Deep Learning

AR (Jisu KIM)

SAA 7| Alek5 (Statistical Machine Learning), 2024 1st semester

This lecture note is a combination of several references. Main references are:

Tong Zhang, Mathematical Analysis of Machine Learning Algorithms, https://tongzhang-ml.org/lt-book.html

Matus Telgarsky, Deep learning theory lecture notes, https://mjt.cs.illinois.edu/dlt/

Weinan E, Chao Ma, Stephan Wojtowytsch, Lei Wu, Towards a Mathematical Understanding of Neural Network-
Based Machine Learning: what we know and what we don’t, https://arxiv.org/abs/2009.10713/

Antonio Alvarez Lopez, Breaking the curse of dimensionality with Barron spaces, https://dcn.nat.fau.eu /breaking-
the-curse-of-dimensionality-with-barron-spaces/

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, An introduction to statistical learning -
with applications in R, https://www.statlearning.com/| [3]

1 Review

1.1

Basic Model for Supervised Learning
Input(¥Y &) / Covariate(d™d HE) : . € R, so x = (21, ...,2p).

Output(&3]) / Response(HF-2 BH4): y € V. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

Model(29) :
y~ f(z).
If we include the error € to the model, then it can be also written as
y=9o(f(x),€).
For many cases, we assume additive noise, so
y=f(z) +e

Assumption(7}4): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

Loss function(£=4 g42): £(y,a). A loss function measures the difference between estimated and true values
for an instance of data.

Training data(ghs At=&): T = {(yi, ®:),i = 1,...,n}, where (y;, ;) is a sample from a probability distribution
P;. For many cases we assume i.i.d., or x;’s are fixed and y;’s are i.i.d..

Goal(Z£4]): we want to find f that minimizes the expected prediction error,
0 .
= E ~p LY, f(X))].
f arg}rgjrtl (Y, X)~P [(f())}
Here, F can be different from M; F can be smaller then M.

Prediction model(9]& 2 d): fO is unknown, so we estimate fO by f using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution P, =
lz”)

n 2wi=19(Yi,Xi)"

f = argminEp, [£(Y, f(X))] = argmin > Ui (X0)

Prediction(9): if f is a predicted function, and z is a new input, then we predict unknown y by f (z).

https://tongzhang-ml.org/lt-book.html
https://mjt.cs.illinois.edu/dlt/
https://arxiv.org/abs/2009.10713/
https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/
https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/
https://www.statlearning.com/

1.2 Linear Regression

From the additive noise model

y=f(z)+e fEM,
Linear Regression Model (A& S| AHRY) is that

p
M=F= ,BO—FZBjZ'jZﬁjER

j=1

For estimating 3, we use least squares: suppose the training data is {(y;,2;;) : 1 <i <n,1 < j < p}. We use square
loss

Uy, a) = (y — a)?,
then the eimpirical loss becomes the residual sum of square (RSS) as

n

RSS(8) = (vi — f(:))*

i=1

n p
:Z yv:*ﬂo*z?ﬁijﬂj
i—1 i=1

2

Let 3 = (BO, B, ... ,Bp) be the nimimizor of RSS, then the predicted function is

f@)=Bo+ ZBjJJj-

Jj=1

2 Introduction

e Neural networks became popular in the 1980s. Lots of successes, hype, and great conferences: NeurIPS,
Snowbird.

e Then along came SVMs, Random Forests and Boosting in the 1990s, and Neural Networks took a back seat.
e Re-emerged around 2010 as Deep Learning. By 2020s very dominant and successful.

e Part of success due to vast improvements in computing power, larger training sets, and software: Tensorflow
and PyTorch

e Much of the credit goes to three pioneers and their students: Yann LeCun, Geoffrey Hinton and Yoshua
Bengio, who received the 2019 ACM Turing Award for their work in Neural Networks.
2.1 Two Layer Neural Networks

A two-layer neural network takes an input vector of d variables = (21,2, ..., z4) and builds a nonlinear function
f(x) to predict the response y. What distinguishes neural networks from other nonlinear methods is the particular
structure of the model:

fl@)=fo(zx) =g [V + > ajh(b; +w/z) |,
j=1

or more succintly, where 2 € R¢, b; e R,w; € R, b € RP, aj € RP. See Figure
o 0 ={[t,a;,bj,w;]:j=1,... ,m® i =1,..., D} denotes the set of model parameters.
e z1,...,x4 together is called an input layer.
o Aj:=hj(x) = h(0] z + b;) is called an activation.

e Ay,..., A, together is called a hidden layer or hidden unit; m is the number of hidden nodes.

