
Clustering (군집 분석)

김지수 (Jisu KIM)

인공지능을 위한 이론과 모델링, 2023 가을학기

The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning”.

1 The Clustering (군집 분석) Problem
In a clustering (군집분석) problem we aim to find groups in the data. Unlike classification, the data are not labeled,
and so clustering is an example of unsupervised learning. We will study the following approaches:

1. k-means (k 평균 군집 분석)

2. Mixture models (혼합 모형)

3. Density-based Clustering (밀도 기반 군집 분석) I: Modes

4. Density-based Clustering (밀도 기반 군집 분석) II: Level Sets and Trees

5. Hierarchical Clustering (계층적 군집 분석)

6. Spectral Clustering (스펙트럼 군집 분석)

Some issues that we will address are:

1. Rates of convergence

2. Choosing tuning parameters

3. Variable selection (변수선택)

4. High Dimensional Clustering (고차원 군집 분석)

Example. Figures 1 and 2 show some synthetic examples where the clusters are meant to be intuitively clear. In
Figure 1 there are two blob-like clusters. Identifying clusters like this is easy. Figure 2 shows four clusters: a blob,
two rings and a half ring. Identifying clusters with unusual shapes like this is not quite as easy. In fact, finding
clusters of this type requires nonparametric methods.
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Figure 1: A synthetic example with two “blob-like” clusters.
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Figure 2: A synthetic example with four clusters with a variety of different shapes.

2 k-means (k 평균 군집 분석) (Vector Quantization)
One of the oldest approaches to clustering is to find k representative points, called prototypes or cluster centers,
and then divide the data into groups based on which prototype they are closest to. For now, we assume that k is
given. Later we discuss how to choose k.

Warning! My view is that k is a tuning parameter; it is not the number of clusters. Usually we want to choose
k to be larger than the number of clusters.

Let X1, . . . , Xn ∼ P where Xi ∈ Rd. Let C = {c1, . . . , ck} where each cj ∈ Rd. We call C a codebook. Let ΠC [X]
be the projection of X onto C:

ΠC [X] = argminc∈C ||c−X||2.

Define the empirical clustering risk of a codebook C by

Rn(C) =
1

n

n∑
i=1

∣∣∣∣Xi −ΠC [Xi]
∣∣∣∣2 =

1

n

n∑
i=1

min
1≤j≤k

||Xi − cj ||2.

Let Ck denote all codebooks of length k. The optimal codebook Ĉ = {ĉ1, . . . , ĉk} ∈ Ck minimizes Rn(C):

Ĉ = argminC∈Ck
Rn(C).

The empirical risk is an estimate of the population clustering risk defined by

R(C) = E
∣∣∣∣∣∣X −ΠC [X]

∣∣∣∣∣∣2 = E min
1≤j≤k

||X − cj ||2

where X ∼ P . The optimal population quantization C∗ = {c∗1, . . . , c∗k} ∈ Ck minimizes R(C). We can think of Ĉ as
an estimate of C∗. This method is called k-means clustering or vector quantization.

A codebook C = {c1, . . . , ck} defines a set of cells known as a Voronoi tesselation. Let

Vj =
{
x : ||x− cj || ≤ ||x− cs||, for all s ̸= j

}
.

The set Vj is known as a Voronoi cell and consists of all points closer to cj than any other point in the codebook.
See Figure 3.

The usual algorithm to minimize Rn(C) and find Ĉ is the k-means clustering algorithm— also known as Lloyd’s
algorithm— see Figure 4. The risk Rn(C) has multiple minima. The algorithm will only find a local minimum and
the solution depends on the starting values. A common way to choose the starting values is to select k data points
at random. We will discuss better methods for choosing starting values in Section 2.1.

Example. Figure 5 shows synthetic data inspired by the Mickey Mouse example from http://en.wikipedia.
org/wiki/K-means_clustering. The data in the top left plot form three clearly defined clusters. k-means easily
finds in the clusters (top right). The bottom shows the same example except that we now make the groups very
unbalanced. The lack of balance causes k-means to produce a poor clustering. But note that, if we “overfit then
merge” then there is no problem.

Example. We applied k-means clustering to the Topex data with k = 9. (Topex is a satellite.) The data are
discretized so we treated each curve as one vector of length 70. The resulting nine clusters are shown in Figure 6.
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Figure 3: The Voronoi tesselation formed by 10 cluster centers c1, . . . , c10. The cluster centers are indicated by dots.
The corresponding Voronoi cells T1, . . . , T10 are defined as follows: a point x is in Tj if x is closer to cj than ci for
i ̸= j.

1. Choose k centers c1, . . . , ck as starting values.

2. Form the clusters C1, . . . , Ck as follows. Let g = (g1, . . . , gn) where gi = argminj ||Xi − cj ||. Then Cj = {Xi :
gi = j}.

3. For j = 1, . . . , k, let nj denote the number of points in Cj and set

cj ←−
1

nj

∑
i: Xi∈Cj

Xi.

4. Repeat steps 2 and 3 until convergence.

5. Output: centers Ĉ = {c1, . . . , ck} and clusters C1, . . . , Ck.

Figure 4: The k-means (Lloyd’s) clustering algorithm.
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Figure 5: Synthetic data inspired by the “Mickey Mouse” example from wikipedia. Top left: three balanced clusters.
Top right: result from running k means with k = 3. Bottom left: three unbalanced clusters. Bottom right: result from
running k means with k = 3 on the unbalanced clusters. k-means does not work well here because the clusters are
very unbalanced.
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Figure 6: The nine clusters found in the Topex data using k-means clustering with k = 9. Each plot show the curves
in that cluster together with the mean of the curves in that cluster.
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Figure 7: Clustering of the supernova light curves with k = 4.

Example (Supernova Clustering). Figure 7 shows supernova data where we apply k-means clustering with k = 4.
The type Ia supernovae get split into two groups although the groups are very similar. The other type also gets
split into two groups which look qualitatively different.

Example. The top left plot of Figure 8 shows a dataset with two ring-shaped clusters. The remaining plots show
the clusters obtained using k-means clustering with k = 2, 3, 4. Clearly, k-means does not capture the right structure
in this case unless we overfit then merge.

2.1 Starting Values for k-means
Since R̂n(C) has multiple minima, Lloyd’s algorithm is not guaranteed to minimize Rn(C). The clustering one
obtains will depend on the starting values. The simplest way to choose starting values is to use k randomly chosen
points. But this often leads to poor clustering.

Example. Figure 9 shows data from a distribution with nine clusters. The raw data are in the top left plot. The
top right plot shows the results of running the k-means algorithm with k = 9 using random points as starting
values. The clustering is quite poor. This is because we have not found the global minimum of the empirical risk
function. The two bottom plots show better methods for selecting starting values that we will describe below.

Hierarchical Starting Values. Tseng and Wong [2005] suggest the following method for choosing staring values
for k-means. Run single-linkage hierarchical clustering (which we describe in Section 6) to obtains p × k clusters.
They suggest using p = 3 as a default. Now take the centers of the k-largest of the p× k clusters and use these as
starting values. See the bottom left plot in Figure 9.

k-means++. Arthur and Vassilvitskii [2007] invented an algorithm called k-means++ to get good starting values.
They show that if the starting points are chosen in a certain way, then we can get close to the minimum with high
probability. In fact the starting points themselves — which we call seed points — are already close to minimizing
Rn(C). The algorithm is described in Figure 10. See the bottom right plot in Figure 9 for an example.

Theorem (Arthur and Vassilvitskii [2007]). Let C = {c1, . . . , ck} be the seed points from the k-means++ algorithm.
Then,

E
(
Rn(C)

)
≤ 8(log k + 2)

(
min
C

Rn(C)
)

(1)

where the expectation is over the randomness of the algorithm.
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Figure 8: Top left: a dataset with two ring-shaped clusters. Top right: k-means with k = 2. Bottom left: k-means
with k = 3. Bottom right: k-means with k = 4.

See Arthur and Vassilvitskii [2007] for a proof. They also show that the Euclidean distance can be replaced with
the ℓp norm in the algorithm. The result is the same except that the constant 8 gets replaced by 2p+2. It is possible
to improve the k-means++ algorithm. Ailon et al. [2009] showed that, by choosing 3 log k points instead of one
point, at each step of the algorithm, the log k term in (1) can be replaced by a constant. They call the algorithm,
k-means#.

2.2 Choosing k

In k-means clustering we must choose a value for k. This is still an active area of research and there are no definitive
answers. The problem is much different than choosing a tuning parameter in regression or classification because
there is no observable label to predict. Indeed, for k-means clustering, both the true risk R and estimated risk Rn
decrease to 0 as k increases. This is in contrast to classification where the true risk gets large for high complexity
classifiers even though the empirical risk decreases. Hence, minimizing risk does not make sense. There are so many
proposals for choosing tuning parameters in clustering that we cannot possibly consider all of them here. Instead,
we highlight a few methods.

Elbow Methods. One approach is to look for sharp drops in estimated risk. Let Rk denote the minimal risk among
all possible clusterings and let R̂k be the empirical risk. It is easy to see that Rk is a nonincreasing function of k so
minimizing Rk does not make sense. Instead, we can look for the first k such that the improvement Rk − Rk+1 is
small, sometimes called an elbow. This can be done informally by looking at a plot of R̂k. We can try to make this
more formal by fixing a small number α > 0 and defining

kα = min

{
k :

Rk −Rk+1

σ2
≤ α

}
(2)

where σ2 = E(∥X − µ∥2) and µ = E(X). An estimate of kα is

k̂α = min

{
k :

R̂k − R̂k+1

σ̂2
≤ α

}
(3)

where σ̂2 = n−1
∑n
i=1 ∥Xi −X∥2.

Unfortunately, the elbow method often does not work well in practice because there may not be a well-defined
elbow.
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Figure 9: An example with 9 clusters. Top left: data. Top right: k-means with random starting values. Bottom left:
k-means using starting values from hierarchical clustering. Bottom right: the k-means++ algorithm.
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1. Input: Data X = {X1, . . . , Xn} and an integer k.

