r of the volume
of the data, for different dimensions p. In ten dimensions we need to cover 80% of the range of each coordinate to
capture 10% of the data. Figure 2.6 from [1].

Figure 2: At each corner of the square we place a circle of radius 1/2. The inner circle is just large enough to touch
the circles at the corners. Figure 1 from [2].
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Figure 3: In three dimensions we place a sphere at the each of the eight corners of a cube. Figure 2 from [2].

Consider a square with side length 1. At each corner of the square place a circle of radius 1/2, so that the
circles cover the edges of the square. Then consider the circle centered at the center of the square that is just large
enough to touch the circles at the corners of the square. In two dimensions it’s clear that the inner circle is entirely
contained in the square.

We can do the same thing in three dimensions. At each corner of the unit cube place a sphere of radius 1/2,
again covering the edges of the cube. The sphere centered at the center of the cube and tangent to spheres at the
corners of the cube is shown in red in Figure 3. Again we see that, in three dimensions, the inner sphere is entirely
contained in the cube.

To understand what happens in higher dimensions we need to compute the radius of the inner sphere in terms
of the dimension.

(the radius of the inner sphere) = (the length of the half diagonal of the cube)−(the radius of the spheres at the corners).

The radius of the inner sphere is equal to the length of the diagonal of the cube minus the radius of the spheres at
the corners. See Figure . The half diagonal length is

√
d/2, and the latter value is always 1/2, and hence the radius

of the inner sphere is √
d− 1

2
.

When d ≤ 3,
√
d−1
2 < 1

2 and the sphere is strictly inside the cube. However in four dimensions, the radius of the
inner sphere is

√
d−1
2 = 1

2 , so the inner sphere touches the sides of the cube. In five dimensions, the radius of the
inner sphere is 0.618034, and the sphere starts poking outside of the cube! By ten dimensions, the radius is 1.08114
and the sphere is poking very far outside of the cube!

6 Overfitting and the Bias-Variance Tradeoff
In k-Nearest Neighbor, the neighbor size k determines the complexity of the prediction model. To choose k, if we
know the probability distribution (Y,X) ∼ P , then we can minimize the risk (위험)

E(Y,X)∼P [ℓ(Y, f(X))] .
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Figure 4: The size of the radius of the inner sphere is growing as the dimension increases because the distance to
the corner increases while the radius of the corner sphere remains constant. Figure 3 from [2].

However, P is usually unknown. One way to estimate the risk is by Empirical Risk (경험 위험) or Training Error
(학습오차)

1

n

n∑
i=1

ℓ(Yi, f(Xi)),

where the training data T = {(Yi, Xi) : i = 1, . . . , n}.
However, training error always underestimates prediction error, since the same dataset T is used for estimating

the prediction model and estimating prediction error. Better estimation for the prediction error is the test error,
where the prediction error is computed on the separate test data. The typical behavior of the prediction error on
the test set is as in Figure 5. As the model becomes more complex, the prediction error first decreases but then
increases, while test error monotonically decreases. Hence, when the model is chosen according to the training error,
then the prediction error can be large: this is called overfitting. This phenomenon is explained by the bias-variance
tradeoff.

Suppose the regression model
Y = f(X) + ϵ,

with E [ϵ] = 0 and V ar [ϵ] = σ2, and we use the square loss ℓ(y, a) = (y−a)2. Let f(X, T ) be the predicted function
trained on the training set T . Then the risk for f(X, T ) is

R(f) = E
[
(Y − f(X, T ))2

]
= E

[
(Y − f(X))2

]
+ E

[
(f(X)− f(X, T ))2

]
= σ2 + EX

[
(f(X)− ET [f(X, T )|X])

2
]
+ EX

[
ET

[
(f(X, T )− ET [f(X, T )|X])

2 |X
]]

= σ2 + EX

[
BiasT (X)2 + V arianceT (X)

]
.

Then
EY |X

[
(Y − f(X))2|X

]
= EY |X

[
(Y − E [Y |X])

2 |X
]
+ (E [Y |X]− f(X))

2
,

In general, as the model becomes more complex, then the bias(편의) decreases and the variance(분산) increases.
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Figure 5: Test and training error as a function of model complexity. Figure 2.11 from [1].

For k-Nearest Neighbor,

f̂(x) = f(x, T ) =
1

k

k∑
l=1

(f(x(l)) + ϵ(l)),

where (l) is the index for l-th nearest neighbor. Then the bias and variance becomes

BiasT (x) = f(x)− 1

k

k∑
l=1

f(x(l)),

and

V arianceT (x) =
σ2

k
.