Input Hidden Qutput

Layer Layer Layer
A
X1
Az
X2
. As f(X)— Y
X3
Ay
X4
As

Figure 1: Neural network with a single hidden layer. The hidden layer computes activations A; = h;(z) that are
nonlinear transformations of linear combinations of the inputs x1,...,z4. Hence these A; are not directly observed.
The functions h; are not fixed in advance, but are learned during the training of the network. The output layer is
a linear model that uses these activations A; as inputs, resulting in a function f(z). Figure 10.1 from [3].

o f(x) is called an output layer.

e g is an output function; identity g(z) = z for regression, or softmax g;(x) = exp(z;)/ S22 exp(a;) for
classification. The softmax function estimates the conditional probability g;(z) = P(y = i|x).

h is called an activation function. Popular are the sigmoids and rectified linear (ReLU), shown in Figure

Activation functions in hidden layers are typically nonlinear, otherwise the model collapses to a linear model.

So the activations are like derived features - nonlinear transformations of linear combinations of the features.

The model is fit by minimizing Y., (y; — f(x;))? (e.g. for regression).

2.2 Multi Layer Neural Networks

Modern neural networks typically have more than one hidden layer, and often many units per layer. In theory
a single hidden layer with a large number of units has the ability to approximate most functions. However, the
learning task of discovering a good solution is made much easier with multiple layers each of modest size.

A deep neural network refers to the model allowing to have more than 1 hidden layers: given input z € R? and
response y € R”, to predict the response y. K-layer fully connected deep neural network is to build a nonlinear
function f(z) as

o Let m® =d and mE) = D

e Define recursively

tO =z (ze Rm(o)),

(k) _ 1 p(R) (R)NT,.(k—1) (k) .(k—1) =) o)
z; = hb;" + (w;”) z), w;.w e R™ b € R™
m(K—1)
K-1
fla)=g@®) =g v+ Y al®V Y,
j=1

o)= {[b’(i),agi),bg-k),w;—k)] ck=1,...,K—-1,7=1,....m® i=1,..., D} denotes the set of model parame-
ters.

e m®) is the number of hidden units at layer k.

1.0

sigmoid
— RelLU
[ee]
o
©
<
S
o
<
S
N —
o
o _|
e \ \ \ \ \
-4 -2 0 2 4

Figure 2: Activation functions. The piecewise-linear ReLU function is popular for its efficiency and computability.
We have scaled it down by a factor of five for ease of comparison. Figure 10.2 from [3].

2.3

Example: MNIST

Example. MNIST dataset is a handwritten digit dataset. It is to classify images into digit class 0-9. Every image
has 28 x 28 = 784 pixels of grayscale values € (0,255). There are 60,000 train images and 10,000 test images.

The goal is to build a classifier to predict the image class.

We build a deep neural network with 256 units at first layer, 128 units at second layer, and 10 units at output
layer.

Along with intercepts (called biases) there are 235,146 parameters (referred to as weights).
The output finction g(x) is the softmax function: g;(z) = exp(x;)/ 211):1 exp(x;).
We fit the model by minimizing the negative multinomial log-likelihood (or cross-entropy):
m 9
Zzyjzlog fz Zj)
j=114=0

where y;; is 1 if true class for observation j is 7, else 0: one-hot encoded.

Method Test Error
Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

This is an early success for neural networks in the 1990s. With so many parameters, regularization is essential.

Also,

this is very overworked problem - best reported rates are < 0.5%. Human error rate is reported to be around

0.2%, or 20 of the 10,000 test images.

3 Notation

From here, we only consider regression problem, so D = 1 and g(z) = x. We assume no intercept, so ' = b; = 0.
Hence, for the two-layer neural network with the width of the hidden layer m and activation function h, the function
space we consider is

fm,h: fu fw(x)zzu]h(eyx))
j=1

and if we consider all two-layer neural network with arbitrary width, then

Fn=J Fonn = fu: ful®) =D u;h(6]z),m e N
m=1

=1
Suppose the true regression function f, is in a function class M, so

y =~ fu(2), fs EM.

Suppose are using the ¢5-loss, so we find f among deep neural network class F that minimizes the expected prediction
error,

0= arg?g;l_E(y’X)NP [(y - f(x))ﬂ :

And we estimate f° by f using data by minimizes on the empirical prediction error on training dataset, so

n

f = argmin = > — fl))

So there are two sources of errors: approximation error and generalization error.

fo=f= L= + fO-f
N—— N —

approximation error generalization error

What we would like to achieve is that:

For the approximation error: we would like to control H fe — fOH L2(P) appropriately in terms of the width of
the neural network m. Ideally, we would like to restrict the function class M where f,comes from, and define an
appropriate norm || f.||,, so that

e Al < L0
fe}—nz,h * LZ(P) ~ m ’

For the generalization error: we have seen from the concentration lecture note that with probability at least
1-9,

Zf(xz) — E[f]| < 2Rad(F,n) + % log (?)

