
Basis expansions and Kernel methods

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2024 1st semester

The lecture note is a minor modification of the lecture notes from Prof. Yongdai Kim’s “Statistical Machine
Learning”, and Prof Larry Wasserman and Ryan Tibshirani’s “Statistical Machine Learning”. Also, see Section 5
and 6 from [7].

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rp, so x = (x1, . . . , xp).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F
1

n

n∑

i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

1

1.2 Linear Regression
From the additive noise model

y = f(x) + ϵ, f ∈ M,

Linear Regression Model (선형회귀모형) is that

M = F =

β0 +

p∑

j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =

n∑

i=1

(yi − f(xi))
2

=

n∑

i=1

yi − β0 −

p∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂p) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

p∑

j=1

β̂jxj .

2 Introduction
For linear regression (선형 회귀) y = x⊤β + ϵ, the mean response E [y|X = x] = x⊤β is linear with respect to x.
But this linear relation may not hold: The nonparametric regression (비모수 회귀), or non-linear regression (비선형
회귀), we just assume

y = f(x) + ϵ, f ∈ M.

For training data T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution Pi. For many
cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d. Then we can write

yi = f(xi) + ϵi, i = 1, . . . , n.

For theoretical analysis, we assume ϵi, i = 1, . . . , n are i.i.d. random errors, with mean zero. E [ϵi] = 0 ensures that
f is the minimizer of E(Y,X)∼P

[
(Y − f(X))2

]
when xi’s are i.i.d.

It is typical to assume that each ϵi is independent of xi. This is a pretty strong assumption, and you should
think about it skeptically. We too will make this assumption, for simplicity. It should be noted that a good portion
of theoretical results that we cover (or at least, similar theory) also holds without this assumption.

Between xi’s being i.i.d. or fixed, theories are not completely the same (some theory is sharper when we assume
fixed input points, especially evenly spaced input points), but for the most part the theory is quite similar. Therefore,
in what follows, we won’t be very precise about which setup we assume—random or fixed inputs—because it mostly
doesn’t matter when introducing nonparametric regression estimators and discussing basic properties

To solve low-dimensional non-linear regression (비선형 회귀) y = f(x) + ϵ, there are two approaches:

• Basis expansions (기저 전개): Linear models on Take non-linear transformation (비선형 변환) of input X and
then solve linear regression (선형 회귀).

– regression function (회귀함수) becomes f(x) =
∑q

j=1 βjhj(x). Each hj : Rp → R is called basis function
(기저함수)

– polynomial regression (다항함수), regression spline (회귀스플라인), smoothing spline (평활스플라인)

• Kernel smoothing (핵평활): Solve linear regression (선형 회귀) locally (국소적) using kernel function (핵함수)

– Nadaaya-Watson estimator, local linear regression (국소선형회귀)

2

2.1 Notation
• We will define an empirical norm ∥ · ∥n in terms of the training points xi, i = 1, . . . , n, acting on functions
f : Rd → R, by

∥f∥2n =
1

n

n∑

i=1

f2(xi).

This makes sense no matter if the inputs are fixed or random (but in the latter case, it is a random norm)

• When the inputs are considered random, we will write PX for the distribution of X, and we will define the
L2 norm ∥ · ∥2 in terms of PX , acting on functions f : Rd → R, by

∥f∥22 = E[f2(X)] =

∫
f2(x) dPX(x).

So when you see ∥ · ∥2 in use, it is a hint that the inputs are being treated as random

• A quantity of interest will be the (squared) error associated with an estimator f̂ of f0, which can be measured
in either norm:

∥f̂ − f0∥2n or ∥f̂ − f0∥22.
In either case, this is a random quantity (since f̂ is itself random). We will study bounds in probability or in
expectation. The expectation of the errors defined above, in terms of either norm (but more typically the L2

norm) is most properly called the risk; but we will often be a bit loose in terms of our terminology and just
call this the error

2.2 Holder Spaces and Sobolev Spaces
The class of Lipschitz functions H(1, L) on T ⊂ R is the set of functions g : T → R such that

|g(y)− g(x)| ≤ L|x− y| for all x, y ∈ T.

A differentiable function is Lipschitz if and only if it has bounded derivative. Conversely a Lipschitz function is
differentiable almost everywhere.

Let T ⊂ R and let β be an integer. The Holder space H(β, L) is the set of functions g : T → R such that g is
ℓ = β − 1 times differentiable and satisfies

|g(ℓ)(y)− g(ℓ)(x)| ≤ L|x− y| for all x, y ∈ T.

(There is an extension to real valued β but we will not need that.) If g ∈ H(β, L) and ℓ = β− 1, then we can define
the Taylor approximation of g at x by

g̃(y) = g(y) + (y − x)g′(x) + · · ·+ (y − x)ℓ

ℓ!
g(ℓ)(x)

and then |g(y)− g̃(y)| ≤ |y − x|β .
The definition for higher dimensions is similar. Let X be a compact subset of Rd. Let β and L be positive

numbers. Given a vector s = (s1, . . . , sd), define |s| = s1 + · · ·+ sd, s! = s1! · · · sd!, xs = xs1
1 · · ·xsd

d and

Ds =
∂s1+···+sd

∂xs1
1 · · · ∂xsd

d

.

Let β be a positive integer. Define the Hölder class

Hd(β, L) =

{
g : |Dsg(x)−Dsg(y)| ≤ L∥x− y∥, for all s such that |s| = β − 1, and all x, y

}
. (1)

For example, if d = 1 and β = 2 this means that

|g′(x)− g′(y)| ≤ L |x− y|, for all x, y.

