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Probability Spaces

A probability space is a triple (Q, F, P) where 2 is a set of “outcomes,” F is a set of “events,” and P : F — [0,1] is

a function that assigns probabilities to events.

Definition. Let Q be a set. A nonempty collection F of subsets of  is called o-algebra (or field) if
(i) if A € F then Q\A € F, and
(ll) if Ay, Ag,--- € F, then UA7 e F.
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Example. F = {¢,Q} trivial o—field
F =2%={A| ACQ}: power set =>0—field

Without P, (Q, F) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an o-algebra F, a function
w:F — [0,00] is a measure if

(i) u(A) > pu(¢) =0 for all A € F, and

(iii) For Ay, As,--- € F with A, N A; = ¢ for any i # j,

I (U&) = ZM(Ai)-
i=1 i=1

Definition. (1) u(£2) < co =finite measure
(2) u(2) = 1 = probability measure
(3) Ja partition Aj, Ag,--- with [JA; = Q and pu(A;) < oo = o—finite measure
=1

Theorem ([1, Theorem 1.1.1]). Let u be a measure on (Q, F).
(1) Monotonicity. If A C B then u(A) < u(B).
(i) Subadditivity. If A C |J A; then p(A) < > p(4;).
i=1 i=1
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(iii) Continuity from below. A, T A (i.e. Ay CAy C -+ and A= G A;) then pu(A4;) T u(A).

i=1

(iv) Continuity from above. A, L A (i.e. Ay DAy D+ and A= ﬁ A;) with u(Ayr) < oo then p(A4;) 4 p(A).
i=1
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Definition. Let A be a class of subsets of Q. Then o(A) denotes the smallest c—algebra that contains A.
For any any A, such o(A) exists and is unique.

Definition. Borel o—field on R?, denoted by R?, is the smallest c—field containing all open sets.



Theorem ([1, Theorem 1.1.4]). There is a unique measure u on (R, R) with

ul((a,b) =b—a.
Such measure is called Lebesgue measure.

Example ([1, Example 1.1.3]). Product space
(4, Fi, P;) : sequence of probability spaces
Let Q=1 x - xQp = {(w1,++ ,wn)| w; € i}
F =JF1 X -+ X F, =the c—field generated by A; x --- X A,,, where A; € F;
P=P x---x P, (ie. P(A1 X -+ x Ap) = P1(41) - P,(Ay)

Distribution and Random Variables

Definition. Let (2, F) and (5, S) are measurable spaces. A mapping X : Q@ — S is a measurable map from ({2, F)
to (5,8) if
forall BeS, X }(B) ={weQ: X(w)e€ B} eF.

If (S,S) = (RY B(R?)) and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 14 of a set A € F:

1 weA,
1y(w) =
0 w¢A.

If X is a random variable, then X induces a probability measure on R.

Definition. The probability measure p on (R, B(R)) defined as u(A) = P(X € A) for all A € B(R) is called the
distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.
Definition. The distribution function F'(x) of a random variable X is defined as F(z) = P(X < x).

Theorem ([1, Theorem 1.2.1]). Any distribution function F has the following properties:
(i) F' is nondecreasing.
(ii) nILH;oF(x) =1, nErEOOF(x) =0.
(iii) F is right continuous. i.e. lian(y) = F(x).
ylx

(v) P(X <z)=F(z—) = lylgF(I)
(v) P(X =x)=F(z) — F(z—).

Theorem (|1, Theorem 1.2.2]). If F satisfies (i) (ii) (#i) in [1, Theorem 1.2.1], then it is the distribution function of
some random variable. That is, there exists a triple (0, F, P) and a random variable X such that F(z) = P(X < x).

Theorem. If F satisfies (i) (i) (iii), then there uniquely exists a probability measure p on (R, B(R)) such that for
all a < b,

u((a,b]) = F(b) - Fl(a).



Definition. If X and Y induce the same distribution p on (R, B(R)), we say X and Y are equal in distribution.

