
Linear Classifiers

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2024 1st semester

The lecture note is a minor modification of the lecture notes from Prof. Yongdai Kim’s “Statistical Machine
Learning”.Also, see Section 4 from [1].

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rp, so x = (x1, . . . , xp).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions F . This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).
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1.2 Bayes Classifier
For the classification so that y ∈ Y = {1, . . . , J}, the Expected Prediction Error (EPE) is

EPE(f) = E(Y,X)∼P [ℓ(Y, f(X))] = E [I(Y ̸= f(X))]

= EX

 J∑
j=1

ℓ(j, f(X))P (Y = j|X)

 .

Hence EPE(f) is minimized when

f0(x) = arg min
k=1,...,J

J∑
j=1

ℓ(j, k)P (Y = j|X = x).

For the classification, the most common loss is the 0-1 loss

ℓ(y, a) = I(y ̸= a).

And the optimal prediction function is

f0(x) = arg max
j=1,...,J

P (Y = j|X = x).

This optimal classifier is called Bayes rule / Bayes classifier (베이즈분류 / 베이즈모형), and the error rate is called
the Bayes risk (베이즈위험).

2 Linear Classifiers
We consider the K-class classification problem as

Y = {1, 2, . . . ,K}.

The loss function for classification is the 0-1 loss given as

l(y, a) = I(y ̸= a).

Let the classifier(분류기) G : Rp → Y be returning an output label given input. A decision boundary (결정 경계)
is the region of a problem space in which the output label of a classifier is ambiguous. In other words, A decision
boundary between class i and j is the set of points whose neighbor always intersect both regions classified as label
i and label j, i.e.,

{x ∈ Rp : for all r > 0, B(x, r) ∩G−1{i} ≠ ∅, B(x, r) ∩G−1{j} ≠ ∅},
where B(x, r) = {y ∈ Rp : ∥y − x∥2 < r} is the ball centered at x and radius r. And the decision boundary is the
union over all pairs i and j, i.e.,⋃

1≤i<j≤K

{x ∈ Rp : for all r > 0, B(x, r) ∩G−1{i} ≠ ∅, B(x, r) ∩G−1{j} ≠ ∅}.

Linear methods for classification assume that the decision boundary between class i and j is given as a subset
of an affine hyperspace

{x : β0 + x⊤β = 0}.
There are three approaches for linear classifier(선형 분류기):

• model joint probability distribution (결합확률분포) : Linear Discriminant Analysis (선형판별분석), Naive
Bayes Classifier (나이브 베이즈 분류기)

• model conditional density function P (class|X) : many classifier (분류기) based on regressions (회귀분석), in
particular, Logistic Classification (로지스틱 분류) using Logistic Regression (로지스틱 회귀)

• Maximize difference between differeng groups: perceptron (퍼셉트론), support vector machine (서포트 벡터
머신)

This class covers Linear Discriminant Analysis (선형판별분석) and Logistic Classification (로지스틱 분류).
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3 Logistic Classification (로지스틱 분류)
The logistic model assumes that for 1 ≤ k ≤ K − 1,

Pr(y = k|x) = exp(βk0 + x⊤βk)

1 +
∑K−1

l=1 exp(βl0 + x⊤βl)
,

and
Pr(y = K|x) = 1

1 +
∑K−1

l=1 exp(βl0 + x⊤βl)
.

In other words, βK0 = 0 and βK = 0, which is for identifiablity problem. The Bayes classifier is

G(x) = arg max
j=1,...,K

P (y = j|x).

Now, the decision boundary for i and j is a subset of where Pr(y = i|x) = Pr(y = j|x), and this is a hyperplane
defined as {

x ∈ Rp : (βi0 − βj0) + x⊤(βi − βj) = 0
}
.

Hence logistic classification is a linear classifier.
There are several ways to motivate logistic regression: for simplicity let Y = {1, 2}.
1. Consider a linear regression

Pr(y = 1|x) = β0 + x⊤β.

It violates that the constraint
Pr(y = 1|x) ∈ [0, 1].

A simple remedy for this problem is to set

Pr(y = 1|x) = F (β0 + x⊤β),

where F is a continuous and strictly increasing function with F (−∞) = 0 and F (∞) = 1. Some examples for F are:

• Gaussian: Probit model

• Gompertz: F (x) = exp(− exp(x)), popularly used in Insurance

• Logistic: F (x) = exp(x)/(1 + exp(x)).

2. Consider the decision boundary
{x : Pr(Y = 1|X = x) = 0.5}.

This is equivalent to
{x : log(Pr(Y = 1|X = x)/Pr(Y = 2|X = x)) = 0}.

Suppose that the log-odds is linear. That is,

log(Pr(Y = 1|X = x)/Pr(Y = 2|X = x)) = β0 + x⊤β,

and this implies that

Pr(Y = 1|X = x) =
exp(β0 + x⊤β)

1 + exp(β0 + x⊤β)
.

For the estimation, we use the maximum likelihood approach. The likelihood is simply the probability of the
observations given as

L(β0, β) =

n∏
i=1

Pr(y = yi|x = xi),

and we estimate β by maximizing the log-likelihood. For two-class case where Y = {1, 2}, the log-likelihood is
simplified as

l(β10, β1) =

n∑
i=1

(
I(yi = 1)(β10 + x⊤

i β1)− log(1 + exp(β10 + x⊤
i β1))

)
.