2. Choose c1 randomly from X = {X1, . . . , Xn}. Let C = {c1}.

3. For j = 2, . . . , k:

(a) Compute D(Xi) = minc∈C ||Xi − c|| for each Xi.

(b) Choose a point Xi from X with probability

pi =
D2(Xi)∑n
j=1D

2(Xj)
.

(c) Call this randomly chosen point cj . Update C ←− C ∪ {cj}.

4. Run Lloyd’s algorithm using the seed points C = {c1, . . . , ck} as starting points and output the result.

Figure 10: The k-means++ algorithm.

Hypothesis Testing. A more formal way to choose k is by way of hypothesis testing. For each k we test

Hk : the number of clusters is k versus Hk+1 : the number of clusters is > k.

We begin k = 1. If the test rejects, then we repeat the test for k = 2. We continue until the first k that is not
rejected. In summary, k̂ is the first k for which k is not rejected.

Currently, my favorite approach is the one in Liu, Hayes, Andrew Nobel and Marron (2012). (JASA, 2102,
1281-1293). They simply test if the data are multivariate Normal. If this rejects, they split into two clusters and
repeat. The have an R package sigclust for this. A similar procedure, called PG means is described in Feng and
Hammerly (2007).

Example. Figure 11 shows a two-dimensional example. The top left plot shows a single cluster. The p-values are
shown as a function of k in the top right plot. The first k for which the p-value is larger than α = .05 is k = 1. The
bottom left plot shows a dataset with three clusters. The p-values are shown as a function of k in the bottom right
plot. The first k for which the p-value is larger than α = .05 is k = 3.

Stability. Another class of methods are based on the idea of stability. The idea is to find the largest number of
clusters than can be estimated with low variability.

We start with a high level description of the idea and then we will discuss the details. Suppose that Y =
(Y1, . . . , Yn) and Z = (Z1, . . . , Zn) are two independent samples from P . Let Ak be any clustering algorithm that
takes the data as input and outputs k clusters. Define the stability

Ω(k) = E [s(Ak(Y ), Ak(Z))] (4)

where s(·, ·) is some measure of the similarity of two clusterings. To estimate Ω we use random subsampling. Suppose
that the original data are X = (X1, . . . , X2n). Randomly split the data into two equal sets Y and Z of size n. This
process if repeated N times. Denote the random split obtained in the jth trial by Y j , Zj . Define

Ω̂(k) =
1

N

N∑
j=1

[
s(Ak(Y

j), Ak(Z
j))
]
.

For large N , Ω̂(k) will approximate Ω(k). There are two ways to choose k. We can choose a small k with high
stability. Alternatively, we can choose k to maximize Ω̂(k) if we somehow standardize Ω̂(k).

Now we discuss the details. First, we need to define the similarity between two clusterings. We face two prob-
lems. The first is that the cluster labels are arbitrary: the clustering (1, 1, 1, 2, 2, 2) is the same as the clustering
(4, 4, 4, 8, 8, 8). Second, the clusterings Ak(Y ) and Ak(Z) refer to different data sets.
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Figure 11: Top left: a single cluster. Top right: p-values for various k. The first k for which the p-value is larger
than .05 is k = 1. Bottom left: three clusters. Bottom right: p-values for various k. The first k for which the p-value
is larger than .05 is k = 3.
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The first problem is easily solved. We can insist the labels take values in {1, . . . , k} and then we can maximize
the similarity over all permutations of the labels. Another way to solve the problem is the following. Any clustering
method can be regarded as a function ψ that takes two points x and y and outputs a 0 or a 1. The interpretation
is that ψ(x, y) = 1 if x and y are in the same cluster while ψ(x, y) = 0 if x and y are in a different cluster. Using
this representation of the clustering renders the particular choice of labels moot. This is the approach we will take.

Let ψY and ψZ be clusterings derived from Y and Z. Let us think of Y as training data and Z as test data.
Now ψY returns a clustering for Y and ψZ returns a clustering for Z. We’d like to somehow apply ψY to Z. Then
we would have two clusterings for Z which we could then compare. There is no unique way to do this. A simple
and fairly general approach is to define

ψY,Z(Zj , Zk) = ψY (Y
′
j , Y

′
k) (5)

where Y ′
j is the closest point in Y to Zj and Y ′

k is the closest point in Y to Zk. (More generally, we can use Y and
the cluster assignment to Y as input to a classifier; see Lange et al 2004). The notation ψY,Z indicates that ψ is
trained on Y but returns a clustering for Z. Define

s(ψY,Z , ψZ) =
1(
n
2

)∑
s ̸=t

I (ψY,Z(Zs, Zt) = ψZ(Zs, Zt)) .

Thus s is the fraction of pairs of points in Z on which the two clusterings ψY,Z and ψZ agree. Finally, we define

Ω̂(k) =
1

N

N∑
j=1

s(ψY j ,Zj , ψZj ).

Now we need to decide how to use Ω̂(k) to choose k. The interpretation of Ω̂(k) requires some care. First, note
that 0 ≤ Ω̂(k) ≤ 1 and Ω̂(1) = Ω̂(n) = 1. So simply maximizing Ω̂(k) does not make sense. One possibility is to
look for a small k larger than k > 1 with a high stability. Alternatively, we could try to normalize Ω̂(k). Lange et
al (2004) suggest dividing by the value of Ω̂(k) obtained when cluster labels are assigned randomly. The theoretical
justification for this choice is not clear. Tibshirani, Walther, Botstein and Brown (2001) suggest that we should
compute the stability separately over each cluster and then take the minimum. However, this can sometimes lead
to very low stability for all k > 1.

Many authors have considered schemes of this form, including Breckenridge (1989), Lange, Roth, Braun and
Buhmann (2004), Ben-Hur, Elisseeff and Guyron (2002), Dudoit and Fridlyand (2002), Levine and Domany (2001),
Buhmann (2010), Tibshirani, Walther, Botstein and Brown (2001) and Rinaldo and Wasserman (2009).

It is important to interpret stability correctly. These methods choose the largest number of stable clusters. That
does not mean they choose “the true k.” Indeed, Ben-David, von Luxburg and Pál (2006), Ben-David and von
Luxburg Tübingen (2008) and Rakhlin (2007) have shown that trying to use stability to choose “the true k” — even
if that is well-defined — will not work. To explain this point further, we consider some examples from Ben-David,
von Luxburg and Pál (2006). Figure 12 shows the four examples. The first example (top left plot) shows a case
where we fit k = 2 clusters. Here, stability analysis will correctly show that k is too small. The top right plot has
k = 3. Stability analysis will correctly show that k is too large. The bottom two plots show potential failures of
stability analysis. Both cases are stable but k = 2 is too small in the bottom left plot and k = 3 is too big in the
bottom right plot. Stability is subtle. There is much potential for this approach but more work needs to be done.

2.3 Theoretical Properties
A theoretical property of the k-means method is given in the following result. Recall that C∗ = {c∗1, . . . , c∗k}
minimizes R(C) = E||X −ΠC [X] ||2.

Theorem. Suppose that P(||Xi||2 ≤ B) = 1 for some B <∞. Then

E(R(Ĉ))−R(C∗) ≤ c
√
k(d+ 1) log n

n
(6)

for some c > 0.

Warning! The fact that R(Ĉ) is close to R(C∗) does not imply that Ĉ is close to C∗.
This proof is due to Linder, Lugosi and Zeger (1994). The proof uses techniques from a later lecture on VC

theory so you may want to return to the proof later.
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Figure 12: Examples from Ben-David, von Luxburg and Pál (2006). The first example (top left plot) shows a case
where we fit k = 2 clusters. Stability analysis will correctly show that k is too small. The top right plot has k = 3.
Stability analysis will correctly show that k is too large. The bottom two plots show potential failures of stability
analysis. Both cases are stable but k = 2 is too small in the bottom left plot and k = 3 is too big in the bottom
right plot.

Proof. Note that R(Ĉ) − R(C∗) = R(Ĉ) − Rn(Ĉ) + Rn(Ĉ) − R(C∗) ≤ R(Ĉ) − Rn(Ĉ) + Rn(C
∗) − R(C∗) ≤

2 supC∈Ck
|R(Ĉ)−Rn(Ĉ)|. For each C define a function fC by fC(x) = ||x−ΠC [x]||2. Note that supx |fC(x)| ≤ 4B

for all C. Now, using the fact that E(Y ) =
∫∞
0

P(Y ≥ t)dt whenever Y ≥ 0, we have

2 sup
C∈Ck

|R(Ĉ)−Rn(Ĉ)| = 2 sup
C

∣∣∣∣∣ 1n
n∑
i=1

fC(Xi)− E(fC(X))

∣∣∣∣∣
= 2 sup

C

∣∣∣∣∣
∫ ∞

0

(
1

n

n∑
i=1

I(fC(Xi) > u)− P(fC(Z) > u)

)
du

∣∣∣∣∣
≤ 8B sup

C,u

∣∣∣∣∣ 1n
n∑
i=1

I(fC(Xi) > u)− P(fC(Z) > u)

∣∣∣∣∣
= 8B sup

A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣
where A varies over all sets A of the form {fC(x) > u}. The shattering number of A is s(A, n) ≤ nk(d+1). This
follows since each set {fC(x) > u} is a union of the complements of k spheres. By the VC Theorem,

P(R(Ĉ)−R(C∗) > ϵ) ≤ P

(
8B sup

A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ > ϵ

)

= P

(
sup
A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ > ϵ

8B

)
≤ 4(2n)k(d+1)e−nϵ

2/(512B2).

Now conclude that E(R(Ĉ)−R(C∗)) ≤ C
√
k(d+ 1)

√
logn
n .

A sharper result, together with a lower bound is the following.

Theorem (Bartlett, Linder and Lugosi 1997). Suppose that P
(
∥X∥2 ≤ 1

)
= 1 and that n ≥ k4/d,

√
dk1−2/d log n ≥

11



15, kd ≥ 8, n ≥ 8d and n/ log n ≥ dk1+2/d. Then,

E(R(Ĉ))−R(C∗) ≤ 32

√
dk1−2/d log n

n
= O

(√
dk log n

n

)
.

