Review on Probability

딥러닝의 통계적 이해 (Deep Learning: Statistical Perspective), 2025 2nd Semester

Probability Spaces

A probability space is a triple (Ω, \mathcal{F}, P) where Ω is a set of "outcomes," \mathcal{F} is a set of "events," and $P : \mathcal{F} \to [0, 1]$ is a function that assigns probabilities to events.

Definition. Let Ω be a set. A nonempty collection \mathcal{F} of subsets of Ω is called σ -algebra (or field) if

- (i) if $A \in \mathcal{F}$ then $\Omega \backslash A \in \mathcal{F}$, and
- (ii) if $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Example. $\mathcal{F} = \{\phi, \Omega\}$ trivial σ -field

$$\mathcal{F} = 2^{\Omega} = \{A \mid A \subset \Omega\} : \text{power set} \Longrightarrow \sigma - \text{field}$$

Without P, (Ω, \mathcal{F}) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an σ -algebra \mathcal{F} , a function $\mu: \mathcal{F} \to [0, \infty]$ is a measure if

- (i) $\mu(A) \geq \mu(\phi) = 0$ for all $A \in \mathcal{F}$, and
- (iii) For $A_1, A_2, \dots \in \mathcal{F}$ with $A_i \cap A_j = \phi$ for any $i \neq j$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Definition. (1) $\mu(\Omega) < \infty$ \Longrightarrow finite measure

- (2) $\mu(\Omega) = 1 \Longrightarrow \text{probability measure}$
- (3) \exists a partition A_1, A_2, \cdots with $\bigcup_{i=1}^{\infty} A_i = \Omega$ and $\mu(A_i) < \infty \Longrightarrow \sigma$ -finite measure

Theorem ([1, Theorem 1.1.1]). Let μ be a measure on (Ω, \mathcal{F}) .

- (i) Monotonicity. If $A \subset B$ then $\mu(A) \leq \mu(B)$.
- (ii) Subadditivity. If $A \subset \bigcup_{i=1}^{\infty} A_i$ then $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$.
- (iii) Continuity from below. $A_n \uparrow A$ (i.e. $A_1 \subset A_2 \subset \cdots$ and $A = \bigcup_{i=1}^{\infty} A_i$) then $\mu(A_i) \uparrow \mu(A)$.
- (iv) Continuity from above. $A_n \downarrow A$ (i.e. $A_1 \supset A_2 \supset \cdots$ and $A = \bigcap_{i=1}^{\infty} A_i$) with $\mu(A_1) < \infty$ then $\mu(A_i) \downarrow \mu(A)$.

Definition. Let \mathcal{A} be a class of subsets of Ω . Then $\sigma(\mathcal{A})$ denotes the smallest σ -algebra that contains \mathcal{A} .

For any any A, such $\sigma(A)$ exists and is unique.

Definition. Borel σ -field on \mathbb{R}^d , denoted by \mathcal{R}^d , is the smallest σ -field containing all open sets.

Theorem ([1, Theorem 1.1.4]). There is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with

$$\mu((a,b]) = b - a.$$

Such measure is called Lebesque measure.

Example ([1, Example 1.1.3]). Product space

 $(\Omega_i, \mathcal{F}_i, \mathcal{P}_i)$: sequence of probability spaces

Let
$$\Omega = \Omega_1 \times \cdots \times \Omega_n = \{(\omega_1, \cdots, \omega_n) | \omega_i \in \Omega_i\}$$

 $\mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_n$ =the σ -field generated by $A_1 \times \cdots \times A_n$, where $A_i \in \mathcal{F}_i$

$$P = P_1 \times \cdots \times P_n$$
 (i.e. $P(A_1 \times \cdots \times A_n) = P_1(A_1) \cdots P_n(A_n)$

Distribution and Random Variables

Definition. Let (Ω, \mathcal{F}) and (S, \mathcal{S}) are measurable spaces. A mapping $X : \Omega \to S$ is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}) if

for all
$$B \in \mathcal{S}$$
, $X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{F}$.

