Concentration of Measure
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The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning”.

1 Introduction

Often we need to show that a random quantity f(Z1,...,Z,) is close to its mean u(f) = E(f(Z1,...,Z,)). That
is, we want a result of the form

P(f(Z1,. - Zn) = u(f)] = €) <. (1)
Such results are known as concentration of measure. These results are fundamental for establishing performance
guarantees of many algorithms. In fact, for statistical learning theory, we will need uniform bounds of the form

JI”(suplf(Zl,-..,Zn)—u(f)lZe) <0 (2)
feF

over a class of functions F.

2 Examples

Example (Empirical Risk Minimization for Classification). Consider empirical risk minimization in classification.
The data are (X1,Y1), ..., (Xn,Yy) where V; € {0,1} and X; € R Given a classifier h : R? — {0, 1}, the training

error is

R 1 n

Ru(h) = — Z;I(Yi # h(Xi)).
The true classification error is

R(h) = BP(Y # h(X)).

We would like to know if R(h) is close to R(h) with high probability. This is precisely of the form (1) with
Z; = (X3,Y;) and f(Zv,...,Z,) = 230 I(Y; # h(X;)). Now let H be a set of classifiers. Let h minimize the
training error R(h) over H and let h, minimize the true error R(h) over H. We will see in the next chapter that if

a uniform inequality like (2) holds then R(h) is close to R(h).

Example (k-means Clustering). The risk of k-means clustering with centers ¢ = (¢y, ..., ¢k) is
Rl = B [min | ~ |
j

and the empirical risk is
n

i) = 5 3 [minl - .

i=1
In practice we minimize R(c) but we would really like to minimize R(c). To show that minimizing R(c) is approxi-
mately the same as minimizing R(c) we need to show that
> e)

P(sgp HI%(C) — R(c)

is small.



Example (Cross Validation). Concentration of measure can be used to prove that cross-validation chooses good
classifiers and good regression estimators. First consider regression. Let M = {m; : t € T} be a set of regression
estimators depending on the training data and depending on a tuning parameter ¢t. Assume that T is finite. Let
M. € M minimize [ |/ (z) — r(x)]?dP(z) where r(z) = E(Y|X = z) is the true regression function. Choose f to
minimize the hold-out error

1 ¢ .
LS (X))
n-
i=1
Let 1 = 71;. Then, we shall see that we have the following result (due to [5]). For any § > 0,

C(1+ log(|T
O+ log(iT)

E/|m(a:) (@) 2dP (@) < (1+6)E/|m*(az) (@) 2dP(x)

A similar result holds holds for classification. Suppose H is a set of classifiers indexed by t. Let h. be the best
classifier in H. Let D = {(X1,Y1),...,(Xn,Y,)} denote hold-out data from which we estimate the risk by

S £ (X)),
We then have
E[P(r #h(x)] <E [P(r £ ()] +/ ST

Notice that the rate is better for regression than for classification. This is because of the different loss functions.

Besides classification, concentration inequaities are used for studying many other methods such as clustering,
random projections and density estimation.

3 Notation

Notation

If P is a probability measure and f is a function then we define

Pf=P(f) = / f(2)dP(2) = E(£(2)).

Give Z1,...,Z,, let P, denote the empirical measure that puts mass 1/n at each data point:
noT Z;e A
Pn(A) — Zz:l ( )
n

where I(Z; € A)=1if Z; € A and I(Z; € A) = 0 otherwise. Then we define

Paf = Pal) = [ 1PA) = > (2.
i=1

4 Basic Inequalities

We begin with two key results: Hoeffding’s inequality and McDiarmid’s inequality.

Hoeffding’s Inequality. Suppose that a random variable Z has a finite mean and that P(Z > 0) = 1. Then, for
any € > 0,

E[Z]:/Ooozdp(z)z[ozdp(z)ze[odp(z)zep(2>e),



which yields Markov’s inequality:

E(Z)

€

P(Z >¢) <

An immediate consequence is Chebyshev’s inequality

2

E(Z —pu)? o
PUZ—p 2= (12 pP 2 ) < IO

where = E(Z) and 0% = Var(Z). If Zy,. .., Z, are iid with mean p and variance o2 then, since Var(Z,) = o%/n,
Chebyshev’s inequality yields

2
P(’?n—,u|26)<o—

= 2
ne
While this inequality is useful, it does not decay exponentially fast as n increases.
To improve the inequality, we use Chernoff’s method: for any t > 0,

P(Z > €) = P(e? > e°) = P(e!? > ') < e7IE(e!?).

We then minimize over ¢ and conclude that:

P(Z > €) < inf e *“E(e!?).

>0
Before proceeding, we need the following result.
Lemma 1. Let Z be a mean 0 random variable such that a < Z <b. Then, for any t,
E [etz] < et?(b—a)?/8
Proof. Since a < Z < b, we can write Z as a convex combination of ¢ and b, namely, Z = ab + (1 — «)a where
a=(Z —a)/(b—a). By the convexity of the function y — e*¥ we have

Z —a tb+b—Z
b—a6 b—a

6tZ < aetb + (1 _a)eta _ ta

Take expectations of both sides and use the fact that E(Z) = 0 to get
tZ @t b4
Ee*™? < — e’ + el = e9(w)
- b-ua b—a

where u = t(b—a), g(u) = —yu+log(l—~vy+~e*) and v = —a/(b—a). Note that g(0) = ¢’(0) = 0. Also, elementary
calculus shows that
//( ) _ (1 - ﬁY)A/eu
(1= +e)?
then AM-GM inequality shows that ¢”(u) < %, and the equality holds if and only if u = log (—2). Now, Taylor’s
theorem with the integral form of the remainder gives

9(u) = g(0) + ug'(0) + / " s) (u — s)ds = / "' (s) (u — s)ds.