Also, if k ≥ 3, n ≥ 16k/(2Φ2(−2)) then, for any method Ĉ that selects k centers, there exists P such that

E(R(Ĉ))−R(C∗) ≥ c0

√
k1−4/d

n

where c0 = Φ4(−2)2−12/
√
6 and Φ is the standard Gaussian distribution function.

See Bartlett, Linder and Lugosi (1997) for a proof. It follows that k-means is risk consistent in the sense that
R(Ĉ) − R(C∗)

P→ 0, as long as k = o(n/(d3 log n)). Moreover, the lower bound implies that we cannot find any
other method that improves much over the k-means approach, at least with respect to this loss function.

The k-means algorithm can be generalized in many ways. For example, if we replace the L2 norm with the L1

norm we get k-medians clustering. We will not discuss these extensions here.

2.4 Overfitting and Merging
The best way to use k-means clustering is to “overfit then merge.” Don’t think of the k in k-means as the number
of clusters. Think of it as a tuning parameter. k-means clustering works much better if we:

1. Choose k large

2. merge close clusters

This eliminates the sensitivity to the choice of k and it allows k-means to fit clusters with arbitrary shapes. Currently,
there is no definitive theory for this approach but in my view, it is the right way to do k-means clustering.

3 Mixture Models (혼합 모형)
Simple cluster structure can be discovered using mixture models (혼합 모형). We start with a simple example. We
flip a coin with success probability π. If heads, we draw X from a density p1(x). If tails, we draw X from a density
p0(x). Then the density of X is

p(x) = πp1(x) + (1− π)p0(x),

which is called a mixture of two densities p1 and p0. Figure 13 shows a mixture of two Gaussians distribution.
Let Z ∼ Bernoulli(π) be the unobserved coin flip. Then we can also write p(x) as

p(x) =
∑
z=0,1

p(x, z) =
∑
z=0,1

p(x|z)p(z) (7)

where p(x|Z = 0) := p0(x), p(x|Z = 1) := p1(x) and p(z) = πz(1−π)1−z. Equation (7) is called the hidden variable
representation. A more formal definition of finite mixture models is as follows.

[Finite Mixture Models] Let {pθ(x) : θ ∈ Θ} be a parametric class of densities. Define the mixture model

pψ(x) =

K−1∑
j=0

πjpθj (x),

where the mixing coefficients πj ≥ 0,
∑K−1
j=0 πj = 1 and ψ = (π0, . . . , πK−1, θ0, . . . , θK−1) are the unknown param-

eters. We call pθ0 , . . . , pθK−1
the component densities.

Generally, even if {pθ(x) : θ ∈ Θ} is an exponential family model, the mixture may no longer be an exponential
family.

12
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Figure 13: A mixture of two Gaussians, p(x) = 2
5ϕ(x;−1.25, 1) +

3
5ϕ(x; 2.95, 1).

3.1 Mixture of Gaussians
Let ϕ(x;µj , σ2

j ) be the probability density function of a univariate Gaussian distribution with mean µj and variance
σ2
j . A typical finite mixture model is the mixture of Gaussians. In one dimension, we have

pψ(x) =

K−1∑
j=0

πjϕ(x;µj , σ
2
j ),

which has 3K − 1 unknown parameters, due to the restriction
∑K−1
j=0 πj = 1.

A mixture of d-dimensional multivariate Gaussians is

p(x) =

K−1∑
j=0

πj
(2π)d/2|Σj |1/2

exp

{
−1

2
(x− uj)TΣ−1

j (x− uj)
}
.

There are in total

K

(
d(d+ 1)

2︸ ︷︷ ︸
# of parameters in Σj

+ d︸︷︷︸
# of parameters in uj

)
+ (K − 1)︸ ︷︷ ︸

# of mixing coefficients

=
Kd(d+ 3)

2
+K − 1

parameters in the mixture of K multivariate Gausssians.

3.2 Maximum Likelihood Estimation
A finite mixture model pψ(x) has parameters ψ = (π0, . . . , πK−1, θ0, . . . , θK−1). The likelihood of ψ based on the
observations X1, . . . , Xn is

L(ψ) =
n∏
i=1

pψ(Xi) =

n∏
i=1

(K−1∑
j=0

πjpθj (Xi)

)
and, as usual, the maximum likelihood estimator is the value ψ̂ that maximizes L(ψ). Usually, the likelihood is
multimodal and one seeks a local maximum instead if a global maximum.

For fixed θ0, . . . , θK−1, the log-likelihood is often a concave function of the mixing parameters πj . However, for
fixed π0, . . . , πK−1, the log-likelihood is not generally concave with respect to θ0, . . . , θK−1.

One way to find ψ̂ is to apply your favorite optimizer directly to the log-likelihood.

ℓ(ψ) =

n∑
i=1

log

(K−1∑
j=0

πjpθj (Xi)

)
.

However, ℓ(ψ) is not jointly convex with respect to ψ. It is not clear which algorithm is the best to optimize such
a nonconvex objective function.

A convenient and commonly used algorithm for finding the maximum likelihood estimates of a mixture model
(or the more general latent variable models) is the expectation-maximization (EM) algorithm. The algorithm runs
in an iterative fashion and alternates between the “E-step” which computes conditional expectations with respect
to the current parameter estimate, and the “M-step” which adjusts the parameter to maximize a lower bound on
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the likelihood. While the algorithm can be slow to converge, its simplicity and the fact that it doesn’t require a
choice of step size make it a convenient choice for many estimation problems.

On the other hand, while simple and flexible, the EM algorithm is only one of many numerical procedures for
obtaining a (local) maximum likelihood estimate of the latent variable models. In some cases procedures such as
Newton’s method or conjugate gradient may be more effective, and should be considered as alternatives to EM. In
general the EM algorithm converges linearly, and may be extremely slow when the amount of missing information
is large,

In principle, there are polynomial time algorithms for finding good estimates of ψ based on spectral methods
and the method of moments. It appears that, at least so far, these methods are not yet practical enough to be used
in routine data analysis.

Example. The data are measurements on duration and waiting time of eruptions of the Old Faithful geyser
from August 1 to August 15, 1985. There are two variables with 299 observations. The first variable ,“Duration”,
represents the numeric eruption time in minutes. The second variable, “waiting”, represents the waiting time to
next eruption. This data is believed to have two modes. We fit a mixture of two Gaussians using EM algorithm.
To illustrate the EM step, we purposely choose a bad starting point. The EM algorithm quickly converges in six
steps. Figure 14 illustrates the fitted densities for all the six steps. We see that even though the starting density is
unimodal, it quickly becomes bimodal.
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Figure 14: Fitting a mixture of two Gaussians on the Old Faithful Geyser data. The initial values are π0 = π1 = 0.5.
u0 = (4, 70)T , u1 = (3, 60)T , Σ1 = Σ2 =

(
0.8 7
7 70

)
. We see that even though the starting density is not bimodal, the

EM algorithm converges quickly to a bimodal density.

3.3 The Twilight Zone
Mixtures models are conceptually simple but they have some strange properties.
Computation. Finding the mle is NP-hard.

14



Infinite Likelihood. Let pψ(x) =
∑k
j=1 πjϕ(x;µj , σ

2
j ), be a mixture of Gaussians. Let L(ψ) =

∏n
i=1 pψ(Xi) be

the likelihood function based on a sample of size n. Then supψ L(ψ) = ∞. To see this, set µj = X1 for some j.
Then ϕ(X1;µj , σ

2
j ) = (

√
2πσj)

−1. Now let σj → 0. We have ϕ(X1;µj , σ
2
j ) → ∞. Therefore, the log-likelihood is

unbounded. This behavior is very different from a typical parametric model. Fortunately, if we define the maximum
likelihood estimate to be a mode of L(ψ) in the interior of the parameter space, we get a well-defined estimator.
Multimodality of the Density. Consider the mixture of two Gaussians

p(x) = (1− π)ϕ(x;µ1, σ
2) + πϕ(x;µ0, σ

2).

You would expect p(x) to be multimodal but this is not necessarily true. The density p(x) is unimodal when
|µ1 − µ2| ≤ 2σ and bimodal when |µ1 − µ2| > 2σ. One might expect that the maximum number of modes of a
mixture of k Gaussians would be k. However, there are examples where a mixture of k Gaussians has more than k
modes. In fact, Edelsbrunner, Fasy and Rote (2012) show that the relationship between the number of modes of p
and the number of components in the mixture is very complex.
Nonidentifability. A model {pθ(x) : θ ∈ Θ} is identifiable if

θ1 ̸= θ2 implies Pθ1 ̸= Pθ2

where Pθ is the distribution corresponding to the density pθ. Mixture models are nonidentifiable in two different
ways. First, there is nonidentifiability due to permutation of labels. For example, consider a mixture of two univariate
Gaussians,

pψ1(x) = 0.3ϕ(x; 0, 1) + 0.7ϕ(x; 2, 1)

and
pψ2

(x) = 0.7ϕ(x; 2, 1) + 0.3ϕ(x; 0, 1),

then pψ1(x) = pψ2(x) even though ψ1 = (0.3, 0.7, 0, 2, 1)T ̸= (0.7, 0.3, 2, 0, 1)T = ψ2. This is not a serious problem
although it does contribute to the multimodality of the likelihood.

A more serious problem is local nonidentifiability. Suppose that

p(x;π, µ1, µ2) = (1− π)ϕ(x;µ1, 1) + πϕ(x;µ2, 1). (8)

When µ1 = µ2 = µ, we see that p(x;π, µ1, µ2) = ϕ(x;µ). The parameter π has disappeared. Similarly, when π = 1,
the parameter µ2 disappears. This means that there are subspaces of the parameter space where the family is
not identifiable. This local nonidentifiability causes many of the usual theoretical properties— such as asymptotic
Normality of the maximum likelihood estimator and the limiting χ2 behavior of the likelihood ratio test— to break
down. For the model (8), there is no simple theory to describe the distribution of the likelihood ratio test for
H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2. The best available theory is very complicated. However, some progress has been
made lately using ideas from algebraic geometry (Yamazaki and Watanabe 2003, Watanabe 2010).