If $(S, \mathcal{S}) = (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 1_A of a set $A \in \mathcal{F}$:

$$1_A(\omega) = \begin{cases} 1 & \omega \in A, \\ 0 & \omega \notin A. \end{cases}$$

If X is a random variable, then X induces a probability measure on \mathbb{R} .

Definition. The probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined as $\mu(A) = P(X \in A)$ for all $A \in \mathcal{B}(\mathbb{R})$ is called the distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.

Definition. The distribution function F(x) of a random variable X is defined as $F(x) = P(X \le x)$.

Theorem ([1, Theorem 1.2.1]). Any distribution function F has the following properties:

- (i) F is nondecreasing.
- (ii) $\lim_{n \to \infty} F(x) = 1$, $\lim_{n \to -\infty} F(x) = 0$. (iii) F is right continuous. i.e. $\lim_{y \downarrow x} F(y) = F(x)$.
- (iv) $P(X < x) = F(x-) = \lim_{y \uparrow x} F(x)$ (v) P(X = x) = F(x) F(x-).

Theorem ([1, Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [1, Theorem 1.2.1], then it is the distribution function of some random variable. That is, there exists a triple (Ω, \mathcal{F}, P) and a random variable X such that $F(x) = P(X \le x)$.

Theorem. If F satisfies (i) (ii) (iii), then there uniquely exists a probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for $all \ a < b$,

$$\mu((a,b]) = F(b) - F(a).$$

Definition. If X and Y induce the same distribution μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we say X and Y are equal in distribution. We write

$$X \stackrel{d}{=} Y$$
.

Definition. When the distribution function $F(x) = P(X \le x)$ has the form $F(x) = \int_{-\infty}^{x} f(y)dy$, then we say X has the density function f.

Remark. f is not unique, but unique up to Lebesque measure 0.

Theorem ([1, Theorem 1.3.4]). If $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and $f : (S, \mathcal{S}) \to (T, \mathcal{T})$ are measurable maps, then f(X) is measurable.

Theorem. $f:(S,S)\to (T,T)$ and suppose $S=\sigma(open\ sets),\ T=\sigma(open\ sets).$ Then, if f is continuous then f is measurable.

Theorem ([1, Theorem 1.3.5]). If X_1, \dots, X_n are random variables and $f : (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \dots, X_n)$ is a random variable.

Theorem ([1, Theorem 1.3.6]). If X_1, \dots, X_n are random variables then $X_1 + \dots + X_n$ is a random variable.

Remark. If X, Y are random variables, then

$$cX$$
 (c is scalar), $X \pm Y$, XY , $\sin(X)$, X^2 , ...,

are all random variables.

Theorem ([1, Theorem 1.3.7]). $\inf_{n} X_n$, $\sup_{n} X_n$, $\lim_{n} \sup_{n} X_n$, $\lim_{n} \inf_{n} X_n$ are random variables.

Integration

Let μ be a σ -finite measure on (Ω, \mathcal{F}) .

Definition. For any predicate $Q(\omega)$ defined on Ω , we say Q is true $(\mu-)$ almost everywhere (or a.e.) if $\mu(\{\omega: Q(\omega) \text{ is } false\}) = 0$

Step 1.

Definition. φ is a simple function if $\varphi(\omega) = \sum_{i=1}^{n} a_i 1_{A_i}$ with $A_i \in \mathcal{F}$ If φ is a simple function and $\varphi \geq 0$, we let

$$\int \varphi d\mu = \sum_{i=1}^{n} a_i \mu(A_i)$$

Step 2.

Definition. If f is measurable and $f \geq 0$ then we let

$$\int f d\mu = \sup \{ \int \varphi d\mu : \ 0 \le \varphi \le f \text{ and } \varphi \text{ simple} \}$$

We define the integral of f over the set E:

$$\int_E f d\mu \coloneqq \int f \cdot 1_E d\mu$$

Step 3.

Definition. We say measurable f is integrable if $\int |f| d\mu < \infty$. Let

$$f^+(x) := f(x) \lor 0$$
, and $f^-(x) := (-f(x)) \lor 0$,

where $a \vee b = \max(a, b)$. We define the integral of f by

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

we can also define $\int f d\mu$ if $\int f^+ d\mu = \infty$ and $\int f^- d\mu < \infty$, or $\int f^+ d\mu < \infty$ and $\int f^- d\mu = \infty$

Theorem ([1, Theorem 1.4.7]). Suppose f and g are integrable.