We write

x 4

Y.
Definition. When the distribution function F(z) = P(X < z) has the form F(z) = [ f(y)dy, then we say X
has the density function f.

Remark. f is not unique, but unique up to Lebesque measure 0.

Theorem ([1, Theorem 1.3.4]). If X : (O, F) — (S,S) and f : (S,S) — (T, T) are measurable maps, then f(X) is

measurable.

Theorem. f:(5,8) = (T,7T) and suppose S = o(open sets), T = o(open sets). Then, if f is continuous then f
s measurable.

Theorem ([1, Theorem 1.3.5]). If X1, -, X,, are random variables and f : (R™,R™) — (R, R) is measurable, then

f(Xq,--+, X,) is a random variable.
Theorem ([1, Theorem 1.3.6]). If X1,---, X, are random variables then X1 + --- 4+ X,, is a random variable.

Remark. If X|Y are random variables, then
cX (cis scalar), X £V, XY, sin(X), X2, ---

are all random variables.

Theorem ([1, Theorem 1.3.7]). infX,,, supX,, limsupX,, liminfX, are random variables.

Integration

Let p be a o-finite measure on (€2, F).

Definition. For any predicate Q(w) defined on Q, we say @ is true (u—)almost everywhere (or a.e.) if u({w :
Q(w) is false}) =0

Step 1.

n
Definition. ¢ is a simple function if p(w) = Y a;14, with 4; € F
i=1

If ¢ is a simple function and ¢ > 0, we let -

/ edp = i:am(fli)

Step 2.

Definition. If f is measurable and f > 0 then we let

/fdu = sup{/ wdp: 0 < ¢ < fand ¢ simple}

We define the integral of f over the set E:
/ fdp = /f-lEdu
E



Step 3.

Definition. We say measurable f is integrable if [ |f|du < co. Let
fH(@):=f(z)v0, and  f7(z):=(-f(z)) VO,

where a V b = max(a,b). We define the integral of f by

[ tin= [ rrau= [

we can also define [ fdp if [ fTdu = o0 and [ f~du < oo, or [ fTdu <ooand [ f~dp= oo

Theorem ([1, Theorem 1.4.7]). Suppose f and g are integrable.
(i) If f >0 a.e. then [ fdu >0
(it) Va € R, [afdp=a [ fdu
(iii) [ f +gdp = [ fdp+ [ gdp
(iv) If g < f a.e. then [ gdu < [ fdu
(v) If g = f a.e. then [ gdu = [ fdpu
(vi) | [ fdu| < [|fldp

Definition. If X is a random variable on (92, F, P), we define its expected value to be E(

We also write E(X; A) = [, XdP.

Several techniques of integration

e The pushforward measure of a transformation T is Ty = u(T~(A)). The change of variables formula for

pushforward measures is

/ fonu:/ fdTp.
Q T(Q)

Now, consider a probability space (2, F,P), and consider a measurable map X :

A) = P(X~!(A)), and hence the change of variable formula becomes

X)) = / (X (@))dP(w) = /X o @)

e For Lebesgue measure A and Riemann integrable function f, f[a ] fdX\ is the same as the Riemann integral

f; f(z)dz

e [ fdé, = f(x), where §, is the Dirac-delta measure, i.e., §,(A) = I(z € A).

- | X(w // dtdP(w)
Q [0,X (w)]

dt x dP(w)

e For a random variable X > 0,

\/{(w t)€QX[0,00):0<t<X (w)}

- / / AP (w)dt
0 {we: X (w)>t}

o0

P(X >t)d

0

@,7) —

transformation. Then the distribution measure px of X is in fact the pushforward measure px(A) =

X) = [, XdP

(S,S) as a



Independence

Definition. Let (Q, F, P) be probability space. Two events A, B € F are independent (=) if
P(ANB)=P(A)P(B).
Two random variables X and Y are independent if for all C, D € R,
P(XeC, YeD)=P(X ecC)P(Y € D).