The lack of local identifiabilty causes other problems too. For example, we usually have that the Fisher informa-
tion is non-zero and that θ̂ − θ = OP (n

−1/2) where θ̂ is the maximum likelihood estimator. Mixture models are, in
general, irregular: they do not satisfy the usual regularity conditions that make parametric models so easy to deal
with. Here is an example from Chen (1995).

Consider a univariate mixture of two Gaussians distribution:

pθ(x) =
2

3
ϕ(x;−θ, 1) + 1

3
ϕ(x; 2θ, 1).

Then it is easy to check that I(0) = 0 where I(θ) is the Fisher information. Moreover, no estimator of θ can converge
faster than n−1/4 if the number of components is not known in advance. Compare this to a Normal family ϕ(x; θ, 1)
where the Fisher information is I(θ) = n and the maximum likelihood estimator converges at rate n−1/2. Moreover,
the distribution of the mle is not even well understood for mixture models. The same applies to the likelihood ratio
test.
Nonintinuitive Group Membership. Our motivation for studying mixture modes in this chapter was clustering.
But one should be aware that mixtures can exhibit unexpected behavior with respect to clustering. Let

p(x) = (1− π)ϕ(x;µ1, σ
2
1) + πϕ(x;µ2, σ

2
2).

Suppose that µ1 < µ2. We can classify an observation as being from cluster 1 or cluster 2 by computing the
probability of being from the first or second component, denoted Z = 0 and Z = 1. We get

P(Z = 0|X = x) =
(1− π)ϕ(x;µ1, σ

2
1)

(1− π)ϕ(x;µ1, σ2
1) + πϕ(x;µ2, σ2

2)
.
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Define Z(x) = 0 if P(Z = 0|X = x) > 1/2 and Z(x) = 1 otherwise. When σ1 is much larger than σ2, Figure 15
shows Z(x). We end up classifying all the observations with large Xi to the leftmost component. Technically this
is correct, yet it seems to be an unintended consequence of the model and does not capture what we mean by a
cluster.
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Figure 15: Mixtures are used as a parametric method for finding clusters. Observations with x = 0 and x = 6 are
both classified into the first component.

Improper Posteriors. Bayesian inference is based on the posterior distribution p(ψ|X1, . . . , Xn) ∝ L(ψ)π(ψ).
Here, π(ψ) is the prior distribution that represents our knowledge of ψ before seeing the data. Often, the prior is
improper, meaning that it does not have a finite integral. For example, suppose that X1, . . . , Xn ∼ N(µ, 1). It is
common to use an improper prior π(µ) = 1. This is improper because∫

π(µ)dµ =∞.

Nevertheless, the posterior p(µ|Dn) ∝ L(µ)π(µ) is a proper distribution, where L(µ) is the data likelihood of µ. In
fact, the posterior for µ is N(X, 1/

√
n) where x is the sample mean. The posterior inferences in this case coincide

exactly with the frequentist inferences. In many parametric models, the posterior inferences are well defined even if
the prior is improper and usually they approximate the frequentist inferences. Not so with mixtures. Let

p(x;µ) =
1

2
ϕ(x; 0, 1) +

1

2
ϕ(x;µ, 1).

If π(µ) is improper then so is the posterior. Moreover, Wasserman (2000) shows that the only priors that yield
posteriors in close agreement to frequentist methods are data-dependent priors.
Use With Caution. Mixture models can have very unusual and unexpected behavior. This does not mean that
we should not use mixture modes. Indeed, mixture models are extremely useful. However, when you use mixture
models, it is important to keep in mind that many of the properties of models that we often take for granted, may
not hold.
What Does All This Mean? Mixture models can have very unusual and unexpected behavior. This does not
mean that we should not use mixture modes. Compare this to kernel density estimators which are simple and very
well understood. If you are going to use mixture models, I advise you to remember the words of Rod Serling:

There is a fifth dimension beyond that which is known to man. It is a dimension as vast as space and as
timeless as infinity. It is the middle ground between light and shadow, between science and superstition,
and it lies between the pit of man’s fears and the summit of his knowledge. This is the dimension of
imagination. It is an area which we call the Twilight Zone.
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4 Density-Based Clustering (밀도 기반 군집 분석) I: Modes

Let p : Rd → R be a density of X. Recall that a point x ∈ Rd is a critical point of p if its gradient ∇p is zero at x,
i.e., ∇p(x) = 0. The Hessian Hx(p) is the derivative of the gradient ∇p at x.

Definition (Banyaga and Hurtubise [2004, Definition 3.1]). p is a Morse function if its critical points are all
non-degenerate, that is, the determinant of the Hessian Hx(p) is nonzero for all critical points x.

Assume that p has modes m1, . . . ,mk0 and that p is a Morse function. For Morse function, m is a mode of p
if and only if ∇p(m) = 0 and all eigenvalues of Hm(p) are negative. We can use the modes to define clusters as
follows.

Mode Clustering
Given any point x ∈ Rd, there is a unique gradient ascent path, or integral curve, passing through x that eventually
leads to one of the modes. We define the clusters to be the “basins of attraction” of the modes, the equivalence
classes of points whose ascent paths lead to the same mode.

Definition (Banyaga and Hurtubise [2004, Definition 3.17]). An integral curve through x is a path πx : R → Rd
such that πx(0) = x and

d

dt
πx(t) = ∇p(πx(t)). (9)

Integral curves never intersect (except at stationary points) and they partition the space. Equation (9) means
that the path π follows the direction of steepest ascent of p through x.

Definition. The destination of the integral curve π through a (non-mode) point x is defined by

dest(x) = lim
t→∞

πx(t). (10)

It can then be shown that Banyaga and Hurtubise [2004, Proposition 3.19] for all x, dest(x) = mj for some
mode mj . That is: all integral curves lead to modes.

Definition (Banyaga and Hurtubise [2004, Definition 4.1]). For each mode mj , define the sets

Aj =
{
x : dest(x) = mj

}
. (11)

These sets are known as the ascending manifolds, and also known as the cluster associated with mj , or the basin of
attraction of mj .

The Aj ’s partition the space. See Figure16. The collection of ascending manifolds {A1, . . . ,Ak0} is called the
Morse complex.

Given data X1, . . . , Xn we construct an estimate p̂ of the density. Let m̂1, . . . , m̂k be the estimated modes and
let Â1, . . . , Âk be the corresponding ascending manifolds derived from p̂. The sample clusters C1, . . . , Ck are defined
to be Cj =

{
Xi : Xi ∈ Âj

}
.

Recall that the kernel density estimator is

p̂(x) ≡ p̂h(x) =
1

n

n∑
i=1

1

hd
K

(
x−Xi

h

)
(12)

where K is a smooth, symmetric kernel and h > 0 is the bandwidth.1 The mean of the estimator is

ph(x) = E[p̂h(x)] =
∫
K(t)p(x+ th)dt. (13)

To locate the modes of p̂h we use the mean shift algorithm Cheng [1995], Comaniciu and Meer [2002] which finds
modes by approximating the steepest ascent paths. Note that starting from a(0), the gradient ascent algorithm for
p̂h finds the next point as

a(n+1) = a(n) + λ∇p̂h(a(n)) for some λ > 0. (14)
1In general, we can use a bandwidth matrix H in the estimator, with p̂(x) ≡ p̂H(x) = 1

n

∑n
i=1 KH(x − Xi) where KH(x) =

|H|−
1
2 K(H− 1

2 x).
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Figure 16: The left plot shows a function with four modes. The right plot shows the ascending manifolds (basins of
attraction) corresponding to the four modes.

Suppose we use KDE with G, i.e., p̂h(x) = 1
nhd

∑n
i=1G

(
x−Xi

h

)
, and let g : R → R be satisfying G(x) = g

(
∥x∥2

)
for all x ∈ Rd. Then, p̂h(a) = 1

nhd

∑n
i=1 g

(
∥a−Xi∥2

2

h2

)
, and the gradient becomes

∇p̂h(a) =
1

nhd

n∑
i=1

g′

(
∥a−Xi∥22

h2

)
2(a−Xi)

h2

=
2

nhd+2

n∑
i=1

g′

(
∥a−Xi∥22

h2

)a− ∑n
i=1Xig

′
(

∥a−Xi∥2
2

h2

)
∑n
i=1 g

′
(

∥a−Xi∥2
2

h2

)
 .

Hence if the kernel function K : Rd → R satisfies g′
(
∥x∥2

)
= −cK(x) for some constant c > 0, then

∇p̂h(a) = −
2c

nhd+2

n∑
i=1

K

(
a−Xi

h

)[
a−

∑n
i=1XiK

(
a−Xi

h

)∑n
i=1K

(
a−Xi

h

) ] .
and hence if we choose λ =

(
2c

nhd+2

∑n
i=1K

(
a−Xi

h

))−1
> 0, then the gradient ascent algorithm in (14) becomes

a(n+1) = a(n) −

a(n) − ∑n
i=1XiK

(
a(n)−Xi

h

)
∑n
i=1K

(
a(n)−Xi

h

)


=

∑n
i=1XiK

(
a(n)−Xi

h

)
∑n
i=1K

(
a(n)−Xi

h

) .

The algorithm is given in Figure 17. The result of this process is the set of estimated modes M̂ = {m̂1, . . . , m̂k}.
We also get the clustering for free: the mean shift algorithm shows us what mode each point is attracted to. See
Figure 18.

A modified version of the algorithm is the blurred mean-shift algorithm Carreira-Perpiñán [2006]. Here, we use
the data as the mesh and we replace the data with the mean-shifted data at each step. This converges very quickly
but must be stopped before everything converges to a single point; see Figures 19 and 20.