When k = 1, then the bias is minimized and the variance is maximized. On the other hand, when k = n, then the
bias is maximized and the variance is minimized.

7 Comparison of Linear Regression with Nearest Neighbors
Below is the code for comparing linear regression with nearest neighbors. We measure the performance by MSE
(Mean Squared Error)

1

n

n∑
i=1

(Yi − f(Xi))
2,

either on training data or test data.

require(caret)

## Loading required package: caret
## Warning: package ’caret’ was built under R version 4.3.3
## Loading required package: ggplot2
## Loading required package: lattice
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mse <- function(y_pred, y_true) {

return (mean((y_pred - y_true)^2))
}

linear_knn_compare <- function(data_train, data_test) {

par(mfrow = c(2, 2))

model_lr <- lm(y ~ x, data = data_train)
plot(data_train[["x"]], data_train[["y"]], main = "Linear Regression",

xlab = "x", ylab = "y", pch = 16)
abline(model_lr)
cat(c("MSE of Linear Regression on Training:",

mse(data_train[["y"]], predict(model_lr, newdata = data_train)), "\n"))
cat(c("MSE of Linear Regression on Test:",

mse(data_test[["y"]], predict(model_lr, newdata = data_test)), "\n"))

for (k in c(1, 5, 15)) {
model_knn <- caret::knnreg(y ~ x, data = data_train, k = k)
plot(data_train[["x"]], data_train[["y"]],

main = paste("Nearest Neighbor with k =", k), xlab = "x", ylab = "y",
pch = 16)

lines(data_train[["x"]], predict(model_knn, newdata = data_train))
cat(c("MSE of Nearest Neighbor with k =", k, "on Training:",

mse(data_train[["y"]], predict(model_knn, newdata = data_train)),
"\n"))

cat(c("MSE of Nearest Neighbor with k =", k, "on Test:",
mse(data_test[["y"]], predict(model_knn, newdata = data_test)), "\n"))

}
}

Suppose we have 100 training data and 900 test data, and ϵ ∼ N(0, 1).

set.seed(0)
x <- rnorm(1000)
ep <- rnorm(1000)
train <- sort(x[1:100], index.return = TRUE)[["ix"]]
test <- 101:1000

First, we consider the simulation
y = x+ ϵ.

The result is as follows:

Method MSE on Training MSE on Test
Linear 1.0447 1.1621
1-NN 0 2.0972
5-NN 0.9381 1.2779
15-NN 1.0053 1.2757

# y = x + ep
y_l <- x + ep
data_l_train <- list(x = x[train], y = y_l[train])
data_l_test <- list(x = x[test], y = y_l[test])

linear_knn_compare(data_l_train, data_l_test)

## MSE of Linear Regression on Training: 1.04471978605025
## MSE of Linear Regression on Test: 1.16212381385859
## MSE of Nearest Neighbor with k = 1 on Training: 0
## MSE of Nearest Neighbor with k = 1 on Test: 2.09716012610056
## MSE of Nearest Neighbor with k = 5 on Training: 0.938067727758741
## MSE of Nearest Neighbor with k = 5 on Test: 1.27788806945154
## MSE of Nearest Neighbor with k = 15 on Training: 1.00528738504805
## MSE of Nearest Neighbor with k = 15 on Test: 1.27565679650095
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Second, we consider the simulation
y = x(1− x) + ϵ.

The result is as follows:

Method MSE on Training MSE on Test
Linear 2.4477 3.2330
1-NN 0 2.2437
5-NN 1.1955 1.7266
15-NN 1.5284 2.0868

# y = x(1-x) + ep
y_q <- x * (1 - x) + ep
data_q_train <- list(x = x[train], y = y_q[train])
data_q_test <- list(x = x[test], y = y_q[test])
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linear_knn_compare(data_q_train, data_q_test)

## MSE of Linear Regression on Training: 2.44774751766011
## MSE of Linear Regression on Test: 3.23304666428842
## MSE of Nearest Neighbor with k = 1 on Training: 0
## MSE of Nearest Neighbor with k = 1 on Test: 2.24369404278609
## MSE of Nearest Neighbor with k = 5 on Training: 1.19552889833504
## MSE of Nearest Neighbor with k = 5 on Test: 1.72664570974827
## MSE of Nearest Neighbor with k = 15 on Training: 1.52842407126519
## MSE of Nearest Neighbor with k = 15 on Test: 2.08680791517323
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From the simulations, we can compare Linear Regression vs Nearest Neighbor as follows:
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Method Linear Regression Nearest Neighbor
Assumption Linear X

Required Data Size (Relative) Small Large
Interpretation Easy Impossible

Prediction Good if Linear is satisfied, Bad otherwise works regardless of assumptions
Tuning Parameter X neighborhood size k

Also, we can see that:

• training error is not a good estimate of prediction error.

