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김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2024 1st semester

The lecture note is a minor modification of the lecture notes from Prof. Yongdai Kim’s “Statistical Machine
Learning”, and Prof Larry Wasserman and Ryan Tibshirani’s “Statistical Machine Learning”. Also, see Section 10
from [1].

1 Boosting
Boosting is a method of combing weak learners (learners slightly better than random guess) to produce a strong
committee. Freund and Schapire (1997) first proposed a practically usable boosting algorithm called “AdaBoost
(Adaptive Boost)”. Since then, many researches have been done to understand and extend boosting. A motivating
example is the horse race. Suppose there are 100 gamblers who claim that they are expert in predicting the horse
race results. Since they spend lots of time to study horse race, we can admit that their winning probabilities are
slightly better than random guess (i.e. 50%). Now, the question is “Is it possible to combine 100 predictions of the
100 experts to make a better prediction?”. Surprisingly, it is possible, which is called weak learnability. AdaBoot is
the first algorithm to implement the idea of weak learnability. Let Zi = (Xi, Yi) where Yi ∈ {−1,+1}. We make the
weak learning assumption: for some γ > 0 we have an algorithm returns h ∈ H such that, for all P ,

P (R(h) ≤ 1/2− γ) ≥ 1− δ

where γ > 0 is the edge.

AdaBoost algorithm is as follows:

1. Set D1(i) = 1/n for i = 1, . . . , n.

2. Repeat for t = 1, . . . , T :

(a) Let ht = argminh∈HPDt
(Yi ̸= h(Xi)).

(b) ϵt = PDt
(Yi ̸= ht(Xi)).

(c) αt = (1/2) log((1− ϵt)/ϵt).

(d) Let

Dt+1(i) =
Dt(i)e

−Yiαtht(Xi)

Zt

where Zt is a normalizing constant.

3. Set g(x) =
∑

t αtht(x).

4. Return h(x) = signg(x).

AdaBoost increases the weights for misclassified observations and decreases the weights for correctly classified
observations.
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1.1 Empirical Results
Data Set Single AdaBoost Decrease Bagging
waveform 29.0 18.2 37% 19.4

breast cancer 6.0 3.2 47% 5.3
ionosphere 11.2 5.9 47% 8.6
diabetes 23.4 20.2 14% 18.8

glass 32.0 22.0 31% 24.9

AdaBoost outperforms the single best model. Moreover, AdaBoost is more accurate than Bagging in most cases
(except diabetes).

1.2 Training Error
ht, t = 1, . . . , T , called base learners, are typically slightly better than random guess. In particular, Freund and
Schapire (1997) showed that the training error converges to 0 exponentially fast if

errt < 0.5− γ

for some γ > 0. They conjectured that the overfitting emerges if T is too large since the model is too complex.

Lemma. We have
Zt = 2

√
ϵt(1− ϵt).

Proof. Since
∑

i Dt(i) = 1 we have

Zt =
∑
i

Dt(i)e
−αtYiht(Xi) =

∑
Yiht(Xi)=1

Dt(i)e
−αt +

∑
Yiht(Xi)=−1

Dt(i)e
αt

= (1− ϵt)e
−αt + ϵte

αt = 2
√

ϵt(1− ϵt).

since αt = (1/2) log((1− ϵt)/ϵt).

Theorem. Suppose that γ ≤ (1/2)− ϵt for all t. Then

R̂(h) ≤ e−2γ2T .

Hence, the training error goes to 0 quickly.

Proof. Recall that D1(i) = 1/n. So

Dt+1(i) =
Dt(i)e

−αtYiht(Xi)

Zt
=

Dt−1(i)e
−αt−1Yiht−1(Xi)e−αtYiht(Xi)

ZtZt−1

= · · · = e−Yi
∑

t αtht(Xi)

n
∏

t Zt
=

e−Yig(Xi)

n
∏

t Zt

which implies that
e−Yig(Xi) = nDT+1(i)

∏
t

Zt. (1)

Since I(u ≤ 0) ≤ e−u we have

R̂(h) =
1

n

∑
i

I(Yig(Xi) ≤ 0) ≤ 1

n

∑
i

e−Yig(Xi) =
1

n

∑
i

n(
∏
t

Zt)DT+1(i) =

T∏
t=1

Zt

=
∏
t

2
√

ϵt(1− ϵt) =
∏
t

√
1− 4(1/2− ϵt)2

≤
∏
t

e−2(1/2−ϵt)
2

since 1− x ≤ e−x

= e−2
∑

t(1/2−ϵt)
2

≤ e−2γ2T .
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1.3 Generalization Error
The training error gets small very quickly. But how well do we do in terms of prediction error?

Let

F =

{
sign(

∑
t

αtht) : αt ∈ R, ht ∈ H

}
.