- (i) If $f \ge 0$ a.e. then $\int f d\mu \ge 0$
- (ii) $\forall a \in \mathbb{R}, \ \int afd\mu = a \int fd\mu$
- (iii) $\int f + g d\mu = \int f d\mu + \int g d\mu$
- (iv) If $g \leq f$ a.e. then $\int g d\mu \leq \int f d\mu$
- (v) If g = f a.e. then $\int g d\mu = \int f d\mu$
- $(vi) \mid \int f d\mu \mid \leq \int |f| d\mu$

Definition. If X is a random variable on (Ω, \mathcal{F}, P) , we define its expected value to be $\mathbb{E}(X) = \int_{\Omega} X dP$. We also write $\mathbb{E}(X; A) = \int_{A} X dP$.

Several techniques of integration

• The pushforward measure of a transformation T is $T_*\mu := \mu(T^{-1}(A))$. The change of variables formula for pushforward measures is

$$\int_{\Omega} f \circ T d\mu = \int_{T(\Omega)} f dT_* \mu.$$

Now, consider a probability space (Ω, \mathcal{F}, P) , and consider a measurable map $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ as a transformation. Then the distribution measure μ_X of X is in fact the pushforward measure $\mu_X(A) = P(X \in A) = P(X^{-1}(A))$, and hence the change of variable formula becomes

$$\mathbb{E}_{P}\left[f(X)\right] = \int_{\Omega} f(X(\omega))dP(\omega) = \int_{X(\Omega)} f(x)d\mu_{X}(x).$$

- For Lebesgue measure λ and Riemann integrable function f, $\int_{[a,b]} f d\lambda$ is the same as the Riemann integral $\int_a^b f(x) dx$.
- $\int f d\delta_x = f(x)$, where δ_x is the Dirac-delta measure, i.e., $\delta_x(A) = I(x \in A)$.
- For a random variable $X \geq 0$,

$$\mathbb{E}_{P}[X] = \int_{\Omega} X(\omega) dP(\omega) = \int_{\Omega} \int_{[0,X(\omega)]} dt dP(\omega)$$

$$= \int_{\{(\omega,t)\in\Omega\times[0,\infty):0\leq t\leq X(\omega)\}} dt \times dP(\omega)$$

$$= \int_{0}^{\infty} \int_{\{\omega\in\Omega:X(\omega)\geq t\}} dP(\omega) dt$$

$$= \int_{0}^{\infty} P(X\geq t) dt.$$

Independence

Definition. Let (Ω, \mathcal{F}, P) be probability space. Two events $A, B \in \mathcal{F}$ are independent (독립) if

$$P(A \cap B) = P(A)P(B).$$

Two random variables X and Y are independent if for all $C, D \in \mathcal{R}$,

$$P(X \in C, Y \in D) = P(X \in C)P(Y \in D).$$

Two σ -fields \mathcal{F}_1 and \mathcal{F}_2 ($\subset \mathcal{F}$) are independent if for all $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$, A and B are independent.

Definition. σ -fields $\mathcal{F}_1, \dots, \mathcal{F}_n$ are independent if for all $A_i \in \mathcal{F}_i$,

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i),$$

Random variables X_1, \dots, X_n are independent if for all $B_i \in \mathcal{R}$,

$$P\left(\bigcap_{i=1}^{n} \{X_i \in B_i\}\right) = \prod_{i=1}^{n} P(X_i \in B_i).$$

Sets A_1, \dots, A_n are independent if for all $I \subset \{1, \dots, n\}$,

$$P\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}P(A_i)$$

Remark. the definition of independent events is not enough to assume pairwise independent, which is $P(A_i \cap A_j) = P(A_i)P(A_j)$, $i \neq j$. It is clear that independent events are pairwise independent, but converse is not true.

Example. Let X_1, X_2, X_3 be independent random variables with $P(X_i = 0) = P(X_i = 1) = \frac{1}{2}$

Let $A_1 = \{X_2 = X_3\}$, $A_2 = \{X_3 = X_1\}$ and $A_3 = \{X_1 = X_2\}$. These events are pairwise independent but not independent.