The most common case is β = 2; roughly speaking, this means that the functions have bounded second derivatives.

3

Again, if g ∈ Hd(β, L) then g(x) is close to its Taylor series approximation:

|g(u)− gx,β(u)| ≤ L∥u− x∥β (2)

where
gx,β(u) =

∑

|s|≤β

(u− x)s

s!
Dsg(x). (3)

In the common case of β = 2, this means that
∣∣∣∣∣p(u)− [p(x) + (x− u)T∇p(x)]

∣∣∣∣∣ ≤ L||x− u||2.

The Sobolev class S1(β, L) on T ⊂ R is the set of β times differentiable functions (technically, it only requires
weak derivatives) g : T → R such that ∫

T

(g(β)(x))2dx ≤ L2.

Again this extends naturally to Rd. Also, there is an extension to non-integer β. It can be shown that if T is
bounded, then Hd(β, L) ⊂ Sd(β, L

′) for appropriate L and L′.

3 Linear smoothers
Every estimator in this note is a linear smoother meaning that f̂(x) =

∑
i wi(x)Yi for some weights wi(x) that do

not depend on the Y ′
i s. Hence, the fitted values µ̂ = (f̂(X1), . . . , f̂(Xn)) are of the form µ̂ = SY for some matrix

S ∈ Rn×n depending on the inputs X1, . . . , Xn—and also possibly on a tuning parameter such as h in kernel
smoothing, or λ in smoothing splines—but not on the Yi’s. We call S, the smoothing matrix. For comparison, recall
that in linear regression, µ̂ = HY for some projection matrix H.

For linear smoothers µ̂ = SY , the effective degrees of freedom is defined to be

ν ≡ df(µ̂) ≡
n∑

i=1

Sii = tr(S),

the trace of the smooth matrix S.

4 Basis Expansions
Consider a mapping h : Rp → Rq. Then, consider a linear model

F =
{
h(x)⊤β : β ∈ Rq

}
.

When h is nonlinear, the resulting model is also nonlinear. Typically, q is much larger than p.
Examples are:

• Polynomial regression

• Special functions: h(x) = exp(x1 + x2)

• locally constant function: hj(x) = I(l < xj < u).

• Regression spline: locally polynomial functions

• Smoothing spline: penalized locally polynomial functions

• Wavelet (not covered!)

4

4.1 Polynomial regression
The m-th order polynomial model is given as

f(x) = β0 +

p∑

j=1

βjxj +
∑

j<k

βjkxjxk · · ·+
∑

j1<j2<···<jm

βj1,j2,··· ,jm

m∏

k=1

xjk .

• Main effect terms: βjxj

• Second order interaction terms: βjkxjxk

• mth order interaction terms: βj1,j2,··· ,jm
∏m

k=1 xjk

• When p is small, we can use relatively large m. But, when p is large, we use small m due to difficulties in
computation as well as interpretation.

• In practice, we are satisfied with m = 2 for high dimensional problems.

5 Regression splines, smoothing splines

5.1 Splines
• Regression splines and smoothing splines are motivated from a different perspective than kernels and local

polynomials; in the latter case, we started off with a special kind of local averaging, and moved our way up to
a higher-order local models. With regression splines and smoothing splines, we build up our estimate globally,
from a set of select basis functions

• These basis functions, as you might guess, are splines. Let’s assume that d = 1 for simplicity. (We’ll stay in the
univariate case, for the most part, in this section.) A kth-order spline f is a piecewise polynomial function of
degree k that is continuous and has continuous derivatives of orders 1, . . . , k−1, at its knot points. Specifically,
there are t1 < . . . < tp such that f is a polynomial of degree k on each of the intervals

(−∞, t1], [t1, t2], . . . , [tp,∞)

and f (j) is continuous at t1, . . . , tp, for each j = 0, 1, . . . , k − 1

• Splines have some special (some might say: amazing!) properties, and they have been a topic of interest among
statisticians and mathematicians for a very long time. See [1] for an in-depth coverage. Informally, a spline is
a lot smoother than a piecewise polynomial, and so modeling with splines can serve as a way of reducing the
variance of fitted estimators. See Figure 1

• A bit of statistical folklore: it is said that a cubic spline is so smooth, that one cannot detect the locations of
its knots by eye!

• How can we parametrize the set of a splines with knots at t1, . . . , tp? The most natural way is to use the
truncated power basis, g1, . . . , gp+k+1, defined as

g1(x) = 1, g2(x) = x, . . . gk+1(x) = xk,

gk+1+j(x) = (x− tj)
k
+, j = 1, . . . , p.