Then note that (1 —¢”(s)) (u — s) as a function of s is continuous and strictly positive on (0,u) with possibe
exception at s =log (—2), so [ (§ — ¢”(s)) (u — s)ds > 0 and

g(u) = /Oug”(s)(u —s)ds < /Ou i(u —s)ds = %

Hence,
EetZ < eg(u) < 6t2(b7a)2/8'



Theorem 2 (Hoeflding). If Z1,Zs, ..., Z, are independent with P(a; < Z; < b;) =1, then for any t > 0
P (|7n — ,u| >€) < 26727162/6,
where ¢ =n~ Y30 (b — a;)? and Z,, = L0, Z;.

Proof. For simplicity assume that E(Z;) = 0. Now we use the Chernoff method. For any ¢ > 0, we have, from
Markov’s inequality, that

1 — t o "
- , _ v , _ (t/n) S0, Z; te
P(n;ZZZe>]P’<n;ZIZt6>P<e 1 Zfi)
< e HE {e(t/n)zg;l Z} _ ot HE [e(t/n)Zi} (3)
< e—tfe(ﬁ/nz)fo:l(bi—ai)z/g

where the last inequality follows from Lemma 1. NOW2W6 minimize the right hand side over ¢. In particglar, we set
t=den?/ 37" (b —a;)? and get P (Z,, > €) < e 2"¢/. By a similar argument, P (Z,, < —€) < e~2"¢/ and the
result follows. O

Corollary 3. If Z1, Zs, .. ., Z, are independent with P(a; < Z; < b;) = 1 and common mean p, then, with probability
at least 1 — 6,

Zn — 1l < %log (?)
where c =n~1 Y"1 (b — a;)?.
Corollary 4. If 71,75, ..., Z, are independent Bernoulii random variables with P(Z; = 1) = p then, for any e > 0,
P(|Z,—pl>¢€) < 2e=27¢" qnd with probability at least 1 — § we have that |Z,, —p| < 1/2% log (%)
Example (Classification). Returning to the classification problem, let h be a classifier and let f(z) = I(y # h(x))

where z = (z,y). Then Hoeflding’s inequality implies that |R(h) — R, (h)| < 1/% log (%) with probability at least
1-9.

McDiarmid’s Inequality. So far we have focused on sums of random variables. The following result extends
Hoeffding’s inequality to more general functions f(z1,...,2y,).

Theorem 5 (McDiarmid). Let Z1,...,Z, be independent random variables. Suppose that

sup f(zlv"~azi717zi7zi+17"~7zn)_f(zlv'"7zi71azg7'zi+17~"azn) Sciv (4)

!
2150320525

fori=1,...,n. Then

P(’f(Zl,...,Zn) —E(f(Zl,...,Zn))‘ > e> <2 exp (—E,%jCQ) .

Proof. First we write

P(f(Z1, ...\ Z0) —E(f(Z1,.... Z2))| > )
=P (f(Z1,.... Z0) —B(f(Z1, ... Z0)) =€) + P(f(Z1, ..., Z0) —E(f(Z1, ..., Z0)) < —e).

We will show the first inequality. The second follows similarly. Let V; = E(g|Z1,...,Z;) —E(g9|Z1,...,Zi—1). Then
[(Zy,...,Z,) = E(f(Zy,...,Zy)) = >, Vi and E(V;|Z4,. .., Z;—1) = 0. Using a similar argument as in Lemma 1,
we have

E(e!Vi|Zy, ..., Zi_1) < e /8, (5)




Now, for any t > 0,

P(f(Zy,....Z,) —EB(f(Z1,...,20)) 2@:1@(2%26)

i=1

=P (etz:'zl Vi > 6te) < e *E (etz;;l w)

Zla"'7Zn—1>>

— ¢ IR (et SIS ViR (etVn

< e_tﬁetchl/S]E (et Z;:ll ‘/7)

< e tee(tP i €f) /8,
The result follows by taking t = 4e/> " | ¢? O

i=1"%1"

If we take f(z1,...,2,) =n"1! Z?:l z; then we get back Hoeffding’s inequality. As an example of the application
of McDiarmid’s inequality, we consider bounding an average of the form n™' """ | ¢(Z;) where ¢ is some, possibly
high-dimensional, mapping.

Theorem 6 (Shawe-Taylor and Cristianini). Suppose that X € R? and let ¢ : R? — F where F is a Hilbert space.

Let B = sup, ||¢(2)|| and assume that B < co. Then
1
2+4/2log (5”) < 0.