Theorem ([1, Theorem 2.1.12]). Suppose X and Y are independent, and $f, g : \mathbb{R} \to \mathbb{R}$ are measurable functions with $f, g \geq 0$ or $\mathbb{E}|f(X)|, \mathbb{E}|g(X)| < \infty$, then

$$\mathbb{E}_P[f(X)g(Y)] = \mathbb{E}_P[f(X)]\mathbb{E}_P[g(Y)].$$

Conditional Expectation

Definition. Let $(\Omega, \mathcal{F}_0, P)$ be a given probability space. Suppose a σ -field $\mathcal{F} \subset \mathcal{F}_0$ and a random variable $X \in \mathcal{F}_0$ are given. $E(X|\mathcal{F})$ (conditional expectation of X given \mathcal{F}) is a random variable Y such that

- (i) $Y \in \mathcal{F}$, i.e., is \mathcal{F} measurable
- (ii) for all $A \in \mathcal{F}$, $\int_A X dP = \int_A Y dP$.

Any Y satisfying (i) and (ii) is said to be a version of $E(X|\mathcal{F})$.

Lemma ([1, Lemma 4.1.1]). If Y satisfies (i) and (ii), then it is integrable.

Remark. Uniqueness.

Suppose there are two random variables Y and Y' satisfying (i) and (ii) of the definition of the conditional expectation. Then Y = Y' a.s.

Remark. Existence

 $E(X|\mathcal{F})$ exists.

Example ([1, Example 4.1.3]). If $X \in \mathcal{F}$, $\mathbb{E}(X|\mathcal{F}) = X$

Example ([1, Example 4.1.4]). If X is independent of \mathcal{F} , then $\mathbb{E}(X|\mathcal{F}) = \mathbb{E}(X)$

Example ([1, Example 4.1.5]). Let $\Omega_1, \Omega_2, \cdots$ be a countable partition of Ω into disjoint sets and let $\mathcal{F} = \sigma(\Omega_1, \Omega_2, \cdots)$

Then
$$E(X|\mathcal{F})(\omega) = \sum_{k=1}^{\infty} c_k I(\omega \in \Omega_k)$$

where $c_k = \begin{cases} \frac{\int_{\Omega_k} X dP}{P(\Omega_k)} & \text{if } P(\Omega_k) > 0\\ arbitrary & \text{if } P(\Omega_k) = 0 \end{cases}$

Definition. $P(A|\mathcal{F}) = E(1_A|\mathcal{F})$

$$P(A|B) = P(A \cap B)/P(B)$$

Remark.
$$P(A|\sigma(B)) = \begin{cases} P(A|B) & \text{if } \omega \in B \\ P(A|B^c) & \text{if } \omega \in B^c \end{cases}$$

Definition. Conditional expectation given random variable

$$E(X|Y) = E(X|\sigma(Y))$$

Definition. Conditional expectation given Y = y, i.e. E(X|Y = y).

Consider E(X|Y), which is $\sigma(Y)$ -measurable. Then there exists a measurable function $h: \mathbb{R} \to \mathbb{R}$ s.t. $\mathbb{E}(X|Y) = h(Y)$ (Exercise 1.3.8) Now, we can define

$$\mathbb{E}(X|Y=y) = h(y)$$

Definition. $P(A|Y=y) = E(I_A|Y=y)$

Example ([1, Example 4.1.6]). $(X,Y) \sim pdf \ f(x,y)$ (w.r.t. Lebesque measure). Then

$$\mathbb{E}(g(X)|Y) = \frac{\int g(x)f(x,Y)dx}{\int f(x,Y)dx},$$

provided $f(x,y) > 0 \ \forall (x,y)$.