(4)

(Here x+ denotes the positive part of x, i.e., x+ = max{x, 0}.) From this we can see that the space of kth-order
splines with knots at t1, . . . , tp has dimension p+ k + 1

• While these basis functions are natural, a much better computational choice, both for speed and numerical
accuracy, is the B-spline basis. This was a major development in spline theory and is now pretty much the
standard in software. The key idea: B-splines have local support, so a basis matrix that we form with them
(to be defined below) is banded. See [1] or the Appendix of Chapter 5 in [7] for details

5

5.2 Piecewise Polynomials and Splines 143

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O

O

O

O O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O
O

O
O

O

O

O

O

OO O

Discontinuous

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O

O

O

O O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O
O

O
O

O

O

O

O

OO O

Continuous

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O

O

O

O O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O
O

O
OO

O

O

O

OO O

Continuous First Derivative

O

O

O

O

O

O O

O

O

O

OO

O
O

O

O

O

O

O

O O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O

O
O

O
OO

O

O

O

OO O

Continuous Second Derivative

Piecewise Cubic Polynomials

ξ1ξ1

ξ1ξ1

ξ2ξ2

ξ2ξ2

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

Figure 1: Illustration of the effects of enforcing continuity at the knots, across various orders of the derivative, for
a cubic piecewise polynomial. From Figure 5.1 of [7]

6

5.2 Regression splines
• A first idea: let’s perform regression on a spline basis. In other words, given inputs x1, . . . , xn and responses
y1, . . . , yn, we consider fitting functions f that are kth-order splines with knots at some chosen locations
t1, . . . tp. This means expressing f as

f(x) =

p+k+1∑

j=1

βjgj(x),

where β1, . . . , βp+k+1 are coefficients and g1, . . . , gp+k+1, are basis functions for order k splines over the knots
t1, . . . , tp (e.g., the truncated power basis or B-spline basis)

• Letting y = (y1, . . . , yn) ∈ Rn, and defining the basis matrix G ∈ Rn×(p+k+1) by

Gij = gj(xi), i = 1, . . . , n, j = 1, . . . , p+ k + 1,

we can just use least squares to determine the optimal coefficients β̂ = (β̂1, . . . , β̂p+k+1),

β̂ = argminβ∈Rp+k+1 ∥y −Gβ∥22,

which then leaves us with the fitted regression spline f̂(x) =
∑p+k+1

j=1 β̂jgj(x)

• Of course we know that β̂ = (GTG)−1GT y, so the fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) are

µ̂ = G(GTG)−1GT y,

and regression splines are linear smoothers

• This is a classic method, and can work well provided we choose good knots t1, . . . , tp; but in general choosing
knots is a tricky business. There is a large literature on knot selection for regression splines via greedy methods
like recursive partitioning

• For the computation of regression splines, we fix the order of local polynomial, typically less than or equal to
3 (The cubic spline is a popular one). The parameters we have to estimate is the number of knots, the knot
locations and regression coefficients. Once p and tl’s are fixed, the regression coefficients can be estimated
easily. Again, the knot selection is computationally demanding and unstable. A better approach is smoothing
spline.

5.3 Natural splines
• A problem with regression splines is that the estimates tend to display erractic behavior, i.e., they have high

variance, at the boundaries of the input domain. (This is the opposite problem to that with kernel smoothing,
which had poor bias at the boundaries.) This only gets worse as the polynomial order k gets larger

• A way to remedy this problem is to force the piecewise polynomial function to have a lower degree to the
left of the leftmost knot, and to the right of the rightmost knot—this is exactly what natural splines do. A
natural spline of order k, with knots at t1 < . . . < tp, is a piecewise polynomial function f such that

– f is a polynomial of degree k on each of [t1, t2], . . . , [tp−1, tp],
– f is a polynomial of degree (k − 1)/2 on (−∞, t1] and [tp,∞),
– f is continuous and has continuous derivatives of orders 1, . . . , k − 1 at t1, . . . , tp.

It is implicit here that natural splines are only defined for odd orders k

• What is the dimension of the span of kth order natural splines with knots at t1, . . . , tp? Recall for splines,
this was p+ k + 1 (the number of truncated power basis functions). For natural splines, we can compute this
dimension by counting:

(k + 1) · (p− 1)︸ ︷︷ ︸
a

+
((k − 1)

2
+ 1

)
· 2

︸ ︷︷ ︸
b

− k · p︸︷︷︸
c

= p.

Above, a is the number of free parameters in the interior intervals [t1, t2], . . . , [tp−1, tp], b is the number of free
parameters in the exterior intervals (−∞, t1], [tp,∞), and c is the number of constraints at the knots t1, . . . , tp.
The fact that the total dimension is p is amazing; this is independent of k!

7

• Note that there is a variant of the truncated power basis for natural splines, and a variant of the B-spline basis
for natural splines. Again, B-splines are the preferred parametrization for computational speed and stability

• Natural splines of cubic order is the most common special case: these are smooth piecewise cubic functions,
that are simply linear beyond the leftmost and rightmost knots

5.4 Smoothing splines
• Smoothing splines, at the end of the day, are given by a regularized regression over the natural spline basis,

placing knots at all inputs x1, . . . , xn. They circumvent the problem of knot selection (as they just use the
inputs as knots), and they control for overfitting by shrinking the coefficients of the estimated function (in its
basis expansion)

• Interestingly, we can motivate and define a smoothing spline directly from a functional minimization perspec-
tive. With inputs x1, . . . , xn lying in an interval [0, 1], the smoothing spline estimate f̂ , of a given odd integer
order k ≥ 0, is defined as

f̂ = argminf

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0

(
f (m)(x)

)2
dx, where m = (k + 1)/2. (5)

This is an infinite-dimensional optimization problem over all functions f for the which the criterion is finite.
This criterion trades off the least squares error of f over the observed pairs (xi, yi), i = 1, . . . , n, with a penalty
term that is large when the mth derivative of f is wiggly. The tuning parameter λ ≥ 0 governs the strength
of each term in the minimization

• By far the most commonly considered case is k = 3, i.e., cubic smoothing splines, which are defined as

f̂ = argminf

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0

f ′′(x)2 dx (6)

• Remarkably, it so happens that the minimizer in the general smoothing spline problem (5) is unique, and is
a natural kth-order spline with knots at the input points x1, . . . , xn! Here we give a proof for the cubic case,
k = 3, from [5] (see also Exercise 5.7 in [7])

The key result can be stated as follows: if f̃ is any twice differentiable function on [0, 1], and x1, . . . , xn ∈ [0, 1],
then there exists a natural cubic spline f with knots at x1, . . . , xn such that f(xi) = f̃(xi), i = 1, . . . , n and

∫ 1

0

f ′′(x)2 dx ≤
∫ 1

0

f̃ ′′(x)2 dx.