What we are doing is tracing out the gradient flow. The flow lines lead to the modes and they define the clusters.
In general, a flow is a map ϕ : Rd×R→ Rd such that ϕ(x, 0) = x and ϕ(ϕ(x, t), s) = ϕ(x, s+ t). The latter is called
the semi-group property.
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Mean Shift Algorithm

1. Input: p̂(x) and a mesh of points A = {a1, . . . , aN} (often taken to be the data points).

2. For each mesh point aj , set a(0)j = aj and iterate the following equation until convergence:

a
(s+1)
j ←−

∑n
i=1XiK

(
a
(s)
j −Xi

h

)
∑n
i=1K

(
a
(s)
j −Xi

h

) .

Let M̂ be the unique values of the set {a(∞)
1 , . . . , a

(∞)
N }.

3. Output: M̂.

Figure 17: The Mean Shift Algorithm.
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Figure 18: A simple example of the mean shift algorithm.
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Figure 19: The crescent data example. Top left: data. Top right: a few steps of mean-shift. Bottom left: a few steps
of blurred mean-shift.
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Figure 20: The Broken Ring example. Top left: data. Top right: a few steps of mean-shift. Bottom left: a few steps
of blurred mean-shift.

Choosing the Bandwidth
As usual, choosing a good bandwidth is crucial. You might wonder if increasing the bandwidth, decreases the
number of modes. Silverman [1981] showed that the answer is yes if you use a Normal kernel.

Theorem (Silverman [1981, Theorem]). Let p̂h be a kernel density estimator using a Gaussian kernel in one
dimension. Then the number of modes of p̂h is a non-increasing function of h. The Gaussian kernel is the unique
kernel with this property.

We still need a way to pick h. We can use cross-validation as before. One could argue that we should choose h
so that we estimate the gradient g(x) = ∇p(x) well since the clustering is based on the gradient flow.

How can we estimate the loss of the gradient? Consider, first the scalar case. Note that∫
(p̂′ − p′)2 =

∫
(p̂′)2 − 2

∫
p̂p′ +

∫
(p′)2.

We can ignore the last term. The first term is known. To estimate the middle term, we use integration by parts to
get ∫

p̂p′ = −
∫
p′′p

suggesting the cross-validation estimator ∫
(p̂′(x))2dx+

2

n

∑
i

p̂′′i (Xi)

where p̂′′i is the leave-one-out second derivative. More generally, by repeated integration by parts, we can estimate
the loss for the rth derivative by

CVr(h) =

∫
(p̂(r)(x))2dx− 2

n
(−1)r

∑
i

p̂
(2r)
i (Xi).

Let’s now discuss estimating derivatives more generally following Chacón and Duong [2011]. Let

p̂H(x) =
1

n

n∑
i=1

KH(x−Xi)

20



where KH(x) = |H|−1/2K(H−1/2x). Let D = ∂/∂x = (∂/∂x1, . . . , ∂/∂xd) be the gradient operator. Let H(x) be
the Hessian of p(x) whose entries are ∂2p/(∂xj∂xk). Let

D⊗rp = (Dp)⊗r = ∂rp/∂x⊗r ∈ Rd
r

denote the rth derivatives, organized into a vector. Thus

D⊗0p = p, D⊗1p = Dp, D⊗2p = vec(H)

where vec takes a matrix and stacks the columns into a vector.
The estimate of D⊗rp is

p̂(r)(x) = D⊗rp̂H(x) =
1

n

n∑
i=1

D⊗rKH(x−Xi) =
1

n

n∑
i=1

|H|−1/2(H−1/2)⊗rD⊗rK(H−1/2(x−Xi).

The integrated squared error is

L =

∫
||D⊗rp̂H(x)−D⊗rp(x)||2dx.

Chacón et al. [2011] shows that E[L] is minimized by choosing H so that each entry has order n−2/(d+2r+4) leading
to a risk of order O(n−4/(d+2r+4)). In fact, it may be shown that

E[L] =
1

n
|H|−1/2tr((H−1)⊗rR(D⊗rK))− 1

n
trR∗(KH ⋆ KH , D

⊗rp)

+ trR∗(KH ⋆ KH , D
⊗rp)− 2trR∗(KH , D

⊗rp) + trR(D⊗rp)

where

R(g) =

∫
g(x)gT (x)dx

R∗(a, g) =

∫
(a ⋆ g)(x)gT (x)dx

and (a ⋆ g) is componentwise convolution.
To estimate the loss, we expand L as

L =

∫
||D⊗rp̂H(x)||2dx− 2

∫
⟨D⊗rp̂H(x), D⊗rp(x)⟩dx+ constant.

Using some high-voltage calculations, Chacon and Duong (2013) derived the following leave-one-out approximation
to the first two terms:

CVr(H) = (−1)r|H|−1/2(vec(H−1)⊗r)TB(H)

where
B(H) =

1

n2

∑
i,j

D⊗2rK(H−1/2(Xi −Xj))−
2

n(n− 1)

∑
i ̸=j

D⊗2rK(H−1/2(Xi −Xj))

and K = K ⋆K In practice, the minimization is easy if we restrict to matrices of the form H = h2I.
A better idea is to used fixed (non-decreasing h). We don’t need h to go to 0 to find the clusters. More on this

when we discuss persistence.

Theoretical Analysis
How well can we estimate the modes?

Theorem. Chen et al. [2016, Theorem 1] Assume that p is Morse with finitely many modes m1, . . . ,mk. Then for
h > 0 and not too large, ph is Morse with modes mh1, . . . ,mhk and (possibly after relabelling),

max
j
||mj −mjh|| = O(h2).
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With probability tending to 1, p̂h has the same number of modes which we denote by m̂h1, . . . , m̂hk. Furthermore,

max
j
||m̂jh −mjh|| = OP

(√
1

nhd+2

)
and

max
j
||m̂jh −mj || = O(h2) +OP

(√
1

nhd+2

)
.

Remark: Setting h ≍ n−1/(d+6) gives the rate n−2/(d+6) which is minimax (Tsyabkov 1990) under smoothness
assumptions. See also Romano (1988). However, if we take the fixed h point if view, then we have a n−1/2 rate.

Proof Outline. Build a small ball Bj around each mjh. We will skip the first step, which is to show that there
is one (and only one) local mode in Bj . Let’s focus on showing

max
j
||m̂jh −mjh|| = OP

(√
1

nhd+2

)
.

For simplicity, write m = mjh and x = m̂jh. Let g(x) and H(x) be the gradient and Hessian of ph(x) and let ĝ(x)
and Ĥ(x) be the gradient Hessian of p̂h(x). Then

(0, . . . , 0)T = ĝ(x) = ĝ(m) + (x−m)T
∫ 1

0

Ĥ(m+ u(x−m))du

and so

(x−m)T
∫ 1

0

Ĥ(m+ u(x−m))du = (g(m)− ĝ(m))

where we used the fact that 0 = g(m). Multiplying on the right by x−m we have

(x−m)T
∫ 1

0

Ĥ(m+ u(x−m))(x−m)du = (ĝ(m)− ĝ(m))T (x−m).

Let λ = inf0≤u≤1 λmin(H(m+ u(x−m))). Then λ = λmin(H(m)) + oP (1) and

(x−m)T
∫ 1

0

Ĥ(x+ u(m− x))(x−m)du ≥ λ||x−m||2.

Hence, using Cauchy-Schwartz,

λ||x−m||2 ≤ ||ĝ(m)− g(m)|| ||x−m|| ≤ ||x−m|| sup
y
||ĝ(y)− ĝ(y)|| ≤ ||x−m||OP

(√
1

nhd+2

)

and so ||x−m|| = OP

(√
1

nhd+2

)
. □

Remark: If we treat h as fixed (not decreasing) then the rate is OP (
√
1/n) independent of dimension.

5 Density-Based Clustering (밀도 기반 군집 분석) II: Level Set Clustering
Let p be the density if the data. Let Lt = {x : ph(x) > t} denote an upper level set of p. Suppose that Lt can be
decomposed into finitely many disjoint sets: Lt = C1

⋃
· · ·
⋃
Ckt . We call Ct = {C1, . . . , Ckt} the level set clusters

at level t.
Let C =

⋃
t≥0 Ct. The clusters in C form a tree: if A,B ∈ C, the either (i) A ⊂ B or (ii) B ⊂ A or (iii) A∩B = ∅.

We call C the level set cluster tree.
The level sets can be estimated in the obvious way: L̂t = {x : p̂h(x) > t}. How do we decompose L̂t into its

connected components? This can be done as follows. For each t let

Xt = {Xi : p̂h(Xi) > t}.

Now construct a graph Gt where each Xi ∈ Xt is a vertex and there is an edge between Xi and Xj if and only if
||Xi − Xj || ≤ ϵ where ϵ > 0 is a tuning parameter. Bobrowski et al (2104) show that we can take ϵ = h. Gt is a
called a Rips graphs. The clusters at level t are estimated by taking the connected components of the graph Gt. In
summary:
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Figure 21: DeBaClR in two dimensions.
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Figure 22: DeBaClR in three dimensions.

• Compute p̂h.

• For each t, let Xt = {Xi : p̂h(Xi) > t}.

• Form a graph Gt for the points in Xt by connecting Xi and Xj if ||Xi −Xj || ≤ h.

• The clusters at level t are the connected components of Gt.

A Python package, called DeBaCl, written by Brian Kent, can be found at
https://github.com/bpkent/DeBaCl/.
Fabrizio Lecci has written an R implementation, include in his R package: TDA (topological data analysis). You

can get it at:
http://cran.r-project.org/web/packages/TDA/index.html
Two examples are shown in Figures 21 and 22.

Theory
How well does this work? Define the Hausdorff distance between two sets by

H(U, V ) = inf

{
ϵ : U ⊂ V ⊕ ϵ and V ⊂ U ⊕ ϵ

}
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where
V ⊕ ϵ =

⋃
x∈V

B(x, ϵ)

and B(x, ϵ) denotes a ball of radius ϵ centered at x. We would like to say that Lt and L̂t are close. In general this
is not true. Sometimes Lt and Lt+δ are drastically different even for small δ. (Think of the case where a mode has
height t.) But we can estimate stable level sets. Let us say that Lt is stable if there exists a > 0 and C > 0 such
that, for all δ < a,

H(Lt−δ, Lt+δ) ≤ Cδ.