B

P > —
( n — - \/ﬁ
Proof. Let S = (Z1,...,%Z,) and let 8" = (Z1,...,Z;-1,2Z},Zi11, ..., Zy). Define

Pla($) - Bla(s) 2 ) <o (T ). 0

9(8) =

D CARA))

Then |g(S) — ¢(S")| < 2B/n, so McDiarmid’s inequality implies that

It remains to bound E(g(S)). Let S’ = (Z1,...,Z],) denote a second, independent sample and let o = (01,...,0,)
denote independent random variables satisfying P(o; = 1) = P(0; = —1) = 1/2. (The random variables o; are called
Rademacher variables and will be discussed in more detail in the next section.) Let ¢g =n~'>"" | #(Z;). Then,

E(9(8)) = E(||¢s —E(¢s)|]) =E(||¢s —E(¢s)]])

= E(|[E(@s — (os))]) <E(|[¢s — (¢s)]])
= E <111 ZUi(¢(Zi) - ¢(Zz/))’ ) <2E (:L ZUi¢(Zi)
i1 i1

= 92E 711\] Zof(/)Q(Zi) + ZUin¢(Zi)¢(Zj))

i#]
2 n
< S B D0t Z) + ) oio6(Z)é(Z))
i=1 i#j
2 | 2B
= — E(¢?(Z;)) < —.
- ; (#*(Z) < 7
The result follows by combining this with (6) and setting e = B %log (%) O



As another example, suppose that Zi,...,Z, are real-valued random variables with cdf F. Let F,(z) =
n Y " I(Z; < z) be the empirical cdf. Let f(Zi,...,Z,) = sup, |F,(z) — F(z)|. If we change on Z; then f
changes by at most 1/n. Hence,

P <sgp IFul) = F(2)| = Elsup | Fa(2) — F(2))) = ) <o, (7)

The Gaussmn Tail Inequality. Let X ~ N(0,1). Hence, X has density ¢(z) = (2r)~/2e=*"/2 and distribution
function ®(z) = [*__ ¢(s)ds. For any € > 0,

P(X > €)= /oo é(s)ds < %/OO sb(s)ds = 7% /oo & (5)ds = @ < %6762/2, 8)

By symmetry we have that
2
P(X|>e) < - e~ /2,

Now suppose that Xi,..., X, ~ N(u,0?). Then X,, =n~! Zi:l X; ~ N(p,0?/n). Let Z ~ N(0,1). Then,

=~
|
3
|
=
Vv
o
I

P(ValX, — ul/o = Vae/o) = (12| = vne/o) (9)

20 6777462/(20-2) < einEQ/@UQ) (10)

ev/n -

for all large n. This bound is very powerful because the probability on the right hand side goes to 0 exponentially
fast as the sample size n increases.

Bernstein’s Inequality. Hoeffding’s inequality does not use any information about the random variables except
the fact that they are bounded. If the variance of X; is small, then we can get a sharper inequality from Bernstein’s
inequality. We begin with a preliminary result.

Lemma 7. Suppose that | X| < c and E(X) = 0. For any t > 0,
tc
X 9 o [€°—1—tc
) e {0 (S ) |

Proof. Let F =%, T7PE(XT) Then,

rlo?
X
E(etX)=]E<1+tx+Z '
r=2

where 0% = Var(X).

) =1+ 20°F <o F,
For r > 2, E(X") = E(X"2X?) < ¢" 202 and so
tr— 2 e 2 2

1 X (te)"  efe—1—tc
F < = .
Z rlo? (tc)2 z; 7! (te)?

1=

Hence, E(e!X) < exp {t2 2%} O

Theorem 8 (Bernstein). If P(|X;| < c¢) =1 and E(X;) = 0 then, for any t > 0,

— ne2
(a2 ) <20 ] 20 L,
202 + 2ce/3

where 0> = L3 Var(X;).



Proof. From Lemma 7,

_ e —1—te
E(e!Xi) < exp {tzaf(tc)z} ,

where 07 = E(X?). Now,

P(X,>¢)=P (Z X; > ne) = P(etﬂ:l Xi > e”“)
i=1
< e—tneE(et e X,i) _ e—tne HE(etXi)
=1
te 1 —¢
<e exp {ntQUQe(tC)ZC} .

Take t = (1/c)log(1 + ec/o?) to get
— no?  /ce
P(X,>¢) < exp{—CQh (02)} ,
where h(u) = (1 + u)log(1 + u) — u. The results follows by noting that h(u) > u?/(2 + 2u/3) for u > 0. O
A useful corollary is the following.
Lemma 9. Let Xq,...,X,, be iid and suppose that | X;| < ¢ and E(X;) = pn. With probability at least 1 — 6,

202 log(1/9) n 2¢log(1/96) ‘

X, —ul <
| 7 . ™

If o2 is very small than the first term on the right hand side becomes negligible resulting in a very tight bound.

5 Measures of Complexity

Now we investigate uniform bounds of the form
P (sup lf(Z1, ..., Zn) — u(f)| > e) < 0.
fer

over a class of functions F. To develop uniform bounds we need to introduce some complexity measures. More
specifically, given a class of functions F, we need some way to measure how complex the class F is. If F =
{f1,.-., fn} is finite then an obvious measure of complexity is the size of the set, N. In this case, we apply the
maximal inequality:

Lemma 10. For random variables Z1,...,Z, andt >0,

P(max Z 2t> SZIP(ZZ- >t).
i=1

1<i<n

Proof. The proof is immediate by observing that maxi<i<y |Z;| > ¢ holds if and only if Z; > ¢ for some 1 <i < n.
Hence by applying union bound,

S = S > < i >t).
P(@%ZZ _t> P(Ul{z _t}) < ;P(Zl > 1)



For the case F = {f1,..., fn}, applying this maximal inequality gives

P (Sup |f(Z1,e s Zn) — u(f)] > 6) =P < maX |fi(Z1, .oy Zn) — p(fi)l > 5)

feF 1<:i<

P(fiZ1,. .. Za) — ulfi)] > €).