Note that this would in fact prove that we can restrict our attention in (6) to natural splines with knots at
x1, . . . , xn

Proof: the natural spline basis with knots at x1, . . . , xn is n-dimensional, so given any n points zi = f̃(xi),
i = 1, . . . , n, we can always find a natural spline f with knots at x1, . . . , xn that satisfies f(xi) = zi, i = 1, . . . , n.
Now define

h(x) = f̃(x)− f(x).

Consider
∫ 1

0

f ′′(x)h′′(x) dx = f ′′(x)h′(x)
∣∣∣
1

0
−

∫ 1

0

f ′′′(x)h′(x) dx

= −
∫ xn

x1

f ′′′(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x)h(x)
∣∣∣
xj+1

xj

+

∫ xn

x1

f (4)(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x+
j)

(
h(xj+1)− h(xj)

)
,

8

where in the first line we used integration by parts; in the second we used the that f ′′(a) = f ′′(b) = 0, and
f ′′′(x) = 0 for x ≤ x1 and x ≥ xn, as f is a natural spline; in the third we used integration by parts again; in
the fourth line we used the fact that f ′′′ is constant on any open interval (xj , xj+1), j = 1, . . . , n− 1, and that
f (4) = 0, again because f is a natural spline. (In the above, we use f ′′′(u+) to denote limx↓u f ′′′(x).) Finally,
since h(xj) = 0 for all j = 1, . . . , n, we have

∫ 1

0

f ′′(x)h′′(x) dx = 0.

From this, it follows that
∫ 1

0

f̃ ′′(x)2 dx =

∫ 1

0

(
f ′′(x) + h′′(x)

)2
dx

=

∫ 1

0

f ′′(x)2 dx+

∫ 1

0

h′′(x)2 dx+ 2

∫ 1

0

f ′′(x)h′′(x) dx

=

∫ 1

0

f ′′(x)2 dx+

∫ 1

0

h′′(x)2 dx,

and therefore ∫ 1

0

f ′′(x)2 dx ≤
∫ 1

0

f̃ ′′(x)2 dx, (7)

with equality if and only if h′′(x) = 0 for all x ∈ [0, 1]. Note that h′′ = 0 implies that h must be linear, and
since we already know that h(xj) = 0 for all j = 1, . . . , n, this is equivalent to h = 0. In other words, the
inequality (7) holds strictly except when f̃ = f , so the solution in (6) is uniquely a natural spline with knots
at the inputs

5.5 Finite-dimensional form
• The key result presented above tells us that we can choose a basis η1, . . . , ηn for the set of kth-order natural

splines with knots over x1, . . . , xn, and reparametrize the problem (5) as

β̂ = argminβ∈Rn

n∑

i=1

(
yi −

n∑

j=1

βjηj(xi)
)2

+ λ

∫ 1

0

(n∑

j=1

βjη
(m)
j (x)

)2

dx. (8)

This is a finite-dimensional problem, and after we compute the coefficients β̂ ∈ Rn, we know that the smoothing
spline estimate is simply f̂(x) =

∑n
j=1 β̂jηj(x)

• Defining the basis matrix and penalty matrices N,Ω ∈ Rn×n by

Nij = ηj(xi) and Ωij =

∫ 1

0

η
(m)
i (x)η

(m)
j (x) dx for i, j = 1, . . . , n, (9)

the problem in (8) can be written more succintly as

β̂ = argminβ∈Rn ∥y −Nβ∥22 + λβΩβ, (10)

showing the smoothing spline problem to be a type of generalized ridge regression problem. In fact, the solution
in (10) has the explicit form

β̂ = (NTN + λΩ)−1NT y,

and therefore the fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) are

µ̂ = N(NTN + λΩ)−1NT y. (11)

Therefore, once again, smoothing splines are a type of linear smoother

• A special property of smoothing splines: the fitted values in (11) can be computed in O(n) operations. This
is achieved by forming N from the B-spline basis (for natural splines), and in this case the matrix NTN +ΩI
ends up being banded (with a bandwidth that only depends on the polynomial order k). In practice, smoothing
spline computations are extremely fast

9

5.6 Reinsch form
• It is informative to rewrite the fitted values in (11) is what is called Reinsch form,

µ̂ = N(NTN + λΩ)−1NT y

= N
(
NT

(
I + λ(NT)−1ΩN−1

)
N
)−1

NT y

= (I + λQ)−1y, (12)

where Q = (NT)−1ΩN−1

• Note that this matrix Q does not depend on λ. If we compute an eigendecomposition Q = UDUT , then the
eigendecomposition of S = N(NTN + λΩ)−1 = (I + λQ)−1 is

S =

n∑

j=1

1

1 + λdj
uju

T
j ,

where D = diag(d1, . . . , dn)