Theorem. Suppose that Lt is stable. Then H(L̂t, Lt) = OP (
√
log n/(nhd)).

Proof. Let rn =
√
log n/(nhd)). We need to show two things: (i) for every x ∈ Lt there exists y ∈ L̂t such that

||x− y|| = OP (rn) and (ii) for every x ∈ L̂t there exists y ∈ Lt such that ||x− y|| = OP (rn). First, we note that, by
earlier results, ||p̂h − ph||∞ = OP (rn). To show (i), suppose that x ∈ Lt. By the stability assumption, there exists
y ∈ Lt+rn such that ||x− y|| ≤ Crn. Then ph(y) > t+ rn which implies that p̂h(y) > t and so y ∈ L̂t. To show (ii),
let x ∈ L̂t so that p̂h(x) > t. Thus ph(x) > t− rn. By stability, there is a y ∈ Lt such that ||x− y|| ≤ Crn.

Cluster Tree with multi-scale
Another way to measure the consistency of the cluster tree is through multi-scale approach, that is, we look at the
connected components Ct = {C1, . . . , Ckt} of a level set Lt for different values t ∈ [0,∞) simultaneously.

Definition. Kim et al. [2017, Definition 1] For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set {x ∈ X : p(x) ≥ λ}. See Figure 23.

For measuring a distance between trees that reflects multi-scale structure, we use l∞ metric.

Definition. Kim et al. [2017] The l∞ metric between trees are defined as d∞(Tp, Tq) = ∥p− q∥∞.

With this metric, we make a confidence set for the cluster tree. Recall that an asymptotic 1− α confidence set
Ĉα is a collection of trees with the property that

P (Tp ∈ Ĉα) = 1− α+ o(1).

We let Tp̂h be the cluster tree from the kernel density estimator p̂h, where

p̂h(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
,

and the confidence set as the ball centered at Tp̂h and radius ϵα, i.e.

Ĉα = {T : d∞(T, Tp̂h) ≤ ϵα} , (15)

where ϵα is the bootstrap quantile defined by

ϵα = inf

{
z :

1

B

B∑
b=1

I
(
||p̂∗bh − p̂h||∞ > z

)
≤ α

}
. (16)

Here, p̂∗bh is the density estimator based on the bth bootstrap sample.

Theorem. Kim et al. [2017, Theorem 3] Under minor conditions on the kernel, above confidence set Ĉα in (15)
satisfies

P
(
Th ∈ Ĉα

)
= 1− α+O

((
log7 n

nhd

)1/6
)
.
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λ = 0.5

λ = 0.4

λ = 0.3

λ = 0.2

λ = 0

Figure 23: Cluster tree.
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Figure 24: Starting at the top of the density and moving down, each mode has a birth time b and a death time d.
The persistence diagram (right) plots the points (d1, b1), . . . , (d4, b4). Modes with a long lifetime are far from the
diagonal.

Persistence
Consider a smooth density p with M = supx p(x) < ∞. The t-level set clusters are the connected components of
the set Lt = {x : p(x) ≥ t}. Suppose we find the upper level sets Lt = {x : p(x) ≥ t} as we vary t from M to 0.
Persistent homology measures how the topology of Lt varies as we decrease t. In our case, we are only interested
in the modes, which correspond to the zeroth order homology. (Higher order homology refers to holes, tunnels etc.)
The idea of using persistence to study clustering was introduced by Chazal et al. [2013].

Imagine setting t =M and then gradually decreasing t. Whenever we hit a mode, a new level set cluster is born.
As we decrease t further, some clusters may merge and we say that one of the clusters (the one born most recently)
has died. See Figure 24.

In summary, each mode mj has a death time and a birth time denoted by (dj , bj). (Note that the birth time
is larger than the death time because we start at high density and move to lower density.) The modes can be
summarized with a persistence diagram where we plot the points (d1, b1), . . . , (dk, bk) in the plane. See Figure 24.
Points near the diagonal correspond to modes with short lifetimes. We might kill modes with lifetimes smaller than
ϵα in (16). This corresponds to killing a mode if it is in a 2ϵα band around the diagonal. See Fasy et al. [2014].
Note that the starting and ending points of the vertical bars on the level set tree are precisely the coordinates of
the persistence diagram. (A more precise bootstrap approach was introduced in Chazal et al. [2017].)

6 Hierarchical Clustering (계층적 군집 분석)
Hierarchical clustering (계층적군집분석) methods build a set of nested clusters at different resolutions. The are two
types of hierarchical clustering: agglomerative (bottom-up) and divisive (top-down). With agglomerative clustering
we start with some distance or dissimilarity d(x, y) between points. We then extend this distance so that we can
compute the distance d(A,B) between to sets of points A and B.

The three most common ways of extending the distance are:

Single Linkage d(A,B) = min
x∈A,y∈B

d(x, y)

Average Linkage d(A,B) = 1
NANB

∑
x∈A,y∈B

d(x, y)

Complete Linkage d(A,B) = max
x∈A,y∈B

d(x, y)
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Figure 25: Hierarchical clustering applied to two noisy rings. Top left: the data. Top right: two clusters from
hierarchical clustering using single linkage. Bottom left: average linkage. Bottom right: complete linkage.

The algorithm is:

1. Input: data X = {X1, . . . , Xn} and metric d giving distance between clusters.

2. Let Tn = {C1, C2, . . . , Cn} where Ci = {Xi}.

3. For j = n− 1 to 1:

(a) Find j, k to minimize d(Cj , Ck) over all Cj , Ck ∈ Tj+1.
(b) Let Tj be the same as Tj+1 except that Cj and Ck are replaced with Cj ∪ Ck.

4. Return the sets of clusters T1, . . . , Tn.

The result can be represented as a tree, called a dendogram. We can then cut the tree at different places to yield
any number of clusters ranging from 1 to n. Single linkage often produces thin clusters while complete linkage is
better at rounder clusters. Average linkage is in between.

Example. Figure 25 shows agglomerative clustering applied to data generated from two rings plus noise. The noise
is large enough so that the smaller ring looks like a blob. The data are show in the top left plot. The top right
plot shows hierarchical clustering using single linkage. (The tree is cut to obtain two clusters.) The bottom left plot
shows average linkage and the bottom right plot shows complete linkage. Single linkage works well while average
and complete linkage do poorly.

Let us now mention some theoretical properties of hierarchical clustering. Suppose that X1, . . . , Xn is a sample
from a distribution P on Rd with density p. A high density cluster is a maximal connected component of a set of
the form {x : p(x) ≥ λ}. One might expect that single linkage clusters would correspond to high density clusters.
This turns out not quite to be the case. See Hartigan (1981) for details. DasGupta (2010) has a modified version of
hierarchical clustering that attempts to fix this problem. His method is very similar to density clustering.

Single linkage hierarchical clustering is the same as geometric graph clustering. Let G = (V,E) be a graph where
V = {X1, . . . , Xn} and Eij = 1 if ||Xi−Xj || ≤ ϵ and Eij = 0 if ||Xi−Xj || > ϵ. Let C1, . . . , Ck denote the connected
components of the graph. As we vary ϵ we get exactly the hierarchical clustering tree.

Finally, we let us mention divisive clustering. This is a form of hierarchical clustering where we start with one
large cluster and then break the cluster recursively into smaller and smaller pieces.

7 Spectral Clustering (스펙트럼 군집 분석)
Spectral clustering (스펙트럼 군집 분석) refers to a class of clustering methods that use ideas related to eigenvector.
An excellent tutorial on spectral clustering is von Luxburg (2006) and some of this section relies heavily on that
paper. More detail can be found in Chung (1997).

27



Let G be an undirected graph with n vertices. Typically these vertices correspond to observations X1, . . . , Xn.
Let W be an n× n symmetric weight matrix. Say that Xi and Xj are connected if Wij > 0. The simplest type of
weight matrix has entries that are either 0 or 1. For example, we could define

Wij = I(||Xi −Xj || ≤ ϵ).

An example of a more general weight matrix is Wij = e−||Xi−Xj ||2/(2h2).
The degree matrix D is the n× n diagonal matrix with Dii =

∑n
j=1Wij . The graph Laplacian is

L = D −W.

The graph Laplacian has many interesting properties which we list in the following result. Recall that a vector
v is an eigenvector of L if there is a scalar λ such that Lv = λv in which case we say that λ is the eigenvalue
corresponding to v. Let L(v) = {cv : c ∈ R, c ̸= 0} be the linear space generated by v. If v is an eigenvector with
eigenvalue λ and c is any nonzero constant, then cv is an eigenvector with eigenvalue cλ. These eigenvectors are
considered equivalent. In other words, L(v) is the set of vectors that are equivalent to v.

Theorem. The graph Laplacian L has the following properties:

1. For any vector f = (f1, . . . , fn)
T ,

fTLf =
1

2

n∑
i=1

n∑
j=1

Wij(fi − fj)2.

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0. The corresponding eigenvector is (1, 1, . . . , 1)T .

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λk.

5. The number of eigenvalues that are equal to 0 is equal to the number of connected components of G. That
is, 0 = λ1 = . . . = λk where k is the number of connected components of G. The corresponding eigenvectors
v1, . . . , vk are orthogonal and each is constant over one of the connected components of the graph.

Part 1 of the theorem says that L is like a derivative operator. The last part shows that we can use the graph
Laplacian to find the connected components of the graph.

Proof. (1) This follows from direct algebra.

(2) Since W and D are symmetric, it follow that L is symmetric. The fact that L is positive semi-definite folows
from part (1).

(3) Let v = (1, . . . , 1)T . Then

Lv = Dv −Wv =

 D11

...
Dnn

−
 D11

...
Dnn

 =

 0
...
0


which equals 0× v.

(4) This follows from parts (1)-(3).