Two o-fields F; and F, (C F) are independent if for all A € 7; and B € F», A and B are independent.

Definition. o—fields Fi,--- ,F, are independent if for all A; € F;,

P (ﬂA) [P0,

Random variables Xy, .-+, X, are independent if for all B; € R,
P (ﬁ{Xi € Bi}> = ﬁP(Xi € By).
i=1 i=1
Sets Aj,---, A, are independent if for all I C {1,--- ,n},
P (ﬂAZ) =[[r4)
iel i€l

Remark. the definition of independent events is not enough to assume pairwise independent, which is P(4;NA4;) =

P(A;)P(A;), i # j. It is clear that indenendent events are pairwise independent, but converse is not true.

Example. Let X;, X», X3be independent random variables with P(X; =0) = P(X; =1) = 1
Let A1 = {Xy = X3}, Ay = {X35 = X1} and A3 = {X; = X5}. These events are pairwise independent but not

independent.

Theorem ([1, Theorem 2.1.12|). Suppose X and Y are independent, and f,g : R — R are measurable functions
with f,g >0 or E|f(X)],E|g9(X)| < 0o, then

Ep[f(X)g(Y)] = Ep[f(X)]Ep[g(Y)].

Conditional Expectation

Definition. Let (2, Fy, P) be a given probability space. Suppose a o-field F C Fy and a random variable X € F
are given. E(X|F) (conditional expectation of X given F) is a random variable Y such that

(i) Y € F, ie., is F measurable

(ii) for all A e F, [, XdP = [, YdP.

Any Y satisfying (i) and (ii) is said to be a version of E(X|F).

Lemma ([1, Lemma 4.1.1]). IfY satisfies (i) and (ii), then it is integrable.

Remark. Uniqueness.



Suppose there are two random variables Y and Y’ satisfying (i) and (ii) of the definition of the conditional

expectation. Then Y =Y a.s.
Remark. Existence

E(X|F) exists.
Example ([1, Example 4.1.3]). If X € F, E(X|F) =X
Example ([1, Example 4.1.4]). If X is independent of F, then E(X|F) = E(X)
Example ([1, Example 4.1.5]). Let Q;,Qs, -+ be a countable partition of Q into disjoint sets and let F =
a(Q21,Q,--+)

Then E(X|F)(w) = > exl(w € Q)

k=1

f XdpP .

arbitrary if P(Q) =0

where ¢, =
Definition. P(A|F) = E(14|F)
P(A|B) = P(AN B)/P(B)

P(A|B) ifweB
P(A|B®) ifwe B°

Remark. P(Alo(B)) =

Definition. Conditional expectation given random variable
E(X]Y) = E(X[o(Y))

Definition. Conditional expectation given Y =y, i.e. E(X|Y = y).
Consider E(X|Y), which is o(Y)-measurable. Then there exists a measurable function 2 : R = R s.t. E(X|Y) =
h(Y) (Exercise 1.3.8) Now, we can define
E(XY =y) = h(y)

Definition. P(A]Y =y) = E(I4]Y =)

Example ([1, Example 4.1.6]). (X,Y) ~ pdf f(x,y) (w.r.t. Lebesque measure). Then

E(g(X)[Y) = W

provided f(x,y) > 0 V(z,y).

Example (|1, Example 4.1.7]). Suppose X and Y are independent. Let ¢ be a function wit E|p(X,Y)| < co and
let g(z) = E(p(z,Y)). Then
E(p(X,Y)[X) = g(X).

Example. Convolution formula
X1lY
Let ¢.(z,y) = I(z +y < 2)
Then g(x) = E(¢.(2,Y)) =P(Y <z —=x)
Hence P(X +Y < z|X) = Fy(z — X)
which implies
P(X+Y <z)=EPX+Y <zX))
= E(Fy(z — X))
= [ Fy(z—2)dFx(z) = Fx * Fy



Properties

Theorem ([1, Theorem 4.1.9]). (a) Linearlity.
E(aX + Y|F) = aE(X|F) + E(Y|F).