• Therefore the smoothing spline fitted values are µ̂ = Sy, i.e.,

µ̂ =

n∑

j=1

uT
j y

1 + λdj
uj . (13)

Interpretation: smoothing splines perform a regression on the orthonormal basis u1, . . . , un ∈ Rn, yet they
shrink the coefficients in this regression, with more shrinkage assigned to eigenvectors uj that correspond to
large eigenvalues dj

• So what exactly are these basis vectors u1, . . . , un? These are known as the Demmler-Reinsch basis, and a lot
of their properties can be worked out analytically [2]. Basically: the eigenvectors uj that correspond to smaller
eigenvalues dj are smoother, and so with smoothing splines, we shrink less in their direction. Said differently,
by increasing λ in the smoothing spline estimator, we are tuning out the more wiggly components. See Figure
2

5.7 Error rates
• Recall the Sobolev class of functions S1(m,C): for an integer m ≥ 0 and C > 0, to contain all m times

differentiable functions f : R → R such that
∫ (

f (m)(x)
)2

dx ≤ C2.

(The Sobolev class Sd(m,C) in d dimensions can be defined similarly, where we sum over all partial derivatives
of order m.)

• Suppose y = f0(x) + ϵ, and assume f0 ∈ S1(m,C) for the underlying regression function, where C > 0 is a
constant. The smoothing spline estimator f̂ in (5) of polynomial order k = 2m − 1 with tuning parameter
λ ≍ n1/(2m+1) ≍ n1/(k+2) satisfies

∥f̂ − f0∥2n ≲ n−2m/(2m+1) in probability.

The proof of this result uses much more fancy techniques from empirical process theory (entropy numbers)
than the proofs for kernel smoothing. See Chapter 10.1 of [10]

• This rate is seen to be minimax optimal over S1(m,C) (e.g., [8]). Also, it is worth noting that the Sobolev
S1(m,C) and Holder S1(m,L) classes are equivalent in the following sense: given S1(m,C) for a constant
C > 0, there are L0, L1 > 0 such that

H1(m,L0) ⊆ S1(m,C) ⊆ H1(m,L1).

The first containment is easy to show; the second is far more subtle, and is a consequence of the Sobolev
embedding theorem. (The same equivalences hold for the d-dimensional versions of the Sobolev and Holder
spaces.)

10

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

x

E
ig

en
ve

ct
or

s

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number

E
ig

en
va

lu
es

1e−05
5e−05
1e−04
5e−04
0.001
0.005
0.01
0.05

Figure 2: Eigenvectors and eigenvalues for the Reinsch form of the cubic smoothing spline operator, defined over
n = 50 evenly spaced inputs on [0, 1]. The left plot shows the bottom 7 eigenvectors of the Reinsch matrix Q. We can
see that the smaller the eigenvalue, the “smoother” the eigenvector. The right plot shows the weights wj = 1/(1+λdj),
j = 1, . . . , n implicitly used by the smoothing spline estimator (13), over 8 values of λ. We can see that when λ is
larger, the weights decay faster, so the smoothing spline estimator places less weight on the “nonsmooth” eigenvectors

5.8 Multivariate splines
• Splines can be extended to multiple dimensions, in two different ways: thin-plate splines and tensor-product

splines. The former construction is more computationally efficient but more in some sense more limiting; the
penalty for a thin-plate spline, of polynomial order k = 2m− 1, is

∑

α1+...+αd=m

∫ ∣∣∣∣
∂mf(x)

∂xα1
1 xα2

2 . . . ∂xαd

d

∣∣∣∣
2

dx,

which is rotationally invariant. Both of these concepts are discussed in Chapter 7 of [5] (see also Chapters 15
and 20.4 of [6])

• The multivariate extensions (thin-plate and tensor-product) of splines are highly nontrivial, especially when
we compare them to the (conceptually) simple extension of kernel smoothing to higher dimensions. In multiple
dimensions, if one wants to study penalized nonparametric estimation, it’s (argurably) easier to study repro-
ducing kernel Hilbert space estimators. We’ll see, in fact, that this covers smoothing splines (and thin-plate
splines) as a special case

6 k-nearest-neighbors regression
To motivate kernel methods, we start from: k-nearest-neighbors regression. We fix an integer k ≥ 1 and define

f̂(x) =
1

k

∑

i∈Nk(x)

Yi, (14)

where Nk(x) contains the indices of the k closest points of X1, . . . , Xn to x.
This is not at all a bad estimator, and you will find it used in lots of applications, in many cases probably

because of its simplicity. By varying the number of neighbors k, we can achieve a wide range of flexibility in the
estimated function f̂ , with small k corresponding to a more flexible fit, and large k less flexible.

11

But it does have its limitations, an apparent one being that the fitted function f̂ essentially always looks jagged,
especially for small or moderate k. Why is this? It helps to write

f̂(x) =

n∑

i=1

wi(x)Yi, (15)

where the weights wi(x), i = 1, . . . , n are defined as

wi(x) =

{
1/k if Xi is one of the k nearest points to x

0 else.