i=1

1
sup |—
FEFmn | T

n

Hence we would like to see that, with appropriate norm || f||,, for f € Fy, 5, define Fop, g ={f € Fop : ||l <
Q}, and then

Q
r < ¥
Rad(m,h,Q) N \/ﬁ

2 If2 . @
‘ L2(P)_OP< m +\/ﬁ>'

4 Approximation error: Universal Approximation

If both holds, then

f*_f

4.1 Classical Universal Approximation

Definition. A class of functions F is a universal approximator over a compact set S if for every continuous function
g and target accuracy € > 0, there exists f € F with

sup | f(z) — g(z)| <e.
€S

The classical Weierstrass theorem establishes that polynomials are universal approximators (Weierstrass 1885),
and its generalization, the Stone-Weierstrass theorem, says that any family of functions satisfying some of the same
properties as polynomials will also be a universal approximator. Stone-Weistrass theorem is a fairly standard way
to prove universal approximation; this approach was first suggested in (Hornik, Stinchcombe, and White 1989).

Theorem. Let functions F be given as follows.

Each f € F is continuous.
e [or every x € S, there exists f € F with f(z) # 0.
o For every x #y € S, there exists f € F with f(x) # f(y) (F separates points).
o F is closed under multiplication and vector space operations (F is an algebra).
Then F is a universal approximator.
Then two-layer neural network is a universal approximator.

Theorem ([2]). Suppose h: R — R is sigmoidal: it is continuous, and

lim h(z) =0, lim h(z) = 1.

Z—>—00 Z—> 00
Then Fy, is a universal approximator.

Theorem ([4]). If h: R — R is continuous and non-polynomial, then Fy, is a universal approzimator.

4.2 Universal Approximation on Baron Class

Classical universal approximation guarantees an approximation of arbitrary small error. But it has a drawback: we
consider the two-layer neural network with arbitrary width, and to achieve a given accuracy we don’t know how
wide the hidden layer should be. If we fix the width of the neural network as m, then for f, in Sobolev space,

1
Lr(S) — o (ma/d>)

so the approximation error suffers from the curse of dimensionality.

One fundamental reason is that maybe setting the regression function class M as the Sobolev space is too large;
to overcome the curse of dimensionality, one approch would be to restrict M.

We first recall the Fourier transform:

imf |0~ f

.foej:m,h,

flw) = /exp(—Zﬂ'inm)f(x)dx.
Then we have the Fourier inversion: if f, f € L?,
flz) = /exp(?winx)f(w)dw.

Barron class is a function that the Fourier transform of its gradient is integrable: note that ﬂ(u}) = 2miwf (w).
Definition. The quantity
115 = [[Fr)], o =2x [ol |F)]
is called the Barron norm of a function f. The corresponding Barron class is
Mp={f:R* 5 R:|f]z<oc}.

Theorem ([I, Theorem 11|). For any f. € Mp and m € N, there exists a two-layer neural network f° € F, 1,
with m neurons such that

£l
Hf* - fO||L2(P) S WB'

Theorem ([I, Theorem 12|). For any f. € Mp and m € N, there exists a two-layer neural network f° € F, 1

with m neurons such that
[d+1
’f*_fOHLm([O,l]d) S Hf*”B m

5 Generalization error

For fi, € Fpm n, we can write f,(z) = Z;nzl ajh(ﬂ;'—x). Define the 1-norm of w as

1 m
ol = >~ lag! 163,
j=1
Theorem ([I, Theorem 15|). Let Fp, n.q = {fw € Fm,n : ||w|l; < Q}. Then we have

21og(2
Rad(Fyu i 2") < 20| 2820,

Instead of minimizing the training error, we can also consider the regularized term as

n

Llw) =3 (i~ fulw)? +A

i=1

log(2d)
2D
and let W) be its minimizer.

Theorem ([I, Theorem 16]). Suppose X C R? is compact, and assume f. : X — [0,1]. There exists some Ao > 0
such that for A > \g, with probability 1 — 6,

n

2
*)
LS faor e < sy ¢ os2d) ¢ log(n/9)

n n
i=1

References

[1] Weinan E, Chao Ma, Stephan Wojtowytsch, and Lei Wu. Towards a mathematical understanding of neural
network-based machine learning: what we know and what we don’t. CoRR, abs/2009.10713, 2020.

[2] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359-366, 1989.

[3] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning—
with applications in R. Springer Texts in Statistics. Springer, New York, [2021] (©)2021. Second edition [of
3100153].

[4] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861-867, 1993.

	Review
	Basic Model for Supervised Learning
	Linear Regression

	Introduction
	Two Layer Neural Networks
	Multi Layer Neural Networks
	Example: MNIST

	Notation
	Approximation error: Universal Approximation
	Classical Universal Approximation
	Universal Approximation on Baron Class

	Generalization error

