
Deep Learning

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2024 1st semester

This lecture note is a combination of several references. Main references are:
Tong Zhang, Mathematical Analysis of Machine Learning Algorithms, https://tongzhang-ml.org/lt-book.html
Matus Telgarsky, Deep learning theory lecture notes, https://mjt.cs.illinois.edu/dlt/
Weinan E, Chao Ma, Stephan Wojtowytsch, Lei Wu, Towards a Mathematical Understanding of Neural Network-

Based Machine Learning: what we know and what we don’t, https://arxiv.org/abs/2009.10713/
Antonio Álvarez López, Breaking the curse of dimensionality with Barron spaces, https://dcn.nat.fau.eu/breaking-

the-curse-of-dimensionality-with-barron-spaces/
Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, An introduction to statistical learning -

with applications in R, https://www.statlearning.com/ [3]

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rp, so x = (x1, . . . , xp).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

1

https://tongzhang-ml.org/lt-book.html
https://mjt.cs.illinois.edu/dlt/
https://arxiv.org/abs/2009.10713/
https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/
https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/
https://www.statlearning.com/

1.2 Linear Regression
From the additive noise model

y = f(x) + ϵ, f ∈ M,

Linear Regression Model (선형회귀모형) is that

M = F =

β0 +

p∑
j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =

n∑
i=1

(yi − f(xi))
2

=

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂p) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

p∑
j=1

β̂jxj .

2 Introduction
• Neural networks became popular in the 1980s. Lots of successes, hype, and great conferences: NeurIPS,

Snowbird.

• Then along came SVMs, Random Forests and Boosting in the 1990s, and Neural Networks took a back seat.

• Re-emerged around 2010 as Deep Learning. By 2020s very dominant and successful.

• Part of success due to vast improvements in computing power, larger training sets, and software: Tensorflow
and PyTorch

• Much of the credit goes to three pioneers and their students: Yann LeCun, Geoffrey Hinton and Yoshua
Bengio, who received the 2019 ACM Turing Award for their work in Neural Networks.

2.1 Two Layer Neural Networks
A two-layer neural network takes an input vector of d variables x = (x1, x2, . . . , xd) and builds a nonlinear function
f(x) to predict the response y. What distinguishes neural networks from other nonlinear methods is the particular
structure of the model:

f(x) = fθ(x) = g

b′ +

m∑
j=1

ajh(bj + w⊤
j x)

 ,

or more succintly, where x ∈ Rd, bj ∈ R, wj ∈ Rd, b′ ∈ RD, aj ∈ RD. See Figure 1.

• θ = {[b′, aj , bj , wj] : j = 1, . . . ,m(k), i = 1, . . . , D} denotes the set of model parameters.

• x1, . . . , xd together is called an input layer.

• Aj := hj(x) = h(θ⊤j x+ bj) is called an activation.

• A1, . . . , Am together is called a hidden layer or hidden unit; m is the number of hidden nodes.

2

Figure 1: Neural network with a single hidden layer. The hidden layer computes activations Aj = hj(x) that are
nonlinear transformations of linear combinations of the inputs x1, . . . , xd. Hence these Aj are not directly observed.
The functions hj are not fixed in advance, but are learned during the training of the network. The output layer is
a linear model that uses these activations Aj as inputs, resulting in a function f(x). Figure 10.1 from [3].

• f(x) is called an output layer.

• g is an output function; identity g(x) = x for regression, or softmax gi(x) = exp(xi)/
∑D

l=1 exp(xl) for
classification. The softmax function estimates the conditional probability gi(x) = P (y = i|x).

• h is called an activation function. Popular are the sigmoids and rectified linear (ReLU), shown in Figure 2.

• Activation functions in hidden layers are typically nonlinear, otherwise the model collapses to a linear model.

• So the activations are like derived features - nonlinear transformations of linear combinations of the features.

• The model is fit by minimizing
∑n

i=1(yi − f(xi))
2 (e.g. for regression).

2.2 Multi Layer Neural Networks
Modern neural networks typically have more than one hidden layer, and often many units per layer. In theory
a single hidden layer with a large number of units has the ability to approximate most functions. However, the
learning task of discovering a good solution is made much easier with multiple layers each of modest size.

A deep neural network refers to the model allowing to have more than 1 hidden layers: given input x ∈ Rd and
response y ∈ RD, to predict the response y. K-layer fully connected deep neural network is to build a nonlinear
function f(x) as

• Let m(0) = d and m(K) = D

• Define recursively

x(0) = x, (x ∈ Rm(0)

),

x
(k)
j = h(b

(k)
j + (w

(k)
j)⊤x(k−1)), w

(k)
j , x(k−1) ∈ Rm(k−1)

, bj ∈ Rm(k)

f(x) = g(x(K)) = g

b′ +

m(K−1)∑
j=1

ajx
(K−1)
j

 ,

• θ = {[b′(i), a(i)j , b
(k)
j , w

(k)
j] : k = 1, . . . ,K − 1, j = 1, . . . ,m(k), i = 1, . . . , D} denotes the set of model parame-

ters.