HMZ

Hence it suffices to control P (| f;(Z1, ..., Z,) — u(fi)| > ¢€) for each i.
However, this strategy would not work when N if infinite, i.e., when F is infinite.

Rademacher Complexity. Our first measure is rather subtle but is extremely important: the Rademacher com-
plexity.

Random variables o1, ..., 0, are called Rademacher random wvariables if they are independent, identically dis-
tributed and P(o; = 1) = P(0; = —1) = 1/2. Define the Rademacher complexity of F by

Rad, (F,Z") = (sup ( ZUZ Z; ) Zl,...7Zn> ,

feF
Rad,(F) = E (Rad,(F,Z")) = E <sup< Zolf ))

ferF
Z17"'7Zn> )

2) ) |
You can use either one. They lead to essentially the same results.
Intuitively, Rad,, (F) is large if we can find functions f € F that “look like” random noise, that is, they are highly
correlated with o1, ...,0,. Here are some properties of the Rademacher complexity.

and

Some authors use a slightly different definition, namely,

nzazf

Rad, (F) = (sup
fer

and

Rad,(F) = E (Rad,(F, 2")) = E (;gg ﬁ;mf(

Lemma. 1. If F C G then Rad,(F,Z™) < Rad,(G,Z").
2. Let conv(F) denote the convex hull of F. Then Rad, (F,Z"™) = Rad,(conv(F), Z™).
3. For any ¢ € R, Rad,,(¢F,Z") = |c|Rad,,(F,Z").

4. Let g : R — R be such that g(0) = 0 and, |g(y) — g(z)| < Llz — y| for all x,y. Then Rad,(g o F,Z") <
92LRad, (F, Z").

The Rademacher complexity arises naturally in many proofs. But it is hard to compute and so it is common to
replace the Rademacher complexity with an upper bound. This leads us to shattering numbers.

Shattering Numbers. Let Z be a set and let F is a class of binary functions on Z. Thus, each f € F maps Z to
{0,1}. For any z1, ..., 2, define

Faoza = {21, S () f € F (1)

Note that F, .. ., is a finite collection of vectors and that |F,, . . | < 2". Theset F,, . ., is called the projection
of F onto z1,...,2y.

Example. Let 7 = {f; : t € R} where fi(z) = 11if 2 > ¢t and fi(z) = 0 of z < t. Consider three real numbers
21 < 29 < z3. Then

Foynans = {(070,0), (0,0,1), (0,1,1), (1,1,1)}.



Define the growth function or shattering number by

s(F,n)= sup ‘]:Zh,,,,z".
21#.. . F2n

(12)

A binary function f can be thought of as an indicator function for a set, namely, A = {z: f(z) = 1}. Conversely,
any set can be thought of as a binary function, namely, its indicator function I4(z). We can therefore re-express
the growth function in terms of sets. If A is a class of subsets of R? then s(A,n) is defined to be s(F,n) where
F ={lp: A€ A} is the set of indicator functions and then s(A,n) is again called the shattering number. It
follows that

s(A,n) = mgxs(A, F)

where the maximum is over all finite sets of size n and s(A, F) = |[{ANF : A € A}| denotes the number of subsets
of F picked out by A. We say that a finite set F' of size n is shattered by A if s(A, F) = 2™.

Theorem 11. Let A and B be classes of subsets of RY.
1. s(A,n+m) < s(A,n)s(A,m).
2. If C=AlJB then s(C,n) < s(A,n) + s(B,n)
3. IfC={AUB: A€ A,B € B} then s(C,n) < s(A,n)s(B,n).
4. IfC={ANB: Aec A B e B} then s(C,n) < s(A,n)s(B,n).
Proof. Exercise. O

Theorem 12. Let F be a set of binary functions. Then, for all n,

Rad,,(F, 2") < 1] 28stFon). (13)
n
and
Rad, (F) < M’ (14)
n

Proof. Let s, be the shattering number of F. Recall that, If Z has mean 0 and a < Z < b then E[etz] < et’(b=a)?/8,
We have

Rad,(F,Z") =E <81}p % Z 0 f(Z;)

Zla"'7Zn> :Qa

where

)

1
=FE - il 21, D
) mlii 1

where v = (v1,...,v,) and v; = f(Z;). The vector v varies over V = ((f(Z1),...,f(Z,)) : f € F).

Now
<E (exp <tm3x |jll Zaivi ) Z1, .. .,Zn>
=E (mﬁxexp (2711 Zoivi> Ziyenn, Zn>
SZE(QXP <;Zdl’l}l> Zl,...,Zn>
=S TIE (12, Z0)
v %
= Z H et?/(2n) _ snet2/(2”).

1
elQ — exp <t]E max [n Zaivi|Zl, coisdn
i




In the last step, we used the fact that, given Z1,...,Z,, o;v; has mean 0 and —1/n < o;v; < 1/n and then we
applied the Lemma above. Taking the log of both side gives

t2
tQ <log(sn) + —

2n’
and so | .
0g Sp,
< —.
@= t + 2n
Hence,
log sp, t
Rad, (F; Z") < —=— + —.
& ( )< t + 2n

Let t = v/2nlog s,. Then we get

Rad, (F; Z") < | 2085
n

VC Dimension. Recall that a finite set F of size n is shattered by A if s(A, F') = 2™. The VC dimension (named
after Vapnik and Chervonenkis) of A is the size of the largest set that can be shattered by A.
The VC dimension of a class of set A is

VC(A) = sup{n :s(Ayn) = 2”}. (15)

Similarly, the V' dimension of a class of binary functions F is
VC(F) :sup{n: s(F,n) :2”}. (16)
If the VC dimension is finite, then the growth function cannot grow too quickly. In fact, there is a phase

transition: s(F,n) = 2" for n < d and then the growth switches to polynomial.