Note that wi(x) is discontinuous as a function of x, and therefore so is f̂(x).
The representation (15) also reveals that the k-nearest-neighbors estimate is in a class of estimates we call linear

smoothers, i.e., writing Y = (Y1, . . . , Yn) ∈ Rn, the vector of fitted values

µ̂ = (f̂(X1), . . . , f̂(Xn)) ∈ Rn

can simply be expressed as µ̂ = SY . (To be clear, this means that for fixed inputs X1, . . . , Xn, the vector of fitted
values µ̂ is a linear function of Y ; it does not mean that f̂(x) need behave linearly as a function of x.) This class is
quite large, and contains many popular estimators, as we’ll see in the coming sections.

The k-nearest-neighbors estimator is universally consistent, which means E∥f̂ − f0∥22 → 0 as n → ∞, with no
assumptions other than E(Y 2) ≤ ∞, provided that we take k = kn such that kn → ∞ and kn/n → 0; e.g., k =

√
n

will do. See Chapter 6.2 of [6].
Furthermore, assuming the underlying regression function m0 is Lipschitz continuous, the k-nearest-neighbors

estimate with k ≍ n2/(2+d) satisfies
E∥f̂ − f0∥22 ≲ n−2/(2+d). (16)

See Chapter 6.3 of [6]. In fact this is optimal.

6.1 Curse of dimensionality
Note that the above error rate n−2/(2+d) exhibits a very poor dependence on the dimension d. To see it differently:
given a small ϵ > 0, think about how large we need to make n to ensure that n−2/(2+d) ≤ ϵ. Rearranged, this says
n ≥ ϵ−(2+d)/2. That is, as we increase d, we require exponentially more samples n to achieve an error bound of ϵ.
See Figure 3 for an illustration with ϵ = 0.1

In fact, this phenomenon is not specific to k-nearest-neighbors, but a reflection of the curse of dimensionality,
the principle that estimation becomes exponentially harder as the number of dimensions increases. This is made
precise by minimax theory: we cannot hope to do better than the rate in(16) over Hd(1, L), which we write for the
space of L-Lipschitz functions in d dimensions, for a constant L > 0. It can be shown that

inf
f̂

sup
f0∈Hd(1,L)

E∥f̂ − f0∥22 ≳ n−2/(2+d), (17)

where the infimum above is over all estimators f̂ . See Chapter 3.2 of [6].
So why can we sometimes predict well in high dimensional problems? Presumably, it is because f0 often (approx-

imately) satisfies stronger assumptions. This suggests we should look at classes of functions with more structure.
One such example is the additive model.

7 Kernel Smoothing and Local Polynomials

7.1 Kernel smoothing
Kernel regression or kernel smoothing begins with a kernel function K : R → R, satisfying

∫
K(t) dt = 1,

∫
tK(t) dt = 0, 0 <

∫
t2K(t) dt < ∞.

Three common examples are the box-car kernel:

K(t) =

{
1 |x| ≤ 1/2

0 otherwise
,

12

2 4 6 8 10

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

Dimension d

ep
s^

(−
(2

+
d)

/d
)

● ● ● ● ● ●
●

●

●

●

Figure 3: The curse of dimensionality, with ϵ = 0.1

the Gaussian kernel:
K(t) =

1√
2π

exp(−t2/2),

and the Epanechnikov kernel:

K(t) =

{
3/4(1− t2) if |t| ≤ 1

0 else

Warning! Don’t confuse this with the notion of kernels in RKHS methods which we cover later.
Given a bandwidth h > 0, the (Nadaraya-Watson) kernel regression estimate is defined as

(x) =

n∑

i=1

K

(∥x−Xi∥2
h

)
Yi

n∑

i=1

K

(∥x−Xi∥2
h

) =
∑

i

wi(x)Yi (18)

where wi(x) = K(∥x−Xi∥2/h)/
∑n

j=1 K(∥x− xj∥2/h). Hence kernel smoothing is also a linear smoother.
In comparison to the k-nearest-neighbors estimator in (14), which can be thought of as a raw (discontinuous)

moving average of nearby responses, the kernel estimator in (18) is a smooth moving average of responses. See
Figure 4 for an example with d = 1.

7.2 Error Analysis
The kernel smoothing estimator is universally consistent (E∥f̂ − f0∥22 → 0 as n → ∞, with no assumptions other
than E(Y 2) ≤ ∞), provided we take a compactly supported kernel K, and bandwidth h = hn satisfying hn → 0
and nhd

n → ∞ as n → ∞. See Chapter 5.2 of [6]. We can say more.
Theorem. Suppose that d = 1 and that f ′′

0 is bounded. Also suppose that X has a non-zero, differentiable
density p and that the support is unbounded. Then, the risk is

Rn =
h4
n

4

(∫
x2K(x)dx

)2 ∫ (
f ′′
0 (x) + 2f ′

0(x)
p′(x)
p(x)

)2

dx

+
σ2

∫
K2(x)dx

nhn

∫
dx

p(x)
+ o

(
1

nhn

)
+ o(h4

n)

13

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

OO

OO
O

O

O
O

O

O
O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O
O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

OO

O

OO
O
O

OO

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O•

x0

f̂(x0)

Epanechnikov Kernel

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

OO

OO
O

O

O
O

O

O
O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O
O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

OO

O

OO
O
O

OO

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

•

x0

f̂(x0)

FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

Figure 4: Comparing k-nearest-neighbor and Epanechnikov kernels, when d = 1. From Figure 6.1 of [7]

where p is the density of PX .

The first term is the squared bias. The dependence on p and p′is the design bias and is undesirable. We’ll fix
this problem later using local linear smoothing. It follows that the optimal bandwidth is hn ≈ n−1/5 yielding a
risk of n−4/5. In d dimensions, the term nhn becomes nhd

n. In that case It follows that the optimal bandwidth is
hn ≈ n−1/(4+d) yielding a risk of n−4/(4+d).