Example ([1, Example 4.1.7]). Suppose X and Y are independent. Let φ be a function wit $\mathbb{E}|\varphi(X,Y)| < \infty$ and let $g(x) = \mathbb{E}(\varphi(x,Y))$. Then

$$\mathbb{E}(\varphi(X,Y)|X) = g(X).$$

Example. Convolution formula

$$X \perp Y$$
Let $\varphi_z(x,y) = I(x+y \le z)$
Then $g(x) = E(\varphi_z(x,Y)) = P(Y \le z - x)$
Hence $P(X+Y \le z|X) = F_Y(z-X)$
which implies
$$P(X+Y \le z) = E(P(X+Y \le z|X))$$

$$= E(F_Y(z-X))$$

$$= \int_{-\infty}^{\infty} F_Y(z-x) dF_X(x) = F_X * F_Y$$

Properties

Theorem ([1, Theorem 4.1.9]). (a) Linearlity.

$$\mathbb{E}(aX + Y|\mathcal{F}) = a\mathbb{E}(X|\mathcal{F}) + \mathbb{E}(Y|\mathcal{F}).$$

(b) Monotonicity.

If $X \leq Y$, then

$$\mathbb{E}(X|\mathcal{F}) \le \mathbb{E}(Y|\mathcal{F}).$$

(c) Monotone convergence theorem.

If $X_n \geq 0$ and $X_n \uparrow X$ with $E|X| < \infty$, then

$$\mathbb{E}(X_n|\mathcal{F}) \uparrow \mathbb{E}(X|\mathcal{F}).$$

Theorem ([1, Theorem 4.1.10]). Jensen Inequality

If φ is convex and $E|X| < \infty$ and $E|\varphi(X)| < \infty$, then

$$\varphi(E(X|\mathcal{F})) \le E(\varphi(X)|\mathcal{F}).$$

Theorem ([1, Theorem 4.1.11]). Conditional expectation is a contraction in L^p , $p \ge 1$, i.e., i.e.,

$$\mathbb{E}(|\mathbb{E}(X|\mathcal{F})|^p) \le \mathbb{E}|X|^p.$$

Theorem ([1, Theorem 4.1.12]). If $\mathcal{F} \subset \mathcal{G}$ and $E(X|\mathcal{G}) \in \mathcal{F}$, then

$$\mathbb{E}(X|\mathcal{F}) = \mathbb{E}(X|\mathcal{G}).$$

Theorem ([1, Theorem 4.1.13]). If $\mathcal{F}_1 \subset \mathcal{F}_2$, then

- (i) $\mathbb{E}(\mathbb{E}(X|\mathcal{F}_1)|\mathcal{F}_2) = \mathbb{E}(X|\mathcal{F}_1)$
- (ii) $\mathbb{E}(\mathbb{E}(X|\mathcal{F}_2)|\mathcal{F}_1) = \mathbb{E}(X|\mathcal{F}_1)$

Theorem ([1, Theorem 4.1.14]). If $X \in \mathcal{F}$ and $E|X| < \infty$, then

$$\mathbb{E}(XY|\mathcal{F}) = X\mathbb{E}(Y|\mathcal{F}).$$

Theorem ([1, Theorem 4.1.15]). Suppose $EX^2 < \infty$, then $\mathbb{E}(X|\mathcal{F})$ is a random variable $Y \in \mathcal{F}$ that minimizes $\mathbb{E}(X-Y)^2$ among all random variables $\in \mathcal{F}$

Weak laws of large numbers (큰 수의 약법칙)

Various modes of convergence

 $\{X_n\}$ and X are random variables defined on (Ω, \mathcal{F}, P)

Definition. $X_n \to X$ almost surely (a.s.) (with probability 1(w.p. 1), almost everywhere (a.e.)) if $P\{\omega : X_n(\omega) \to X(\omega)\} = 1$

Equivalent definition :
$$\forall \epsilon, \lim_{m \to \infty} P\{\omega : |X_n(\omega) - X(\omega)| \le \epsilon \ \forall n \ge m\} = 1$$
 or $\forall \epsilon, \lim_{m \to \infty} P\{\omega : |X_n(\omega) - X(\omega)| > \epsilon \ \forall n \ge m\} = 0$

Definition. $X_n \to X$ in probability (확률수렴) (in pr, $\stackrel{p}{\longrightarrow}$) if $\lim_{n \to \infty} P\{|X_n - X| > \epsilon\} = 0$

Theorem. $X_n \to X$ a.s. $\Longrightarrow X_n \stackrel{p}{\longrightarrow} X$

Remark. $X_n \stackrel{p}{\longrightarrow} X \not\Rightarrow X_n \to X$ a.s.