Theorem 13. Suppose that F has finite VC dimension d. Then,

s(F,n) < é (’;) (17)

and for all n > d,
en

s(F,n) < (F)d. (18)

Proof. When n =d =1, (17) clearly holds. We show that now proceed by induction. Suppose that (17) holds for
n—1and d—1 and also that it holds for n—1 and d. We will show that it holds for n and d. Let h(n,d) = Z?:o (M.
We need to show that VC(F) < d implies that s(F,n) < h(n,d). Let F; = {z1,...,2,} and Fy = {29,...,2,}.
Let 71 = {(f(z1),..-,f(zn) : f € F} and Fo = {(f(22),...,f(zn) : f € F}. For f,g € F, write f ~ g if
g(z1) =1— f(z1) and g(z;) = f(z;) for j =2,...,n. Let

G= {f € F : there exists g € F such that g ~ f}.

Define F3 = {(f(22),..., f(zn)) : f € G}. Then |F1| = |Fz| + |F3|. Note that VC(F3) < d and VC(F3) < d—1. The
latter follows since, if F3 shatters a set, then we can add z; to create a set that is shattered by F;. By assumption
|F2| < h(n—1,d) and |F3| < h(n —1,d — 1). Hence,

|F1] < h(n—1,d) + h(n —1,d — 1) = h(n,d).

Thus, s(F,n) < h(n,d) which proves (17).

10



Class A VC dimension V4

A:{Al,...,AN} glogzN
Intervals [a,b] on the real line 2
Discs in R? 3
Closed balls in R¢ <d+2
Rectangles in R¢ 2d
Half-spaces in R¢ d+1
Convex polygons in R? 00

Table 1: The VC dimension of some classes A.

To prove (18), we use the fact that n > d and so:
4 /n nydem (n) (d) n\d e~ (n\ (d\’
x() < @20 <@E0))
n\ 4 d\" n\ 4
() (1+n> <(3) e

IN

The VC dimensions of some common examples are summarized in Table 1.

Theorem 14. Suppose that F has finite VC dimension d. There exists a universal constant C > 0 such that
Rad, (F) < C\/d/n.

For a proof, see, for example, [4].

6 Uniform Bounds

Now we extend the concentration inequalities to hold uniformly over sets of functions. We start with finite collections.

Theorem 15. Suppose that F = {f1,...,fn} is a finite set of bounded functions. Then, with probability at least
1-96,

sup IP(1) = P < [0 (55

feF 2
where ¢ = 4 max; Hf]”io

Proof. 1t follows from Hoeffding’s inequality that, for each f € F, P (|[P.(f) — P(f)| > €) < 2e~2"<"/¢, Hence,

P <r}1€a]>__(|Pn(f) —P(f)| > e) =P(P.(f) — P(f)| > ¢ for some f € F)

P(|Pn(fj) - P(fj)| >e€) < 2N672”€2/C.

M=

<
1

<.
I

The conclusion follows. O

Now we consider results for the case where F is infinite. We begin with an important result due to Vapnik and
Chervonenkis [7]. Also see Theorem 12.5 in [3]

Theorem 16 (Vapnik and Chervonenkis). Let F be a class of binary functions. For any t > /2/n,

P <sup (P, — P)f| > t) <4s(F, 2n)e_"t2/8,
fer

and hence, with probability at least 1 — ¢,

sup | Po(f) — P()] < \/ Sog (521), (19)

fer

11



Before proving the theorem, we need the symmetrization lemma. Let Z1, ..., Z! denote a second independent
sample from P. Let P/ denote the empirical distribution of this second sample. The variables Z1, ..., Z/, are called
a ghost sample.

Lemma 17 (Symmetrization). For allt > /2/

(supP Pf>t> <2[P’<sup|(Pn—P,’L)f|>t/2>.
fer

Proof. Let f, € F maximize |(P, — P)f|. Note that f, is a random function as it depends on Z1,..., Z,,. We claim
that if |(P, — P)fn| >t and |(P — P.) fn| < t/2 then |(P), — P,)fn| > t/2. This follows since

and hence |(P), — P,)fn| > t/2. So

I([(Py = P)fo] > ) I((P = P ful <1/2) = I(|(Po— P)fu| > t,|(P — P.)ful <1/2)
I([(P, = Pp)fal > t/2).

Now take the expected value over Zi,...,Z! and conclude that

IN

I(|(Pn = P)fal > )P'(I(P = Pp) ful < t/2) SP'([(P, — Pu)ful > t/2).
By Chebyshev’s inequality,
aVar'(fn)
nt?
(Here we used the fact that W € {0,1} implies that Var(W) <1/4.) S

P(|(P = Pp) fal > 1/2) < < LQ < %

1
P'(I(P =P fal <t/2) = 5.
Thus,
I(|(Pn = P) ful > 1) < 2P'(|(P, = Po) ful > t/2).
Thus
1(sup (P = P)f| > 1) < 2P (sup (P — Pa)f| > 1/2).
fer fer
Now take the expectation over 71, ..., Z, to conclude that

P(sup |(P = P)f| > t) < 2P(sup (P, = Po)f| > 1/2).
fer feF

O

The importance of symmetrization is that we have replaced (P, — P)f, which can take any real value, with
(P, — P!)f, which can take only finitely many values. Now we prove the Vapnik-Chervonenkis theorem.