• m(k) is the number of hidden units at layer k.

3

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

Figure 2: Activation functions. The piecewise-linear ReLU function is popular for its efficiency and computability.
We have scaled it down by a factor of five for ease of comparison. Figure 10.2 from [3].

2.3 Example: MNIST
Example. MNIST dataset is a handwritten digit dataset. It is to classify images into digit class 0-9. Every image
has 28× 28 = 784 pixels of grayscale values ∈ (0, 255). There are 60,000 train images and 10,000 test images.

• The goal is to build a classifier to predict the image class.

• We build a deep neural network with 256 units at first layer, 128 units at second layer, and 10 units at output
layer.

• Along with intercepts (called biases) there are 235,146 parameters (referred to as weights).

• The output finction g(x) is the softmax function: gi(x) = exp(xi)/
∑D

l=1 exp(xl).

• We fit the model by minimizing the negative multinomial log-likelihood (or cross-entropy):

−
m∑
j=1

9∑
i=0

yji log(fi(xj)),

where yji is 1 if true class for observation j is i, else 0: one-hot encoded.

Method Test Error
Neural Network + Ridge Regularization 2.3%

Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

This is an early success for neural networks in the 1990s. With so many parameters, regularization is essential.
Also, this is very overworked problem - best reported rates are < 0.5%. Human error rate is reported to be around
0.2%, or 20 of the 10, 000 test images.

3 Notation
From here, we only consider regression problem, so D = 1 and g(x) = x. We assume no intercept, so b′ = bj = 0.
Hence, for the two-layer neural network with the width of the hidden layer m and activation function h, the function
space we consider is

Fm,h =

fw : fw(x) =

m∑
j=1

ujh(θ
⊤
j x)

 ,

4

and if we consider all two-layer neural network with arbitrary width, then

Fh =

∞⋃
m=1

Fm,h =

fw : fw(x) =

m∑
j=1

ujh(θ
⊤
j x),m ∈ N

 .

Suppose the true regression function f∗ is in a function class M, so

y ≈ f∗(x), f∗ ∈ M.

Suppose are using the ℓ2-loss, so we find f among deep neural network class F that minimizes the expected prediction
error,

f0 = argmin
f∈F

E(Y,X)∼P

[
(y − f(x))2

]
.

And we estimate f0 by f̂ using data by minimizes on the empirical prediction error on training dataset, so

f̂ = argmin
f∈F

1

n

n∑
i=1

(yi − f(xi))
2.

So there are two sources of errors: approximation error and generalization error.

f∗ − f̂ = f∗ − f0︸ ︷︷ ︸
approximation error

+ f0 − f∗︸ ︷︷ ︸
generalization error

.

What we would like to achieve is that:
For the approximation error: we would like to control

∥∥f∗ − f0
∥∥
L2(P)

appropriately in terms of the width of
the neural network m. Ideally, we would like to restrict the function class M where f∗comes from, and define an
appropriate norm ∥f∗∥∗, so that

inf
f∈Fm,h

∥f∗ − f∥2L2(P) ≲
∥f∗∥2∗
m

.

For the generalization error: we have seen from the concentration lecture note that with probability at least
1− δ,

sup
f∈Fm,h

∣∣∣∣∣ 1n
n∑

i=1

f(xi)− E[f]

∣∣∣∣∣ ≤ 2Rad(Fm,h) +

√
1

2n
log

(
2

δ

)
.

Hence we would like to see that, with appropriate norm ∥f∥∗∗ for f ∈ Fm,h, define Fm,h,Q := {f ∈ Fm,h : ∥f∥∗∗ ≤
Q}, and then

Rad(Fm,h,Q) ≲
Q√
n
.

If both holds, then ∥∥∥f∗ − f̂
∥∥∥2
L2(P)

= OP

(
∥f∗∥2∗
m

+
Q√
n

)
.

4 Approximation error: Universal Approximation

4.1 Classical Universal Approximation
Definition. A class of functions F is a universal approximator over a compact set S if for every continuous function
g and target accuracy ϵ > 0, there exists f ∈ F with

sup
x∈S

|f(x)− g(x)| < ϵ.

The classical Weierstrass theorem establishes that polynomials are universal approximators (Weierstrass 1885),
and its generalization, the Stone-Weierstrass theorem, says that any family of functions satisfying some of the same
properties as polynomials will also be a universal approximator. Stone-Weistrass theorem is a fairly standard way
to prove universal approximation; this approach was first suggested in (Hornik, Stinchcombe, and White 1989).