One obstacle of using the logistic regression would be computation since maximizing the log-likelihood is not
easy. We do it by using the Iteratively Reweighted Least Squares (IRLS) algorithm.
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4 Linear Discriminant Analysis (선형판별분석)
Let fj(x) is the class conditional density of x in class y = j where y ∈ Y = {1, . . . ,K}, i.e.,

fj(x) = p(x|y = j), j = 1, . . . ,K.

Let
πj = Pr(y = j), j = 1, . . . ,K,

be the prior probabilities, with
∑K

j=1 πj = 1. Recall that the Bayes classifier is

G(x) = arg max
j=1,...,K

P (Y = j|X = x).

Then Bayes theorem gives us

P (Y = j|X = x) =
fj(x)πj∑K
l=1 fl(x)πl

.

And hence the Bayes classifier is given as

G(x) = arg max
j=1,...,K

P (Y = j|X = x) = arg max
j=1,...,K

fj(x)πj .

Suppose that we model each class density as multivariate Gaussian

fj(x) =
1

(2π)p/2 |Σj |1/2
exp

(
−1

2
(x− µj)

⊤Σ−1
j (x− µj)

)
,

where µj is the mean vector and Σj is the covariance matrix. Then

log (fj(x)πj) = −1

2
log |Σj | −

1

2
(x− µj)

⊤Σ−1
j (x− µj) + log πj −

p

2
log(2π).

Hence by letting

δj(x) := −1

2
log |Σj | −

1

2
(x− µj)

⊤Σ−1
j (x− µj) + log πj ,

then the Bayes classifier is given as

G(x) = j such that δj(x) > δl(x) for all l ̸= j.

We call the functions δj(x) the discriminant functions.
For Linear Discriminant Analysis (LDA), we assume that

Σk = Σ for all k.

In this case, we can see that

log
P (Y = j|X = x)

P (Y = l|X = x)
= log

fj(x)

fl(x)
+ log

πj

πl

= log
πj

πl
− 1

2
(µj + µl)

⊤Σ(µj − µl) + x⊤Σ(µj − µl).

Hence the Bayes classifier is given as

G(x) = j such that δj(x) > δl(x) for all l ̸= j,

where
δj(x) := x⊤Σ−1µj −

1

2
µ⊤
j Σµj + log πj .

That is, the Bayes classifier is a linear classifier. The functions δj are called the linear discriminant functions. If we
don’t assume Σk = Σ for all k, then the decision boundary of the Bayes classifier is a quadratic function. This is
called Quadratic Discriminant Analysis (QDA).

We can easily estimate µj and Σj by
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• π̂j = nj/n, where nj =
∑n

i=1 I(yi = j).

• µ̂j =
∑n

i=1 xiI(yi = j)/nj .

• Σ̂j =
∑n

i=1(xi − µ̂j)(xi − µ̂j)
⊤I(yi = j)/(nj − 1).

And we estimate Σ by the pooled variance-covariance matrix

Σ̂ =
1

n−K

K∑
j=1

(nj − 1)Σ̂j .

5 LDA or Logistic Classification
• Logistic classification and LDA both have linear decision boundaries.

• Logistic classification only needs the specification of the conditional distribution Pr(Y = j|X = x), that is,
Pr(X = x) is completely undetermined. On the other hand, the LDA needs the specification of the joint
distribution Pr(Y,X). In fact, in LDA, the marginal distribution of x is a mixture of Gaussians

Pr(x) =

K∑
j=1

πjN(µj ,Σ).

Hence, LDA needs more assumptions and hence less applicability than the logistic regression.

• Categorical input variables are allowable for the logistic regression (using dummy variables) while LDA has
troubles with such inputs.

• However, LDA is a useful tool when some of the output are missing (semi-supervised learning).

• LDA is useful when Gaussian assumptions are reasonable.

• LDA works better for multi-class problems (K > 2).

• In practice, for a two-class problem, logistic classification and LDA are often very similar.

5.1 Multi-class problems with regression approach
There is a serious problem with the regression approach when the number of classes K ≥ 3, especially prevalent
when K is large. Because of the rigid nature of the regression model, classes can be masked by others. Figure 1
illustrates an extreme situation when K = 3. The three classes are perfectly separated by linear decision boundaries,
yet linear regression misses the middle class completely.

In Figure 2 we have projected the data onto the line joining the three centroids (there is no information in the
orthogonal direction in this case), and we have included and coded the three response variables Y1, Y2, and Y3.
The three regression lines (left panel) are included, and we see that the line corresponding to the middle class is
horizontal and its fitted values are never dominant! Thus, observations from class 2 are classified either as class 1 or
class 3. The right panel uses quadratic regression rather than linear regression. For this simple example a quadratic
rather than linear fit (for the middle class at least) would solve the problem, but in general, if K ≥ 3 classes are
lined up, polynomial terms up to degree K − 1 might be needed to resolve them.

Note: masking problem is severe in ordinary regression (that is, regress Y on X), but it is also present in logistic
regression as well. For tackling masking problem, LDA is better than logistic classification.
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Figure 1: The data come from three classes in R2 and are easily separated by linear decision boundaries. The right
plot shows the boundaries found by linear discriminant analysis. The left plot shows the boundaries found by linear
regression of the indicator response variables. The middle class is completely masked (never dominates). Figure 4.2
from [1].

Figure 2: The effects of masking on linear regression in IR for a three-class problem. The rug plot at the base
indicates the positions and class membership of each observation. The three curves in each panel are the fitted
regressions to the three-class indicator variables; for example, for the blue class, yblue is 1 for the blue observations,
and 0 for the green and orange. The fits are linear and quadratic polynomials. Above each plot is the training error
rate. The Bayes error rate is 0.025 for this problem, as is the LDA error rate. Figure 4.3 from [1].
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