Definition. $X_n \to X$ in L_p , $0 if <math>\lim_{n \to \infty} E(|X_n - X|^p) = 0$ provided $E|X_n|^p < \infty$, $E|X|^p < \infty$.

Theorem. $X_n \to X$ in $L_p \implies X_n \stackrel{p}{\longrightarrow} X$

Theorem. (Chebyshev inequality, 체비셰프 부등식)

$$P(|X| \ge \epsilon) \le \frac{E|X|^p}{\epsilon^p}$$

Remark. $X_n \stackrel{p}{\longrightarrow} X \Rightarrow X_n \to X$ in L_p

Example. $\Omega = [0, 1], \ \mathcal{F} = \mathcal{B}[0, 1], \ P = Unif[0, 1]$ $X(\omega) = 0, \ X_n(\omega) = nI(0 \le \omega \le \frac{1}{n})$ Then $P\{|X_n(\omega) - X(\omega)| > \epsilon\} = P\{0 \le \omega \le \frac{1}{n}\} = \frac{1}{n} \to 0$ But $E|X_n - X| = E|X_n| = 1$

Theorem. $X_n \stackrel{p}{\longrightarrow} X$ and there exists a random variables Z s.t.

$$|X_n| \le Z$$
 and $E|Z|^p < \infty$
Then $X_n \to X$ in L_p .

Remark. If $E|X| < \infty$, then $\lim_{n \to \infty} \int_{A_n} |X| dP \to 0 \text{ whenever } P(A_n) \to 0$

2...2.1. L_2 weak law

Theorem ([1, Theorem 2.2.3]). Let X_1, X_2, \cdots be uncorrelated random variables with $EX_i = \mu$ and $Var(X_i) \leq C < \infty$ Let $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to \mu$ in L_2 and also in probability.

Theorem ([1, Theorem 2.2.14]). Weak law of large numbers (큰 수의 약법칙, 대수의 약법칙) Let X_1, X_2, \cdots be i.i.d. random variables with $E|X_i| < \infty$. Let $S_n = X_1 + \cdots + X_n$ and let $\mu = EX_1$. Then $\frac{S_n}{n} \to \mu$ in probability.

Weak Convergence

We define weak convergence for random variables, but most of the results can be generalized to measurable maps $X_n, X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$, where S is equipped with a metric ρ .

Definition. A sequence of random vectors $\{X_n\}$ converges weakly or converges in distribution (분포수렴) to a limit X $(X_n \Rightarrow X, X_n \xrightarrow{w} X, X_n \xrightarrow{d} X)$ if

$$\mathbb{E}_P [g(X_n)] \to \mathbb{E}_P [g(X)], \quad \text{for all } g \in C_b(\mathbb{R}),$$

where $C_b(\mathbb{R})$ is a set of continuous and bounded functions. We analogously define $P_n \stackrel{d}{\longrightarrow} P$ for probability measures $\{P_n\}$ and P, i.e., $\int g(x)dP_n(x) \to \int g(x)dP(x)$ for all $g \in C_b(\mathbb{R})$. We also analogously define $F_n \stackrel{d}{\longrightarrow} F$ ($F_n \Rightarrow F$, $F_n \stackrel{w}{\longrightarrow} F$) for distribution functions $\{F_n\}$ and F, i.e., $\int g(x)dF_n(x) \to \int g(x)dF(x)$ for all $g \in C_b(\mathbb{R})$.

Theorem ([1, Theorem 3.2.9]). A sequence of distribution function F_n converges weakly to a limit F if and only if $F_n(y) \to F(y)$ for all continuity points of F.

Example ([1, Example 3.2.1]). Let X_1, X_2, \cdots be i.i.d. with $P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$, and let $S_n = X_1 + \cdots + X_n$. Then

$$F_n(y) = P(S_n/\sqrt{n} \le y) \to \int_{-\infty}^y \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \ \forall y \in \mathbb{R}.$$

That is, $F_n \xrightarrow{w} \mathcal{N}(0,1)$.