If the support has boundaries then there is bias of order O(h) near the boundary. This happens because of the
asymmetry of the kernel weights in such regions. See Figure 5. Specifically, the bias is of order O(h2) in the interior
but is of order O(h) near the boundaries. The risk then becomes O(h3) instead of O(h4). We’ll fix this problems
using local linear smoothing. Also, the result above depends on assuming that PX has a density. We can drop that
assumption (and allow for boundaries) and get a slightly weaker result due to Gyorfi, Kohler, Krzyzak and Walk
(2002).

For simplicity, we will use the spherical kernel K(∥x∥) = I(∥x∥ ≤ 1); the results can be extended to other
kernels. Hence,

f̂(x) =

∑n
i=1 Yi I(∥Xi − x∥ ≤ h)∑n
i=1 I(∥Xi − x∥ ≤ h)

=

∑n
i=1 Yi I(∥Xi − x∥ ≤ h)

nPn(B(x, h))

where Pn is the empirical measure and B(x, h) = {u : ∥x − u∥ ≤ h}. If the denominator is 0 we define f̂(x) = 0.
The proof of the following theorem is from Chapter 5 of Györfi, Kohler, Krzyżak and Walk (2002).

Theorem: Risk bound without density. Suppose that the distribution of X has compact support and that
Var(Y |X = x) ≤ σ2 < ∞ for all x. Then

sup
P∈Hd(1,L)

E∥f̂ − f0∥2P ≤ c1h
2 +

c2
nhd

. (19)

Hence, if h ≍ n−1/(d+2) then
sup

P∈Hd(1,L)

E∥f̂ − f0∥2P ≤ c

n2/(d+2)
. (20)

Note that the rate n−2/(d+2) is slower than the pointwise rate n−4/(d+2) because we have made weaker assump-
tions.

Recall from (17) we saw that this was the minimax optimal rate over Hd(1, L). More generally, the minimax
rate over Hd(α,L), for a constant L > 0, is

inf
f̂

sup
f0∈Hd(α,L)

E∥f̂ − f0∥22 ≳ n−2α/(2α+d), (21)

14

see again Chapter 3.2 of [6]. However, as we saw above, with extra conditions, we got the rate n−4/(4+d) which is
minimax for Hd(2, L). We’ll get that rate under weaker conditions with local linear regression.

If the support of the distribution of X lives on a smooth manifold of dimension r < d then the term
∫

dP (x)

nP (B(x, h))

is of order 1/(nhr) instead of 1/(nhd). In that case, we get the improved rate n−2/(r+2).

7.3 Local Linear Regression
We can alleviate this boundary bias issue by moving from a local constant fit to a local linear fit, or a local
polynomial fit.

To build intuition, another way to view the kernel estimator in (18) is the following: at each input x, define the
estimate f̂(x) = θ̂x, where θ̂x is the minimizer of

n∑

i=1

K

(∥x−Xi∥
h

)
(Yi − θ)2,

over all θ ∈ R. In other words, Instead we could consider forming the local estimate (x) = α̂x + β̂⊤
x x, where α̂x, β̂x

minimize
n∑

i=1

K

(∥x−Xi∥
h

)
(Yi − α− βTXi)

2.

over all α ∈ R, β ∈ Rd. This is called local linear regression.
We can rewrite the local linear regression estimate f̂(x). This is just given by a weighted least squares fit, so

f̂(x) = b(x)T (BTΩB)−1BTΩY,

where b(x) = (1, x) ∈ Rd+1, B ∈ Rn×(d+1) with ith row b(Xi), and Ω ∈ Rn×n is diagonal with ith diagonal element
K(∥x − Xi∥2/h). We can write more concisely as (x) = w(x)TY , where w(x) = ΩB(BTΩB)−1b(x), which shows
local linear regression is a linear smoother too.

The vector of fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) can be expressed as

µ̂ =

w1(x)
TY

...
wn(x)

TY

 = B(BTΩB)−1BTΩY = SY

which should look familiar to you from weighted least squares.
Now we’ll sketch how the local linear fit reduces the bias, fixing (conditioning on) the training points. Compute

at a fixed point x,

E[f̂(x)] =
n∑

i=1

wi(x)f0(Xi).

Using a Taylor expansion of f0 about x,

E[f̂(x)] = f0(x)

n∑

i=1

wi(x) +∇f0(x)
T

n∑

i=1

(Xi − x)wi(x) +R,

where the remainder term R contains quadratic and higher-order terms, and under regularity conditions, is small.
One can check that in fact for the local linear regression estimator f̂ ,

n∑

i=1

wi(x) = 1 and
n∑

i=1

(Xi − x)wi(x) = 0,

and so E[f̂(x)] = f0(x) +R, which means that f̂ is unbiased to first-order.
It can be shown that local linear regression removes boundary bias and design bias.