(5) First suppose that k = 1 and thus that the graph is fully connected. We already know that λ1 = 0 and
v1 = (1, . . . , 1)T . Suppose there were another eigenvector v with eigenvalue 0. Then

0 = vTLv =

n∑
i=1

n∑
j=1

Wij(v(i)− v(j))2.
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It follows that Wij(v(i)− v(j))2 = 0 for all i and j. Since G is fully connected, all Wij > 0. Hence, v(i) = v(j) for
all i, j and so v is constant and thus v ∈ L(v1).

Now suppose that K has k components. Let nj be the number of nodes in components j. We can reliable the
vertices so that the first n1 nodes correspond to the first connected component, the second n2 nodes correspond
to the second connected component and so on. Let v1 = (1, . . . , 1, 0, . . . , 0) where the 1’s correspond to the first
component. Let Let v2 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) where the 1’s correspond to the second component. Define
v3, . . . , vk similarly. Due to the re-ordering of the vertices, L has block diagonal form:

L =


L1

L2

. . .
Lk

 .

Here, each Li corresponds to one of th connected components of the graph. It is easy to see that LV − j = 0 for
j = 1, . . . , k. Thus, each vj , for j = 1, . . . , k is an eigenvector with zero eigenvalue. Suppose that v is any eigenvector
with 0 eigenvalue. Arguing as before, v must be constant over some component and 0 elsewhere. Hence, v ∈ L(vj)
for some 1 ≤ j ≤ k.

Example. Consider the graph

X1 X2 X3 X4 X5

and suppose that Wij = 1 if and only if there is an edge between Xi and Xj . Then

W =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 1 0

 D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1


and the Laplacian is

L = D −W =


1 −1 0 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 0

 .

The eigenvalues of W , from smallest to largest are 0, 0, 1, 2, 3. The eigenvectors are

v1 =


1
1
0
0
0

 v2 =


0
0
1
1
1

 v3 =


0
0
−.71
0
.71

 v4 =


−.71
.71
0
0
0

 v5 =


0
0
−.41
.82
−.41


Note that the first two eigenvectors correspond to the connected components of the graph.

Note fTLf measures the smoothness of f relative to the graph. This means that the higher order eigenvectors
generate a basis where the first few basis elements are smooth (with respect to the graph) and the later basis
elements become more wiggly.

Example. Figure 26 shows a graph and the corresponding eigenvectors. The two eigenvectors correspond two the
connected components of the graph. The other eignvectors can be thought of as forming bases vectors within the
connected components.

One approach to spectral clustering is to set

Wij = I(||Xi −Xj || ≤ ϵ)

for some ϵ > 0 and then take the clusters to be the connected components of the graph which can be found by
getting the eigenvectors of the Laplacian L. This is exactly equivalent to geometric graph clustering. In this case we
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Figure 26: The top shows a simple graph. The remaining plots are the eigenvectors of the graph Laplacian. Note
that the first two eigenvectors correspond to the two connected components of the graph.
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have gained nothing except that we have a new algorithm to find the connected components of the graph. However,
there are other ways to use spectral methods for clustering as we now explain.

The idea underlying the other spectral methods is to use the Laplacian to transform the data into a new
coordinate system in which clusters are easier to find. For this purpose, one typically uses a modified form of the
graph Laplacian. The most commonly used weights for this purpose are

Wij = e−||Xi−Xj ||2/(2h2).

Other kernels Kh(Xi, Xj) can be used as well. We define the symmetrized Laplacian L = D−1/2WD−1/2 and the
random walk Laplacian L = D−1W. (We will explain the name shortly.) These are very similar and we will focus
on the latter. Some authors define the random walk Laplacian to be I − D−1W . We prefer to use the definition
L = D−1W because, as we shall see, it has a nice interpretation. The eigenvectors of I−D−1W and D−1W are the
same so it makes little difference which definition is used. The main difference is that the connected components
have eigenvalues 1 instead of 0.

Lemma. Let L be the graph Laplacian of a graph G and let L be the random walk Laplacian.

1. λ is an eigenvalue of L with eigenvector v if and only if Lv = (1− λ)Dv.

2. 1 is an eigenvalue of L with eigenvector (1, . . . , 1)T .

3. L is positive semidefinite with n non-negative real-valued eigenvalues.

4. The number of eigenvalues of L equal to 1 equals the number of connected components of G. Let v1, . . . , vk
denote the eigenvectors with eigenvalues equal to 1. The linear space spanned by v1, . . . , vk is spanned by the
indicator functions of the connected components.

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of L with eigenvectors v1, . . . , vn. Define

Zi ≡ T (Xi) =

r∑
j=1

√
λj vj(i).

The mapping T : X → Z transforms the data into a new coordinate system. The numbers h and r are tuning
parameters. The hope is that clusters are easier to find in the new parameterization.

To get some intuition for this, note that L has a nice probabilistic interpretation (Coifman, Lafon, Lee 2006).
Consider a Markov chain on X1, . . . , Xn where we jump from Xi to Xj with probability

P(Xi −→ Xj) = L(i, j) =
Kh(Xi, Xj)∑
sKh(Xs, Xj)

.

The Laplacian L(i, j) captures how easy it is to move from Xi to Xj . If Zi and Zj are close in Euclidean distance,
then they are connected by many high density paths through the data. This Markov chain is a discrete version of
a continuous Markov chain with transition probability:

P (x→ A) =

∫
A
Kh(x, y)dP (y)∫
Kh(x, y)dP (y)

.

The corresponding averaging operator Â : f → f̃ is

(Âf)(i) =

∑
j f(j)Kh(Xi, Xj)∑
j Kh(Xi, Xj)

which is an estimate of A : f → f̃ where

Af =

∫
A
f(y)Kh(x, y)dP (y)∫
Kh(x, y)dP (y)

.

The lower order eigenvectors of L are vectors that are smooth relative to P . Thus, projecting onto the first few
eigenvectors parameterizes in terms of closeness with respect to the underlying density.

The steps are:
Input: n× n similarity matrix W .
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1. Let D be the n× n diagonal matrix with Dii =
∑
jWij .

2. Compute the Laplacian L = D−1W.

3. Find first k eigenvectors v1, . . . , vk of L.

4. Project each Xi onto the eigenvectors to get new points X̂i.

5. Cluster the points X̂1, . . . , X̂n using any standard clustering algorithm.

There is another way to think about spectral clustering. Spectral methods are similar to multidimensional scaling.
However, multidimensional scaling attempts to reduce dimension while preserving all pairwise distances. Spectral
methods attempt instead to preserve local distances.

Example. Figure 27 shows a simple synthetic example. The top left plot shows the data. We apply spectral
clustering with Gaussian weights and bandwidth h = 3. The top middle plot shows the first 20 eigenvalues. The top
right plot shows the the first versus the second eigenvector. The two clusters are clearly separated. (Because the
clusters are so separated, the graph is essentially disconnected and the first eigenvector is not constant. For large h,
the graph becomes fully connected and v1 is then constant.) The remaining six plots show the first six eigenvectors.
We see that they form a Fourier-like basis within each cluster. Of course, single linkage clustering would work just
as well with the original data as in the transformed data. The real advantage would come if the original data were
high dimensional.

Example. Figure 28 shows a spectral analysis of some zipcode data. Each datapoint is a 16 x 16 image of a
handwritten number. We restrict ourselves to the digits 1, 2 and 3. We use Gaussian weights and the top plots
correspond to h = 6 while the bottom plots correspond to h = 4. The left plots show the first 20 eigenvalues. The
right plots show a scatterplot of the second versus the third eigenvector. The three colors correspond to the three
digits. We see that with a good choice of h, namely h = 6, we can clearly see the digits in the plot. The original
dimension of the problem is 16 x 16 =256. That is, each image can be represented by a point in R256. However, the
spectral method shows that most of the information is captured by two eignvectors so the effective dimension is 2.
This example also shows that the choice of h is crucial.

Spectral methods are interesting. However, there are some open questions:

1. There are tuning parameters (such as h) and the results are sensitive to these parameters. How do we choose
these tuning parameters?

2. Does spectral clustering perform better than density clustering?

8 High-Dimensional Clustering (고차원 군집 분석)
As usual, interesting and unexpected things happen in high dimensions. The usual methods may break down and
even the meaning of a cluster may not be clear.

8.1 High Dimensional Behavior
I’ll begin by discussing some recent results from Sarkar and Ghosh (arXiv:1612.09121). Suppose we have data
coming from k distributions P1, . . . , Pk. Let µr be the mean of Pr and Σr be the covariance matrix. Most clustering
methods depend on the pairwise distances ||Xi −Xj ||2. Now,

||Xi −Xj ||2 =

d∑
a=1

δ(a)

where δa = (Xi(a)−Xj(a))
2. This is a sum. As d increases, by the law of large numbers we might expect this sum

to converge to a number (assuming the features are not too dependent). Indeed, suppose that X is from Pr and Y
is from Ps then

1√
d
||X − Y || P→

√
σ2
r + σ2

s + νrs
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Figure 27: Top left: data. Top middle: eigenvalues. Top right: second versus third eigenvectors. Remaining plots:
first six eigenvectors.
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Figure 28: Spectral analysis of some zipcode data. Top: h = 6. Bottom: h = 4. The plots on the right show the
second versus third eigenvector. The three colors correspond to the three digits 1, 2 and 3.

where

νrs = lim
d→∞

1

d

d∑
a=1

||µr(a)− µs(a)||2

and
σ2
r = lim

d→∞

1

d
trace(Σr).

Note that νrr = 0.
Consider two clusters, C1 and C2:

X Y ||X − Y ||
X ∈ C1 Y ∈ C1 ||X − Y || = 2σ2

1

X ∈ C2 Y ∈ C2 ||X − Y || = 2σ2
2

X ∈ C1 Y ∈ C2 ||X − Y || = σ2
1 + σ2

2 + ν12

If
σ2
1 + ν12 < σ2

2

then every point in cluster 2 is closer to a point in cluster 1 than to other points in cluster 2. Indeed,
if you simulate high dimensional Gaussians, you will see that all the standard clustering methods fail terribly.