(b) Monotonicity.
If X <Y, then
E(X|F) <E(Y|F).

(c) Monotone convergence theorem.
If X, >0 and X, T X with E|X| < oo, then

E(X|F) T E(X|F).

Theorem (|1, Theorem 4.1.10]). Jensen Inequality
If ¢ is convex and E|X| < oo and E|p(X)| < oo, then

P(E(X|F)) < E(e(X)|F).

Theorem ([1, Theorem 4.1.11]). Conditional expectation is a contraction in LP, p > 1, i.e.,

i.e.,

E(IE(X]F)[F) < E[X]P.

Theorem ([1, Theorem 4.1.12]). If F C G and E(X|G) € F, then
E(X|F) =E(X|G).

Theorem ([1, Theorem 4.1.13]). If 7y C Fa, then
(1) B(E(X|F1)|F2) = E(X[F1)
(i) E(E(X|F2)[F1) = E(X|F1)

Theorem ([1, Theorem 4.1.14]). If X € F and E|X| < oo, then

E(XY|F) = XE(Y|F).

Theorem (|1, Theorem 4.1.15]). Suppose EX? < oo, then E(X|F) is a random variable Y € F that minimizes
E(X —Y)? among all random variablesc F

Weak laws of large numbers (£ 4=2] ¢FH3])

Various modes of convergence

{X,} and X are random variables defined on (2, F, P)

Definition. X,, — X almost surely (a.s.) ( with probability 1(w.p. 1), almost everywhere(a.e.) ) if P{w: X, (w) —
X(w)}=1

Equivalent definition : Ve, lim P{w: |X,(w) — X(w)| <eVn>m} =1
m—r o0
or Ve, 1131 Plw: | Xp(w) — X (W) >e¥n>m} =0



Definition. X,, — X in probability (8+&4%) (in pr, =) if hm P{\X —X|>€et=0

Theorem. X, — X a.s. = X,, = X
Remark. X, 2 X #X,, = X a.s.

Definition. X,, - X in L,, 0 <p < o0
if lim E(|X,, — X|?) = 0 provided E|X,|? < co, E|X|P < 0.
n—roo

Theorem. X, -+ X in L, = X, L x
Theorem. (Chebyshev inequality, AJHAX HEA])

E|X|P
P(x| > o < 2XF
epP

Remark. X, 2+ X # X,, —» X in L,

Example. Q =10,1], F = B[0,1], P = Unif[0,1]
X(w)=0, Xp(w)=nl(0<w< %)
Then P{|X,(w) — X()| > ¢} = Pl0<w< 1} =L 50
But E|X, — X| = E|X,| =1

Theorem. X, L5 X and there exists a random variables Z s.t.

| Xn| < Z and E|ZP < o0
Then X, — X in Ly.

Remark. If E|X| < oo, then
1i_{n Ja, |X|dP — 0 whenever P(A,) — 0

2..2.1. L, weak law

Theorem ([1, Theorem 2.2.3]). Let X1, X, -+ be uncorrelated random variables with EX; = p and Var(X;) <

C <oo Let S, = ZX Then ; — 1 in Lo and also in probability.
i=1

Theorem (|1, Theorem 2.2.14|). Weak law of large numbers (2 2] oFH 2], tfj=29] oFH ])
Let X1,Xs, - be i.i.d. random variables with E|X;| < oo. Let S, = X1 4+ -+ + Xpand let p = EX;y.Then
% — p in probability.

Weak Convergence

We define weak convergence for random variables, but most of the results can be generalized to measurable maps
X0, X : (Q,F) = (5,8), where S is equipped with a metric p.