5

Theorem. Let functions F be given as follows.

• Each f ∈ F is continuous.

• For every x ∈ S, there exists f ∈ F with f(x) ̸= 0.

• For every x ̸= y ∈ S, there exists f ∈ F with f(x) ̸= f(y) (F separates points).

• F is closed under multiplication and vector space operations (F is an algebra).

Then F is a universal approximator.

Then two-layer neural network is a universal approximator.

Theorem ([2]). Suppose h : R → R is sigmoidal: it is continuous, and

lim
z→−∞

h(z) = 0, lim
z→∞

h(z) = 1.

Then Fh is a universal approximator.

Theorem ([4]). If h : R → R is continuous and non-polynomial, then Fh is a universal approximator.

4.2 Universal Approximation on Baron Class
Classical universal approximation guarantees an approximation of arbitrary small error. But it has a drawback: we
consider the two-layer neural network with arbitrary width, and to achieve a given accuracy we don’t know how
wide the hidden layer should be. If we fix the width of the neural network as m, then for f∗ in Sobolev space,

inf
f0∈Fm,h

∥∥f0 − f∗
∥∥
Lp(S)

= O

(
1

mα/d

)
,

so the approximation error suffers from the curse of dimensionality.
One fundamental reason is that maybe setting the regression function class M as the Sobolev space is too large;

to overcome the curse of dimensionality, one approch would be to restrict M.
We first recall the Fourier transform:

f̃(ω) :=

∫
exp(−2πiω⊤x)f(x)dx.

Then we have the Fourier inversion: if f, f̃ ∈ L1,

f(x) =

∫
exp(2πiω⊤x)f̃(ω)dω.

Barron class is a function that the Fourier transform of its gradient is integrable: note that ∇̃f(ω) = 2πiωf̃(ω).

Definition. The quantity

∥f∥B :=

∫ ∥∥∥∇̃f(ω)
∥∥∥
2
dω = 2π

∫
∥ω∥2

∣∣∣f̃(ω)∣∣∣ dω
is called the Barron norm of a function f . The corresponding Barron class is

MB =
{
f : Rd → R : ∥f∥B < ∞

}
.

Theorem ([1, Theorem 11]). For any f∗ ∈ MB and m ∈ N, there exists a two-layer neural network f0 ∈ Fm,h

with m neurons such that ∥∥f∗ − f0
∥∥
L2(P)

≲
∥f∗∥B√

m
.

Theorem ([1, Theorem 12]). For any f∗ ∈ MB and m ∈ N, there exists a two-layer neural network f0 ∈ Fm,h

with m neurons such that ∥∥f∗ − f0
∥∥
L∞([0,1]d)

≲ ∥f∗∥B

√
d+ 1

m
.

6

5 Generalization error
For fw ∈ Fm,h, we can write fw(x) =

∑m
j=1 ajh(θ

⊤
j x). Define the 1-norm of w as

∥w∥1 :=
1

m

m∑
j=1

|aj | ∥θj∥1 .

Theorem ([1, Theorem 15]). Let Fm,h,Q := {fw ∈ Fm,h : ∥w∥1 ≤ Q}. Then we have

Rad(Fm,h,Q;Z
n) ≤ 2Q

√
2 log(2d)

n
.

Instead of minimizing the training error, we can also consider the regularized term as

L(w) = 1

n

n∑
i=1

(yi − fw(xi))
2 + λ

√
log(2d)

n
∥w∥1 ,

and let ŵ(1) be its minimizer.

Theorem ([1, Theorem 16]). Suppose X ⊂ Rd is compact, and assume f∗ : X → [0, 1]. There exists some λ0 > 0
such that for λ ≥ λ0, with probability 1− δ,

1

n

n∑
i=1

(yi − fŵ(1)(xi))
2 ≲

∥f∗∥2B
m

+ λ ∥f∗∥B

√
log(2d)

n
+

√
log(n/δ)

n
.

References
[1] Weinan E, Chao Ma, Stephan Wojtowytsch, and Lei Wu. Towards a mathematical understanding of neural

network-based machine learning: what we know and what we don’t. CoRR, abs/2009.10713, 2020.

[2] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

[3] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning—
with applications in R. Springer Texts in Statistics. Springer, New York, [2021] ©2021. Second edition [of
3100153].

[4] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861–867, 1993.

7

	Review
	Basic Model for Supervised Learning
	Linear Regression

	Introduction
	Two Layer Neural Networks
	Multi Layer Neural Networks
	Example: MNIST

	Notation
	Approximation error: Universal Approximation
	Classical Universal Approximation
	Universal Approximation on Baron Class

	Generalization error