What’s really going on is that high dimensional data tend to cluster on rings. Pairwise distance methods don’t
respect rings.

An interesting fix suggested by Sarkar and Ghosh is to use the mean absolute difference distance (MADD)
defined by

ρ(x, y) =
1

n− 2

∑
z ̸=x,y

∣∣∣∣∣ ||x− z|| − ||y − z||
∣∣∣∣∣.

Suppose that X ∼ Pr and Y ∼ Ps. They show that ρ(X,Y )
P→ crs where crs ≥ 0 and crs = 0 if and only if σ2

r = σ2
s

and νbr = νbs for all b. What this means is that pairwise distance methods only work if νrs > |σ2
r − σ2

s | but MADD
works if either νrs ̸= 0 or σr ̸= σs.
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Pairwise distances only use information about two moments and they combine this moment information in a
particular way. MADD combines the moment information in a different and more effective way. One could also
invent other measures that separate mean and variance information or that use higher moment information.

8.2 Variable Selection
If X ∈ Rd is high dimensional, then it makes sense to do variable selection before clustering. There are a number of
methods for doing this. But, frankly, none are very convincing. This is, in my opinion, an open problem. Here are
a couple of possibilities.

Marginal Selection (Screening). In marginal selection, we look for variables that marginally look ‘clustery.”
This idea was used in Chan and Hall (2010) and Wasserman, Azizyan and Singh (2014). We proceed as follows:

Test For Multi-Modality

1. Fix 0 < α < 1. Let α̃ = α/(nd).

2. For each 1 ≤ j ≤ d, compute Tj = Dip(Fnj) where Fnj is the empirical distribution
function of the jth feature and Dip(F ) is defined in (17).

3. Reject the null hypothesis that feature j is not multimodal if Tj > cn,α̃ where cn,α̃
is the critical value for the dip test.

Any test of multimodality may be used. Here we describe the dip test (Hartigan and Hartigan, 1985). Let
Z1, . . . , Zn ∈ [0, 1] be a sample from a distribution F . We want to test “H0 : F is unimodal” versus “H1 : F is not
unimodal.” Let U be the set of unimodal distributions. Hartigan and Hartigan (1985) define

Dip(F ) = inf
G∈U

sup
x
|F (x)−G(x)|. (17)

If F has a density p we also write Dip(F ) as Dip(p). Let Fn be the empirical distribution function. The dip statistic
is Tn = Dip(Fn). The dip test rejects H0 if Tn > cn,α where the critical value cn,α is chosen so that, under H0,
P(Tn > cn,α) ≤ α.2

Since we are conducting multiple tests, we cannot test at a fixed error rate α. Instead, we replace α with
α̃ = α/(nd). That is, we test each marginal and we reject H0 if Tn > cn,α̃. By the union bound, the chance of at
least one false rejection of H0 is at most dα̃ = α/n.

There are more refined tests such as the excess mass test given in Chan and Hall (2010), building on work by
Muller and Sawitzki (1991). For simplicity, we use the dip test in this paper; a fast implementation of the test is
available in R.

Marginal selection can obviously fail. See Figure 29 taken from Wasserman, Azizyan and Singh (2014).
Sparse k-means. Here we discuss the approach in Witten and Tibshirani (2010). Recall that in k-means

clustering we choose C = {c1, . . . , ck} to minimize

Rn(C) =
1

n

n∑
i=1

||Xi −ΠC [Xi]||2 =
1

n

n∑
i=1

min
1≤j≤k

||Xi − cj ||2. (18)

This is equivalent to minimizing the within sums of squares

k∑
j=1

1

nj

∑
s,t∈Aj

d2(Xs, Xt) (19)

where Aj is the jth cluster and d2(x, y) =
∑d
r=1(x(r) − y(r))2 is squared Euclidean distance. Further, this is

equivalent to maximizing the between sums of squares

B =
1

n

∑
s,t

d2(Xs, Xt)−
k∑
j=1

1

nj

∑
s,t∈Aj

d2(Xs, Xt). (20)

2Specifically, cn,α can be defined by supG∈U PG(Tn > cn,α) = α. In practice, cn,α can be defined by PU (Tn > cn,α) = α where U
is Unif(0,1). Hartigan and Hartigan (1985) suggest that this suffices asymptotically.
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Figure 29: Three examples, each showing two clusters and two features X(1) and X(2). The top plots show the
clusters. The bottom plots show the marginal density of X(1). Left: The marginal fails to reveal any clustering
structure. This example violates the marginal signature assumption. Middle: The marginal is multimodal and hence
correctly identifies X(1) as a relevant feature. This example satisfies the marginal signature assumption. Right: In
this case, X(1) is relevant but X(2) is not. Despite the fact that the clusters are close together, the marginal is
multimodal and hence correctly identifies X(1) as a relevant feature. This example satisfies the marginal signature
assumption. (Figure from Wasserman, Azizyan and Singh, 2014).

Witten and Tibshirani propose replace the Euclidean norm with the weighted norm d2w(x, y) =
∑d
r=1 wr(x(r) −

y(r))2. Then they propose to maximize

B =
1

n

∑
s,t

d2w(Xs, Xt)−
k∑
j=1

1

nj

∑
s,t∈Aj

d2w(Xs, Xt) (21)

over C and w subject to the constraints

||w||2 ≤ 1, ||w||1 ≤ s, wj ≥ 0

where w = (w1, . . . , wd). The optimization is done iteratively by optimizing over C, optimizing over w and repeating.
See Figure 30.

The ℓ1 norm on the weights causes some of the components of w to be 0 which results in variable selection.
There is no theory that shows that this method works.

Sparse Alternate Sum Clustering. Arais-Castro and Pu (arXiv:1602.07277) introduced a method called
SAS (Sparse Alternate Sum) clustering. It is very simple and intuitively appealing.

Recall that k-means minimizes ∑
j

1

|Cj |
∑
i,j∈Cj

||Xi −Xj ||2.

Suppose we want a clustering based on a subset of features S such that |S| = L. Let δa(i, j) = (Xi(a)−Xj(a))
2 be

the pairwise distance for the ath feature. Assume that each feature has been standardized so that∑
i,j

δa(i, j) = 1

for all a. Define δS(i, j) =
∑
a∈S δa(i, j). Then we can say that the goal of sparse clustering is to minimize∑

j

1

|Cj |
∑
i,j∈Cj

δS(i, j)

over clusterings and subsets. They propose to minimize by alternating between finding clusters and finding subsets.
The former is the usual k-means. The latter is trivial because δS decomposes into maginal components. Arias-
Castro and Pu also suggest a permutation method for choosing the size of S. Their numerical experiments are very
promising. Currently, no theory has been developed for this approach.
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1. Input X1, . . . , Xn and k.

2. Set w = (w1, . . . , wd) where w1 = . . . = wd = 1/
√
d.

3. Iterate until convergence:

(a) Optimize (20) over C holding w fixed. Find c1, . . . , ck from the k-means algorithm using distance
dw(Xi, Xj). Let Aj denote the jth cluster.

(b) Optimize (20) over w holding c1, . . . , ck fixed. The solution is

wr =
sr√∑d
t=1 s

2
t

where
sr = (ar −∆)+,

ar =

 1

n

∑
s,t

wr(Xs(r)−Xt(r))
2 −

k∑
j=1

1

nj

∑
s,t∈Aj

wr(Xs(r)−Xt(r))
2


+

and ∆ = 0 if ||w||1 < s otherwise ∆ > 0 is chosen to that ||w||1 = s.

Figure 30: The Witten-Tibshirani Sparse k-means Method

8.3 Mosaics
A different idea is to create a partition of features and observations which I like to call a mosaic. There are papers
that cluster features and observations simultaneously but clear theory is still lacking.

9 Examples
Example. Figures 1 and 2 shows some synthetic examples where the clusters are meant to be intuitively clear. In
Figure 1 there are two blob-like clusters. Identifying clusters like this is easy. Figure 2 shows four clusters: a blob,
two rings and a half ring. Identifying clusters with unusual shapes like this is not quite as easy. To the human eye,
these certainly look like clusters. But what makes them clusters?

Example (Gene Clustering). In genomic studies, it is common to measure the expression levels of d genes on n
people using microarrays (or gene chips). The data (after much simplification) can be represented as an n×d matrix
X where Xij is the expression level of gene j for subject i. Typically d is much larger than n. For example, we
might have d ≈ 5, 000 and n ≈ 50. Clustering can be done on genes or subjects. To find groups of similar people,
regard each row as a data vector so we have n vectors X1, . . . , Xn each of length d. Clustering can then be used to
place the subjects into similar groups.

Example (Curve Clustering). Sometimes the data consist of a set of curves f1, . . . , fn and the goal is to cluster
similarly shaped clusters together. For example, Figure 31 shows a small sample of curves a from a dataset of 472
curves from Frappart (2003). Each curve is a radar waveform from the Topex/Poseidon satellite which used to map
the surface topography of the oceans.3 One question is whether the 472 curves can be put into groups of similar
shape.

Example (Supernova Clustering). Figure 32 shows another example of curve clustering. Briefly, each data point is
a light curve, essentially brightness versus time. The top two plots show the light curves for two types of supernovae
called “Type Ia” and “other.” The bottom two plots show what happens if we throw away the labels (“Type Ia”
and “other”) and apply a clustering algorithm (k-means clustering). We see that the clustering algorithm almost
completely recovers the two types of supernovae.

3See http://topex-www.jpl.nasa.gov/overview/overview.html. The data are available at “Working Group on Functional and Operator-
based Statistics” a web site run by Frederic Ferrarty and Philippe Vieu. The address is http://www.math.univ-toulouse.fr/staph/npfda/.
See also http://podaac.jpl.nasa.gov/DATA_CATALOG/topexPoseidoninfo.html.
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Figure 31: Some curves from a dataset of 472 curves. Each curve is a radar waveform from the Topex/Poseidon
satellite.
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