• As model complexity grows, we can see bias-variance tradeoff

• Neighborhood size k determines the model complexity of Nearest Neighbor

8 Logistic Regression / Classification (로지스틱 회귀 / 분류)
The logistic model assumes that for 1 ≤ k ≤ K − 1,

Pr(y = k|x) = exp(βk0 + x⊤βk)

1 +
∑K−1

l=1 exp(βl0 + x⊤βl)
,

and
Pr(y = K|x) = 1

1 +
∑K−1

l=1 exp(βl0 + x⊤βl)
.

In other words, βK0 = 0 and βK = 0, which is for identifiablity problem. The Bayes classifier is

G(x) = arg max
k=1,...,K

P (y = k|x).

Now, the decision boundary for i and j is a subset of where Pr(y = i|x) = Pr(y = j|x), and this is a hyperplane
defined as {

x ∈ Rp : (βi0 − βj0) + x⊤(βi − βj) = 0
}
.

Hence logistic classification is a linear classifier.
There are several ways to motivate logistic regression: for simplicity let Y = {1, 2}.
1. Consider a linear regression

Pr(y = 1|x) = β0 + x⊤β.

It violates that the constraint
Pr(y = 1|x) ∈ [0, 1].

A simple remedy for this problem is to set

Pr(y = 1|x) = F (β0 + x⊤β),

where F is a continuous and strictly increasing function with F (−∞) = 0 and F (∞) = 1. Some examples for F are:

• Gaussian: Probit model

• Gompertz: F (x) = exp(− exp(x)), popularly used in Insurance

• Logistic: F (x) = exp(x)/(1 + exp(x)).

2. Consider the decision boundary
{x : Pr(Y = 1|X = x) = 0.5}.

This is equivalent to
{x : log(Pr(Y = 1|X = x)/Pr(Y = 2|X = x)) = 0}.

Suppose that the log-odds is linear. That is,

log(Pr(Y = 1|X = x)/Pr(Y = 2|X = x)) = β0 + x⊤β,
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and this implies that

Pr(Y = 1|X = x) =
exp(β0 + x⊤β)

1 + exp(β0 + x⊤β)
.

For the estimation, we use the maximum likelihood approach. The likelihood is simply the probability of the
observations given as

L(β0, β) =

n∏
i=1

Pr(y = yi|x = xi),

and we estimate β by maximizing the log-likelihood. For two-class case where Y = {1, 2}, the log-likelihood is
simplified as

l(β10, β1) =

n∑
i=1

(
I(yi = 1)(β10 + x⊤

i β1)− log(1 + exp(β10 + x⊤
i β1))

)
.

One obstacle of using the logistic regression would be computation since maximizing the log-likelihood is not
easy. We do it by using the Iteratively Reweighted Least Squares (IRLS) algorithm.

9 Linear Discriminant Analysis (선형판별분석)
Let fk(x) is the class conditional density of x in class y = k where y ∈ Y = {1, . . . ,K}, i.e.,

fj(x) = p(x|y = k), k = 1, . . . ,K.

Let
πk = Pr(y = k), k = 1, . . . ,K,

be the prior probabilities, with
∑K

k=1 πk = 1. Recall that the Bayes classifier is

G(x) = arg max
k=1,...,K

P (Y = k|X = x).

Then Bayes theorem gives us

P (Y = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

.

To see this, assume X is discrete for simplicity, then

P (Y = k,X = x) = P (Y = k|X = x)P (X = x) = P (Y = k|X = x)fk(x)

And hence the Bayes classifier is given as

G(x) = arg max
k=1,...,K

P (Y = k|X = x) = arg max
k=1,...,K

fk(x)πk.

Suppose that we model each class density as multivariate Gaussian

fk(x) =
1

(2π)p/2 |Σk|1/2
exp

(
−1

2
(x− µk)

⊤Σ−1
k (x− µk)

)
,

where µk is the mean vector and Σk is the covariance matrix. Then

log (fk(x)πk) = −1

2
log |Σk| −

1

2
(x− µk)

⊤Σ−1
k (x− µk) + log πk − p

2
log(2π).