Proof. By using the symmetrization lemma,

P<Sup(Pn_P)f>t> §2P<SUP|(PT/L_Pn)f|>t>'
fer feF 2

Now we introduce Rademacher variables o1, ..., 0y, i.i.d. with P(o; = +1) = P(0; = —1) = 1. Note that
1 / d 1< /
=Y FZ) - f(Z0) =1 ailf(Z) - £(Z)
=1 fer =1 fer

d e
where = means “equal in distribution.” Hence,




Now, let V' = Fz: . 2z z,... 2z, and write the notation (v',v) € V' with v',v € {0,1)". Then

<sup an (2) > ;) = 2E IP’<sup LS oz - 120 Z',z)
feF | L feF |
— 9K =) > L 2,2
((UH%UE)DG(V nZU >

<2E Z P(i

L (v v)EV

i)

t
<2E Z 2 exp (%)] (Hoeffding's inequality)

Recall that, for a class with finite VC dimension d, s(F,n) < (en/d)?. In this case, (19) implies that

sup |P,(f) = P < \/ s (1og (ﬁ) + dlog (7;@)).

Now we obtain uniform bounds using Rademacher complexity. For this, we bound the symmetrization by
Rademacher complexity.

Lemma 18 (Symmetrization).

E |sup |(P, — P)f|| < 2Rad,(F).
fer
Proof. Once again we introduce a ghost sample Z1,..., Z/ and Rademacher variables o1, ...,0,, Note that P(f) =
E'P)(f). Also note that
1< a1
- Z; = - % %
PR LI 7))

d e
where = means “equal in distribution.” Hence,

E [sup(P(f) — Pu(f))| = E |sup(E'(P,(f) Pn(f)))]
feF feF
< EE' |sup (P, (f) — Pu(f))| = EE/ lsup (1 (f(Z) - f(Zi))>
feF feF =1
i 1 < X ! _ X
=EE Lélelg (n Zaz(f(zi) f(Z)))
B 1<
?22( Zaz ) +E itelg (n;Uz’f(Zi)>
— 2Rad,, (F).

Theorem 19. With probability at least 1 — 9,

sup |P,(f) — P(f)| < 2Rad,(F) + %bg (?)7

feF
and
4 2
sup |P,(f) — P(f)| < 2Rad,(F,Z") 4+ {/— log ()
feF n J
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Proof. The proof has two steps. First we show that sup ;¢ z |P.(f) — P(f)] is close to its mean. Then we bound the
mean.
Let g(Z1, ..., Zn) = sup e 7(Pn(f)—P(f)). If we change Z; to some other value Z; then |g(Z1, ..., Z,)~9(Z1, ..., Z},..., Zy)| <

%. By McDiarmid’s inequality,
P(1g(Z1,....,2Zy) —Elg(Z1,..., Zn)]| > €) < 2e 2"
Hence, with probability at least 1 — ¢,
1

Then the mean E[g(Z1, ..., Z,)] is bounded by Lemma 18 as

Elg(Z1,...,Z,)] =E |sup(P(f) — P.(f))

feFr

< 2Rad,, (F).

Combining this bound with (20) proves the first result.
To prove the second result, let a(Z1,...,Z,) = Rad,(F, Z™) and note that a(Z1,...,Z,) changes by at most

1/n if we change one observation. McDiarmid’s inequality implies that |Rad,(F, Z™) — Rad,(F)| < /5 log (%)
with probability at least 1 — §. Combining this with the first result yields the second result. O

Combining this theorem some Theorem 12 and Theorem 14 we get the following result.

Corollary 20. With probability at least 1 —

81
sup | P, (f) <Y —— ogs]:n —log
fer

If F has finite VC dimension d then, with probability at least 1 —

d 1 2
sup [P () = P(f)| < 2Oﬁ anioe(3):

7 Example: Classification

Let H be a set of classifiers with finite VC dimension d. The optimal classifier h, € H minimizes
R(h) =P(Y # h(X)).

The empirical risk minimizer is the classifier A that minimizes

1 n
= S IV # (X))
i=1
From the VC theorem, with high probability,
R dl
sup | R(h) = R(h)| </ ==
heH n

Hence, with high probability

N A dl . dl dl
R(h) < R(h) + 1/ (;gan(h*)Jm/ (:lgan(h*)Jr\/ j’f”.

So empirical risk minimization comes close to the best risk in the class if the VC dimension is finite.

14



8 Example: k-means Clustering

We can use concentration of measure to prove some properties of k-means clustering. Let C' = {c1,..., ¢} and
define the risk R(C) = E || X — H¢[X]||> where I¢[z] = argmin, ||z — cj||2. Let C* = {c},...,c}} be a minimizer
of R(C).

Theorem 21. Suppose that P(||X;||? < B) =1 for some B < co. Then

E(R(C)) - R(C*) < ey AT Dlogn

n
for some ¢ > 0.