15

6.1 One-Dimensional Kernel Smoothers 195

N-W Kernel at Boundary

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

O

O

O
OO
O

O

OO

O

O
O

O

OO

O

O

O
O

O

O

O
O

O

O

O

O

OO

O

O
O
O

O

O

O O

O
O
OO

O
O
O

O

O
O
O

O

O

O

O

O

O

O

O

O
O

O
O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

•

x0

f̂(x0)

Local Linear Regression at Boundary

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

O

O

O
OO
O

O

OO

O

O
O

O

OO

O

O

O
O

O

O

O
O

O

O

O

O

OO

O

O
O
O

O

O

O O

O
O
OO

O
O
O

O

O
O
O

O

O

O

O

O

O

O

O

O
O

O
O

O
O

O

O

O

O
O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

OO
O

OO
O
OO

O

O
O

OO

O

O
O
O

O

O

•

x0

f̂(x0)

FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0) − β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

Figure 5: Comparing (Nadaraya-Watson) kernel smoothing to local linear regression; the former is biased at the
boundary, the latter is unbiased (to first-order). From Figure 6.3 of [?]

Theorem. Under some regularity conditions, the risk of f̂ is

h4
n

4

∫ (
tr(f ′′

0 (x)

∫
K(u)uuT du)

)2

dP (x) +
1

nhd
n

∫
K2(u)du

∫
σ2(x)dP (x) + o(h4

n + (nhd
n)

−1).

For a proof, see [4]. For points near the boundary, the bias is Ch2f ′′
0 (x)+o(h2) whereas, the bias is Chf ′

0(x)+o(h)
for kernel estimators.

In fact, [3] shows a rather remarkable result. Let Rn be the minimax risk for estimating f0(x0) over the class
of functions with bounded second derivatives in a neighborhood of x0. Let the maximum risk rn of the local linear
estimator with optimal bandwidth satisfies

1 + o(1) ≥ Rn

rn
≥ (0.896)2 + o(1).

Moreover, if we compute the minimax risk over all linear estimators we get Rn

rn
→ 1.

7.4 Higher-order smoothness
How can we hope to get optimal error rates over Hd(α, d), when α ≥ 2? With kernels there are basically two options:
use local polynomials, or use higher-order kernels

Local polynomials build on our previous idea of local linear regression (itself an extension of kernel smoothing.)
Consider d = 1, for concreteness. Define f̂(x) = β̂x,0 +

∑k
j=1 β̂x,jx

j , where β̂x,0, . . . , β̂x,k minimize

n∑

i=1

K

(|x−Xi|
h

)(
Yi − β0 −

k∑

j=1

βjX
j
i

)2

.

over all β0, β1, . . . , βk ∈ R. This is called (kth-order) local polynomial regression
Again we can express

(x) = b(x)(BTΩB)−1BTΩy = w(x)T y,

where b(x) = (1, x, . . . , xk), B is an n × (k + 1) matrix with ith row b(Xi) = (1, Xi, . . . , X
k
i), and Ω is as before.

Hence again, local polynomial regression is a linear smoother

16

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0

t

Figure 6: A higher-order kernel function: specifically, a kernel of order 4

Assuming that m0 ∈ H1(α,L) for a constant L > 0, a Taylor expansion shows that the local polynomial estimator
f̂ of order k, where k is the largest integer strictly less than α and where the bandwidth scales as h ≍ n−1/(2α+1),
satisfies

E∥f̂ − f0∥22 ≲ n−2α/(2α+1).

See Chapter 1.6.1 of [9]. This matches the lower bound in (21) (when d = 1)
In multiple dimensions, d > 1, local polynomials become kind of tricky to fit, because of the explosion in terms

of the number of parameters we need to represent a kth order polynomial in d variables. Hence, an interesting
alternative is to return back kernel smoothing but use a higher-order kernel. A kernel function K is said to be of
order k provided that

∫
K(t) dt = 1,

∫
tjK(t) dt = 0, j = 1, . . . , k − 1, and 0 <

∫
tkK(t) dt < ∞.

This means that the kernels we were looking at so far were of order 2
An example of a 4th-order kernel is K(t) = 3

8 (3− 5t2)1{|t| ≤ 1}, plotted in Figure 6. Notice that it takes negative
values.

Lastly, while local polynomial regression and higher-order kernel smoothing can help “track” the derivatives of
smooth functions m0 ∈ Hd(α,L), α ≥ 2, it should be noted that they don’t share the same universal consistency
property of kernel smoothing (or k-nearest-neighbors). See Chapters 5.3 and 5.4 of [6]

References
[1] Carl de Boor. A Practical Guide to Splines. Springer, 1978.

[2] A. Demmler and C. Reinsch. Oscillation matrices with spline smoothing. Numerische Mathematik, 24(5):375–
382, 1975.

[3] Jianqing Fan. Local linear regression smoothers and their minimax efficiencies. The Annals of Statistics, pages
196–216, 1993.

[4] Jianqing Fan and Irene Gijbels. Local polynomial modelling and its applications: monographs on statistics and
applied probability 66, volume 66. CRC Press, 1996.

17

[5] Peter Green and Bernard Silverman. Nonparametric Regression and Generalized Linear Models: A Roughness
Penalty Approach. Chapman & Hall/CRC Press, 1994.

[6] Laszlo Gyorfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A Distribution-Free Theory of Nonparametric
Regression. Springer, 2002.

[7] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning. Springer Series
in Statistics. Springer, New York, second edition, 2009. Data mining, inference, and prediction.

[8] Michael Nussbaum. Spline smoothing in regression models and asymptotic efficiency in l2. Annals of Statistics,
13(3):984–997, 1985.

[9] Alexandre Tsybakov. Introduction to Nonparametric Estimation. Springer, 2009.

[10] Sara van de Geer. Empirical Processes in M-Estimation. Cambdrige University Press, 2000.

18