For fixed h = (h1, . . . , hT ) this is just a set of linear classifiers which has VC dimension T . So the shattering number
is (en

T

)T

.

If H is finite then the shattering number is (en
T

)T

.|H|T .

If H is infinite but has VC dimension d then the shattering number is bounded by(en
T

)T (en
d

)dT

⪯ nTd.

By the VC theorem, with probability at least 1− δ,

R(ĥ) ≤ R̂(h) +

√
Td log n

n
.

Unfortunately this depends on T . We can fix this using margin theory.

Margins. Consider the classifier h(x) = sign(g(x)) where g(x) =
∑

t αtht(x). The classifier is unchanged if we
multiply g by a scalar. In particular, we can replace g with g̃ = g/||α||1. This form of the classifier is a convex
combination of the ht’s.

We define the margin at x of g =
∑

t αtht by

ρ(x) =
yg(x)

||α||1
= yg̃(x).

Think of |ρ(x)| as our confidence in classifying x. The margin of g is defined to be

ρ = min
i

ρ(Xi) = min
i

Yig(Xi)

||α||1
.

Note that ρ ∈ [−1, 1].
To proceed we need to review Radamacher complexity. Given a class of functions F with −1 ≤ f(x) ≤ 1 we

define

Rn(F) = Eσ

[
sup
f∈F

1

n

∑
i

σif(Zi)

]
where P (σi = 1) = P (σi = −1) = 1/2. If H is finite then

Rn(H) ≤
√

2 log |H|
n

.

If H has VC dimension d then

Rn(H) ≤
√

2d log(en/d)

n
.

We will need the following two facts. First,

Rn(conv(H)) = Rn(H)

where conv(H) is the convex hull of H. Second, if

|ϕ(x)− ϕ(y)| ≤ L||x− y||
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for all x, y then
Rn(ϕ ◦ F) ≤ LRn(F).

The set of margin functions is
M = {yf(x) : f ∈ conv(H)}.

We then have
Rn(M) = Rn(conv(H)) = Rn(H).

A key result is that, with probability at least 1− δ, for all f ∈ F ,

E[f(Z)] ≤ 1

n

∑
i

f(Zi) + 2Rn(F) +

√
2 log(1/δ)

n
. (2)

Now fix a number ρ and define the margin-sensitive loss function

ϕ(u) =


1 u ≤ 0

1− u
ρ 0 ≤ ρ

0 u ≥ ρ.

Note that
I(u ≤ 0) ≤ ϕ(u) ≤ I(u ≤ ρ).

Assume that H has VC dimension d. Then

Rn(ϕ ◦M) ≤ LRn(M) ≤ LRn(H) ≤ 1

ρ

√
2d log(en/d)

n
.

Now define the empirical margin sensitive loss of a classifer f by

R̂ρ =
1

n

∑
i

I(Yif(Xi) ≤ ρ).

Theorem. With probability at least 1− δ,

R(g) ≤ R̂ρ(g/||α||1) ≤
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.

Proof. Recall that I(u ≤ 0) ≤ ϕ(u) ≤ I(u ≤ ρ). Also recall that g and g̃ = g/||α||1 are equivalent classifiers. Then
using (2) we have

R(g) = R(g̃) = P (Y g̃(X) ≤ 0) ≤ 1

n

∑
i

ϕ(Yig̃(Xi)) + 2Rn(ϕ ◦M) +

√
2 log(2/δ)

n

≤ 1

n

∑
i

ϕ(Yig̃(Xi)) +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n

= R̂ρ(g/||α||1) +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.

Next we bound R̂ρ(g/||α||1).

Theorem. We have

R̂ρ(g/||α||1) ≤
T∏

t=1

√
4ϵ1−ρ

t (1− ϵt)1+ρ.
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Proof. Since ϕ(u) ≤ I(u ≤ ρ) we have

R̂ρ(g/||α||1) ≤
1

n

∑
i

I(Yig(Xi)− ρ||α||1 ≤ 0)

≤ eρ||α||1
1

n

∑
i

e−Yig(Xi)

= eρ||α||1
1

n

∑
i

nDT+1(i)
∏
t

Zt = eρ||α||1
∏
t

Zt

=

T∏
t=1

√
4ϵ1−ρ

t (1− ϵt)1+ρ

since Zt = 2
√
ϵt(1− ϵt) and αt = (1/2) log((1− ϵt)/ϵt).

Assuming γ ≤ (1/2− ϵt) and ρ < γ then it can be shown that
√
4ϵ1−ρ

t (1− ϵt)1+ρ ≡ b < 1. So R̂ρ(g/||α||1) ≤ bT .
Combining with the previous result we have, with probability at least 1− δ,

R(g) ≤ bT +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.

This shows that we get small error even with T large (unlike the earlier bound based only on VC theory).
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