Warning! The fact that R(C) is close to R(C,) does not imply that C is close to C,.
This proof is due to [6].

Proof. Note that R(C) — R(C*) = R(C) — R,(C) + R,(C) — R(C*) < R(C) — R,(C) + R,(C*) — R(C*) <
2supgec, |[R(C) — Ry (C)|. For each C deﬁne a function fo by fo(z) = ||z — c[z]||?. Note that sup, |fc(z)| < 4B
for all C. Now, using the fact that E(Y') = [[* P(Y > t)dt whenever Y > 0, we have

n

L3 (elx)) —E(de)))‘

=1

2 sup |R(C) — R,(C)| = 2sup
CeCy, C

4B 1 n
= QSIC{P /o (n;I(fc(XJ >u) —P(fe(X) > U)) du
<8Bawp) - 3 1(fo(Xi) > ) = B(je(X) > )
= 8Bsup 521()@- € A)—P(4)|,
=1

where A varies over all sets A of the form {fc(z) > u}. The shattering number of A is s(A,n) < nF(@+1). This
follows since each set {fc(x) > u} is an intersection of the complements of k spheres. By Theorem 12,

)
)

Now apply Theorem 25 to conclude that E(R(C) — R(C*)) < C\/k(d + 1),/ 152, O

A sharper result, together with a lower bound is the following.

P(R(C) — R(C*) > €) < <SBsup ZIX € A)—P(A)| >

(sup i I(X; € A) —P(A)| >

< 4(2n)k(d+l)efn62/(5123 ).

Theorem 22 ([1]). Suppose that P (|| X||* < 1) =1 and that n > k*?, \/dk'~2/dlogn > 15, kd > 8, n > 8d and

n/logn > dk*+2/®. Then,
A k1-2/d] k1
E(R(C)) — R(C*) < 32\/% ) ( d Zg”> .

Also, if k>3, n > 16k/(202(—2)) then, for any method C' that selects k centers, there exists P such that

kl—4/d

n

E(R(C)) = R(C*) > g

where cy = ®*(—2)2712/1/6 and ® is the standard Gaussian distribution function.

15



See [1] for a proof. It follows that k-means is risk consistent in the sense that R(C') — R(C*) £ 0, as long as
k = o(n/(d®logn)). Moreover, the lower bound implies that we cannot find any other method that improves much
over the k-means approach, at least with respect to this loss function.

The previous results depend on the dimension d. It is possible to get a dimension-free result at the expense
of replacing vk with k. In fact, the following result even applies to functions instead of vectors. In that case, we
interpret || - || to be the norm in a Hilbert space. The proof uses Radaemacher variables instead of VC arguments.

Theorem 23 ([2]). Suppose that P(||X;|| < B) = 1. Then

E(R(C)) - R(C") <
Proof. Define W(C, P) = Ep (mini<j<i [—2(X, ¢;) + ||¢;[|?]) - Minimizing R(C) is equivalent to minimizing W (C, P)

and minimizing R, (C) is equivalent to minimizing W (C, P,,) where P, is the empirical measure that puts mass 1/n
at each X;. Arguing as in the proof of Theorem 21,

E(W(C, P)) — W(C*, P) < QE(sup W (C, P) — W(C, Pn)).
C

Let o1,...,0, be Rademacher random variables. That is, o1,...,0, are iid and P(o; = +1) = P(o; = —1) = 1/2.
Let X/,..., X! be a second independent sample. Let £o(z) = —2(z, ¢) + ||¢||*. Then,

Zoi { min /4. (X;) — min Kcv(XZ{)]>
1<j<n 7 1<j<n 7

=1
22 (oS0 i 1 )
= sup — o; | min £, (X;
cpnizl 1<j<n ¥
An inductive argument shows that
oR 1zn: in £, (X,) (Xi,0) + 2
sup — 0; | min £, i iy C

cpnlzl 1<j<n 2y/n

Also,

ZUiXi

i=1

IN

<

B2
o

9 Example: Density Estimation

Let X1,...,X, ~ P where P has density p and X; € R?. Let
" 1 i .’E—Xi
ph(‘”):n;K( h )

be the kernel density estimator. Let pp(x) = E[py(z)]. Then

||ﬁh _p”oo < ||ﬁh _thoo + ||ph _pHoo :

The second term, the bias, is bounded by C'h? under standard smoothness conditions. What above the first term?
Let us first focus on a single point x.

16



Theorem 24. Suppose that (logn/n)'/* < h < C for some C > 0. Then
P(|pn(x) — pu(x)] > €) < cre”e

Proof. This can be proved by Bernstein’s inequality. We leave the proof as an exercise. If you use Hoeffding’s
inequality you will not get a sharp bound. O

The more general result is the following.

Theorem. Suppose that P has compact support and that (logn/n)/% < h < C for some C > 0. Under weak

conditions on K, we have
—n0252hd

]P)(Hﬁh _thoo > 6) < ce

The proof is essentially the same except that one has to replace Bernstein’s inequality by Talagrand’s inequality.
You can think of Talagrand’s inequality as an extension of Benstein’s inequality over infinite sets of functions.
The theorm can also be proved used a bracketing argument combined with Bernstein’s inequality. (Bracketing is
discussed in a later section.)

10 Bounds on Expected Values

Suppose we have an exponential bound on P(X,, > ¢). In that case we can bound E(X,,) as follows.