Hence by letting

δk(x) := −1

2
log |Σk| −

1

2
(x− µk)

⊤Σ−1
k (x− µk) + log πk,

then the Bayes classifier is given as

G(x) = k such that δk(x) > δl(x) for all l ̸= k.

We call the functions δj(x) the discriminant functions.

13



For Linear Discriminant Analysis (LDA), we assume that

Σk = Σ for all k.

In this case, we can see that

log
P (Y = k|X = x)

P (Y = l|X = x)
= log

fk(x)

fl(x)
+ log

πk

πl

= log
πk

πl
− 1

2
(µk + µl)

⊤Σ(µk − µl) + x⊤Σ(µk − µl).

Hence the Bayes classifier is given as

G(x) = k such that δk(x) > δl(x) for all l ̸= k,

where
δk(x) := x⊤Σ−1µk − 1

2
µ⊤
k Σµk + log πk.

That is, the Bayes classifier is a linear classifier. The functions δk are called the linear discriminant functions.
If we don’t assume Σk = Σ for all k, then the decision boundary of the Bayes classifier is a quadratic function.

This is called Quadratic Discriminant Analysis (QDA).
We can easily estimate µj and Σj by

• π̂j = nj/n, where nj =
∑n

i=1 I(yi = j).

• µ̂j =
∑n

i=1 xiI(yi = j)/nj .

• Σ̂j =
∑n

i=1(xi − µ̂j)(xi − µ̂j)
⊤I(yi = j)/(nj − 1).

And we estimate Σ by the pooled variance-covariance matrix

Σ̂ =
1

n−K

K∑
j=1

(nj − 1)Σ̂j .

10 LDA or Logistic Classification
• Logistic classification and LDA both have linear decision boundaries.

• Logistic classification only needs the specification of the conditional distribution Pr(Y = k|X = x), that is,
Pr(X = x) is completely undetermined. On the other hand, the LDA needs the specification of the joint
distribution Pr(Y,X). In fact, in LDA, the marginal distribution of x is a mixture of Gaussians

Pr(x) =

K∑
k=1

πkN(µk,Σ).

Hence, LDA needs more assumptions and hence less applicability than the logistic regression.

• Categorical input variables are allowable for the logistic regression (using dummy variables) while LDA has
troubles with such inputs.

• However, LDA is a useful tool when some of the output are missing (semi-supervised learning).

• LDA is useful when Gaussian assumptions are reasonable.

• LDA works better for multi-class problems (K > 2).

• In practice, for a two-class problem, logistic classification and LDA are often very similar.

14



Figure 6: The data come from three classes in R2 and are easily separated by linear decision boundaries. The right
plot shows the boundaries found by linear discriminant analysis. The left plot shows the boundaries found by linear
regression of the indicator response variables. The middle class is completely masked (never dominates). Figure 4.2
from [1].

10.1 Multi-class problems with regression approach
There is a serious problem with the regression approach when the number of classes K ≥ 3, especially prevalent
when K is large. Because of the rigid nature of the regression model, classes can be masked by others. Figure 6
illustrates an extreme situation when K = 3. The three classes are perfectly separated by linear decision boundaries,
yet linear regression misses the middle class completely.

In Figure 7 we have projected the data onto the line joining the three centroids (there is no information in the
orthogonal direction in this case), and we have included and coded the three response variables Y1, Y2, and Y3.
The three regression lines (left panel) are included, and we see that the line corresponding to the middle class is
horizontal and its fitted values are never dominant! Thus, observations from class 2 are classified either as class 1 or
class 3. The right panel uses quadratic regression rather than linear regression. For this simple example a quadratic
rather than linear fit (for the middle class at least) would solve the problem, but in general, if K ≥ 3 classes are
lined up, polynomial terms up to degree K − 1 might be needed to resolve them.

Note: masking problem is severe in ordinary regression (that is, regress Y on X), but it is also present in logistic
regression as well. For tackling masking problem, LDA is better than logistic classification.
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Figure 7: The effects of masking on linear regression in IR for a three-class problem. The rug plot at the base
indicates the positions and class membership of each observation. The three curves in each panel are the fitted
regressions to the three-class indicator variables; for example, for the blue class, yblue is 1 for the blue observations,
and 0 for the green and orange. The fits are linear and quadratic polynomials. Above each plot is the training error
rate. The Bayes error rate is 0.025 for this problem, as is the LDA error rate. Figure 4.3 from [1].
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