Example ([1, Example 3.2.3]). Let $X \sim F$ and $X_n = X + \frac{1}{n}$. Then

$$F_n(x) = P(X_n \le x) = F(x - \frac{1}{n}) \to F(x - 1).$$

Hence $F_n(x) \to F(x)$ only when F(x) = F(x-), i.e. only if x is a continuity point of F. Still, $X_n \stackrel{d}{\longrightarrow} X$.

Example ([1, Example 3.2.4]). Let $X_p \sim Geo(p)$, i.e. $P(X_p \ge m) = (1-p)^{m-1}$. Then

$$P(X_p > \frac{x}{p}) = (1-p)^{\frac{x}{p}} \to e^{-x}, \quad \text{as } p \to 0.$$

In words, pX_p converges weakly to an exponential distribution.

Central Limit Theorem (중심극한정리)

Theorem ([1, Theorem 3.4.1]). Let X_1, X_2, \cdots be i.i.d. with $\mathbb{E}X_i = \mu$ and $Var(X_i) = \sigma^2 > 0$. If $S_n = X_1 + \cdots + X_n$, then

$$(S_n - n\mu)/(\sqrt{n}\sigma) \xrightarrow{d} \mathcal{N}(0,1).$$

Theorem ([1, Theorem 3.4.17]). Berry-Essen theorem

Let X_1, X_2, \cdots be i.i.d. with $EX_i = 0$, $EX_i^2 = \sigma^2$ and $E|X_1|^3 = \rho < \infty$. Let $F_n(x)$ be the distribution function of $(X_1 + \cdots + X_n)/(\sigma\sqrt{n})$ and $\Phi(x)$ be the standard normal distribution. Then

$$\sup_{x} |F_n(x) - \Phi(x)| \le 3\rho/(\sigma^3 \sqrt{n}).$$

Stochastic Order Notation

The classical order notation should be familiar to you already.

- 1. We say that a sequence $a_n = o(1)$ if $a_n \to 0$ as $n \to \infty$. Similarly, $a_n = o(b_n)$ if $a_n/b_n = o(1)$.
- 2. We say that a sequence $a_n = O(1)$ if the sequence is eventually bounded, i.e. for all n large, $|a_n| \leq C$ for some constant $C \geq 0$. Similarly, $a_n = O(b_n)$ if $a_n/b_n = O(1)$.
- 3. If $a_n = O(b_n)$ and $b_n = O(a_n)$ then we use either $a_n = \Theta(b_n)$ or $a_n \times b_n$.

When we are dealing with random variables we use stochastic order notation.

1. We say that $X_n = o_P(1)$ if for every $\epsilon > 0$, as $n \to \infty$

$$\mathbb{P}\left(|X_n| \ge \epsilon\right) \to 0,$$

i.e. X_n converges to zero in probability.

2. We say that $X_n = O_P(1)$ if for every $\epsilon > 0$ there is a finite $C(\epsilon) > 0$ such that, for all n large enough:

$$\mathbb{P}\left(|X_n| \ge C(\epsilon)\right) \le \epsilon.$$

The typical use case: suppose we have X_1, \ldots, X_n which are i.i.d. and have finite variance, and we define:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- 1. $\hat{\mu} \mu = o_P(1)$ (Weak Law of Large Number)
- 2. $\hat{\mu} \mu = O_P(1/\sqrt{n})$ (Central Limit Theorem)

Proposition. 1. $X_n \stackrel{P}{\longrightarrow} X$ implies $X_n \stackrel{d}{\longrightarrow} X$, and this implies $X_n = O_p(1)$. Also, $X_n = o_p(1)$ implies $X_n = O_p(1)$.

- 2. (a) $O_p(1) + O_p(1) = O_p(1)$
 - (b) $O_p(1) + o_p(1) = O_p(1)$
 - (c) $o_p(1) + o_p(1) = o_p(1)$
 - (d) $O_p(1) \cdot O_p(1) = O_p(1)$
 - (e) $O_p(1) \cdot o_p(1) = o_p(1)$
 - (f) $o_p(1) \cdot o_p(1) = o_p(1)$

References

[1] Rick Durrett. Probability—theory and examples, volume 49 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019. Fifth edition.