Theorem 25. Suppose that X,, > 0 and that for every e > 0,
P(X, > €) < cre™ e (21)
for some ca >0 and ¢; > 1/e. Then,

E(X,) <4/

where C' = (1 + log(c1))/ca.

Proof. Recall that for any nonnegative random variable Y, E(Y) = fooo P(Y > t)dt. Hence, for any a > 0,

oo

E(X?) :/ P(X2 > t)dt :/ P(X2 > t)dt +/ P(X2>t)dt <a +/ P(X2 > t)dt.
0 0 a a

Equation (21) implies that P(X,, > v/) < cie~ 2. Hence,

0o 0o oo —cana
E(X2) < a +/ P(X2 > t)dt = a +/ P(X, > Vi)dt < a+ 01/ e—eantgp —q 4 28
a a a Ca T

Set a =log(c1)/(nez) and conclude that

]E(X,Z) S log(cl) 4 i — 1 +10g(C1).
ncy neo nca

Finally, we have

E(X,) < VE(XD) < | LH1o8l),

nco

Now we consider bounding the maximum of a set of random variables.

Theorem 26. Let X1,...,X, be random variables. Suppose there exists o > 0 such that E(e!X¢) < eto’/2 for all

t > 0. Then
E < max Xi) < oy/2logn.

1<i<n

17



Proof. By Jensen’s inequality,

exp {tE (max XZ>} < E (exp {t max Xl})
1<i<n 1<i<n

n

) < ) < t2z72/2.
E <1I£1ia<xn exp {th}> < Z E (exp {tX;}) < ne

i=1
Thus,
E (1?%XnXi> < 10%71 + ?.
The result follows by setting t = v/2logn/o. O

11 Covering Numbers and Bracketing Numbers

Often the VC dimension is infinite. In such cases we need other measures of complexity.
If Q is a measure and p > 1 we define

1/p
1712.0) = ( / If(w)l”dQ(w)> .

When @ is Lebesgue measure we simply write || f]| »- We also define
1flloe = sup |f(2)].

A set C={f1,..., fn} is an e-cover of F if, for every f € F there exists a f; € C such that ||f — fj”Lp(Q) < e

Definition. The size of the smallest e-cover is called the covering number and is denoted by N,(e, F, Q). The
uniform covering number is defined by

Nl)(eﬂ ‘F) = Sup Np(Ev ]:a Q)7
Q
where the supremum is over all probability measures Q).
Now we show how covering numbers can be used to obtain bounds.

Theorem 27. Suppose that || f| ., < B for all f € F. Then,

P(sup [P(f) = P(f)] = €) < 2N(¢/3,F, Loc)e ™"/ 1557,
fer

Proof. Let N = N(¢/3,F, L) and let C' = {f1,..., fn} be such that By (f1,€/3),..., Boo(fn,€/3) is an €/3 cover.
For any f € F there is an f; € C such that ||f — f;||cc < €/3. So

[Pu(f) = POl < 1Pa(f) = Ba(f)] + [Pul(f5) = P(S)] + [P(f5) = P(f)]

A

2¢
< IR — PO+ 5
Hence,
2e
Plsup IP.(1) = PUL 2 ) < P (max Pa() = PUSI + 5 2 €]
feF I3 3
€
— . > -
P (max Pa(5) - P = 5 )
al €
<Y B(IP(f) = P > 5)
j=1
< 2N(e/3,F, Loo)e "< /(185
from the union bound and Hoeffding’s inequality. O



When the VC is finite, it can be used to bound covering numbers.

Theorem 28. Let F be a class of functions f : RY — [0, B] with VC dimension d such that 2 < d < oo. Let p > 1

and 0 < e < B/4. Then
NN
2eB? 3eBP
Np(gf)g?)( = log( 7 )) .

However, there are cases where the covering numbers are finite and yet the VC dimension is infinite.

Bracketing Numbers. Another measure of complexity is the bracketing number. A collection of pairs of functions
(f1,u1),..., (N, un) is a bracketing of F if, for each f € F there exists a pair (¢;, u;) such that ¢;(z) < f(z) < u;(x)
for all 2. The collection is an e-bracketing if it is a bracketing and ([ |u;(z) — ¢;(z)[PdQ(z))'/? < e for j =1,...,N.
The bracketing number Njj(e, F,Q,p) is the size of the smallest € bracketing. Bracketing number are a little larger
than covering numbers but provide stronger control of the class F.

Theorem 29. 1. Ny(e¢, F,P) < Njj(2¢, F, P,p).

2. There are positive constants ci,ca,cs such that, for any € > 0,

P (SUP |Po(f) = P(f)] = 6) <ca N[](CQE,]:, P, 1)6_"0352.
feF

8. Let Xy,...,X, ~ P. If Suppose that Npj(¢, F, P,1) < oo for all e > 0. Then, for every § >0,

P (sup [Pa(f) = P()] = 5) — 0,
feF

as n — Q.

12 Summary
The three most important results in this chapter are Hoeffding’s inequality:
P(| X, — p| > €) < 2e 20 /¢,

the Vapnik-Chervonenkis bound,

P <sup (P, — P)f| > t) <4s(F, 2n)e_"t2/8,
fer

and the Rademacher bound: with probability at least 1 — 6,
1 2

sup |Pu(f) — P(f)] < 2Rady(F) + | o= log ()
feF 2n 1)

These, and similar results, provide the theoretical basis for many statistical machine learning methods. The literature
cantains many refinements and extensions of these results.
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