Definition. A sequence of random vectors {X,} converges weakly or converges in distribution (E£X43) to a
limit X (X, = X, X, -5 X, X, -5 X) if

Epl9(Xn)] = Ep[g(X)],  forall g € Cy(R),

where C(R) is a set of continuous and bounded functions. We analogously define P, 4 Pfor probability measures
{P,} and P, ie., [g(z)dP,(z) = [g(x)dP(x) for all g € C,(R). We also analogously define F), 4 F (F, =
F, F, - F) for distribution functions {F,,} and F, i.e., [ g(z)dF,(z) — [ g(x)dF(z) for all g € Cy(R).



Theorem ([1, Theorem 3.2.9]). A sequence of distribution function F,, converges weakly to a limit F if and only if

F,(y) = F(y) for all continuity points of F'.

Example ([1, Example 3.2.1]). Let X;,X5,-- be iid. with P(X; = 1) = P(X; = —1) = 3, and let S, =
X1+ -+ X,,. Then

v B
Fn(y):P(Sn/\/ﬁSy)%/ e~ 2dr Yy € R.

1
V2T
That is, F,, — N(0,1).

Example ([1, Example 3.2.3]). Let X ~ F and X,, = X + 1. Then

F.(x)=P(X, <z)=F(x — %) — F(z—).

Hence F,,(x) — F(x) only when F(x) = F(xz—), i.e. only if x is a continuity point of F'. Still, X, 4 X,
Example ([1, Example 3.2.4]). Let X, ~ Geo(p), i.e. P(X, >m) = (1 —p)™ . Then

P(X, > %)z(lfp)% —e 7, as p — 0.

In words, pX,, converges weakly to an exponential distribution.

Central Limit Theorem (F4=3%t47])

Theorem (|1, Theorem 3.4.1]). Let X1, X, -+ be i.i.d. withEX; = p and Var(X;) =02 > 0. If S,, = X1+ -+ Xp,
then
(S — np)/ (Vo) -5 N(0,1).

Theorem ([1, Theorem 3.4.17]). Berry-Essen theorem
Let X1, Xa,-++ be i.i.d. with EX; =0, EX? = 02 and E|X1]> = p < co. Let F,,(x) be the distribution function
of (X1 + -+ X,)/(0y/n) and ®(x) be the standard normal distribution. Then

sup| I () — @ ()| < 3p/(0°V/n).

Stochastic Order Notation

The classical order notation should be familiar to you already.
1. We say that a sequence a,, = o(1) if a,, = 0 as n — oco. Similarly, a, = o(b,) if a, /b, = o(1).

2. We say that a sequence a,, = O(1) if the sequence is eventually bounded, i.e. for all n large, |a,| < C for some
constant C' > 0. Similarly, a,, = O(by,) if a, /b, = O(1).

3. If a,, = O(by,) and b, = O(ay,) then we use either a,, = O(b,) or a, < by,.
When we are dealing with random variables we use stochastic order notation.

1. We say that X,, = op(1) if for every e > 0, as n — oo
P(|X,| >¢€) —0,

i.e. X, converges to zero in probability.



2. We say that X,, = Op(1) if for every € > 0 there is a finite C'(¢) > 0 such that, for all n large enough:

P(1X,] > C(e) <

The typical use case: suppose we have X1, ..., X, which are i.i.d. and have finite variance, and we define:
1 n
= z; X;.
1=

1. i — p=o0p(l) (Weak Law of Large Number)

2. i—p=0p(1/y/n) (Central Limit Theorem)

Proposition. 1. X, P x implies X, 4 X, and this implies X, = O,(1). Also, X, = op(1) implies X,, =

0,(1).
2. (a) 0,(1) + 0,(1) = 0,(1)

(b) Oy(1) + 0,(1) = 0,(1)
() 0p(1) + 0p(1) = 0,(1)
(d) Op(1) - Op(1) = Op(1)
(¢) Op(1) - 0p(1) = 0p(1)

(f) 0p(1) - 0p(1) = 0p(1)
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