
Model Selection and Assessment

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2024 1st semester

The lecture note is a minor modification of the lecture notes from Prof. Yongdai Kim’s “Statistical Machine
Learning”, and Prof Larry Wasserman and Ryan Tibshirani’s “Statistical Machine Learning”. Also, see Section 7
from [1].

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rp, so x = (x1, . . . , xp).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

1

1.2 Linear Regression
From the additive noise model

y = f(x) + ϵ, f ∈ M,

Linear Regression Model (선형회귀모형) is that

M = F =

β0 +

p∑
j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =

n∑
i=1

(yi − f(xi))
2

=

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂p) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

p∑
j=1

β̂jxj .

1.3 Overfitting and the Bias-Variance Tradeoff
In k-Nearest Neighbor, the neighbor size k determines the complexity of the prediction model. To choose k, if
we know the probability distribution (Y,X) ∼ P , then we can minimize the Expected Prediction Error (EPE,
평균예측오차 / 예측오차)

E(Y,X)∼P [ℓ(Y, f(X))] .

However, P is usually unknown. One way to estimate EPE is by Training Error (TE, 학습오차)

1

n

n∑
i=1

ℓ(Yi, f(Xi)),

where the training data T = {(Yi, Xi) : i = 1, . . . , n}.
However, training error always underestimates prediction error, since the same dataset T is used for estimating

the prediction model and estimating prediction error. Better estimation for the prediction error is the test error,
where the prediction error is computed on the separate test data. The typical behavior of the prediction error on
the test set is as in Figure 1. As the model becomes more complex, the prediction error first decreases but then
increases, while test error monotonically decreases. Hence, when the model is chosen according to the training error,
then the prediction error can be large: this is called overfitting. This phenomenon is explained by the bias-variance
tradeoff.

2 Introduction
• Suppose that we observe (X,Y) from some unknown joint distribution, and we want to predict Y from X.

Over all functions f , the expected prediction error, measured in terms of squared loss,

E
[(
Y − f(X)

)2]
is minimized at f(x) = E(Y |X = x). This is called the true regression function associated with the pair
(X,Y).

2

Figure 1: Test and training error as a function of model complexity. Figure 2.11 from [1].

• Now suppose that we observe training samples (x1, y1), . . . (xn, yn) i.i.d. from the same joint distribution as
(X,Y). We use these training samples to construct a prediction function f̂ ; this mimics f(x) = E(Y |X = x),
which is optimal but unknowable in practice. The expected prediction error, or expected test error, of f̂ is

E
[(
Y − f̂(X)

)2]
, (1)

where the expectation is over all that is random, namely, the training set (xi, yi), i = 1, . . . n and the test
point (X,Y)

• Why would we be interested in (1)? Here are two reasons:

1. Model assessment: sometimes we want to know how well we can predict a future observation, in absolute
terms

2. Model selection: often we want to choose between different prediction functions; this might mean choosing
between two different model classes entirely, or choosing an underlying tuning parameter for a single
method. In principle, we could do this by comparing expected test errors

• The expected test error in (1) has an important property: it decomposes into informative parts. But before
we show this, let’s think about a few points:

– Can we ever predict Y from X with zero error? Generally, no. Even the true regression function f cannot
generically do this, and will incur some error due to noise. We call this irreducible error

– What happens if our fitted function f̂ belongs to a model class that is far from the true regression function
f? E.g., we choose to fit a linear model in a setting where the true relationship is far from linear? As a
result, we encounter error, what we call estimation bias

– What happens if our fitted (random) function f̂ is itself quite variable? In other words, over different
copies of the training set, we end up constructing substantially different functions f̂? This is another
source of error, that we’ll call estimation variance

We’ll talk about the following methods: Cross-validation, AIC, BIC.
Perhaps the only slightly counter-intuitive fact you need to remember is that when there is a true model, methods

like cross-validation can fail to find it.
The basic take-aways are:

3

1. If your goal is prediction, you have a reasonable sample-size and you have a reasonable computation budget
use cross-validation.

2. If your goal is prediction, but you either have too small a sample or you have a very low computational budget,
you should consider using AIC.

3. If your goal is selecting the true model you should use BIC.

3 Statistical Prediction and the Bias-Variance Tradeoff, revisited
• More so than just these intuitive descriptions, the expected test error mathematically decomposes into a sum

of three corresponding parts. Begin by writing the model

Y = f(X) + ε,

where ε has mean zero, variance σ2, and is independent of X. Note that the independence condition is the
actual (nontrivial) assumption. Recall that (xi, yi), i = 1, . . . n are independent of each other and of (X,Y),
all with the same distribution. We’ll look at the expected test error, conditional on X = x for some arbitrary
input x. It follows that

E
[(
Y − f̂(x)

)2∣∣X = x
]
= σ2 + E

[(
f(x)− f̂(x)

)2]︸ ︷︷ ︸
Risk(f̂(x))

.

The first term σ2 is the irreducible error, or sometimes referred to as the Bayes error, and the second term is
called the risk, or mean squared error (MSE). The risk further decomposes into two parts, so that

E
[(
Y − f̂(x)

)2∣∣X = x
]
= σ2 +

(
f(x)− E[f̂(x)]

)2︸ ︷︷ ︸
Bias2(f̂(x))

+E
[(
f̂(x)− E[f̂(x)]

)2]︸ ︷︷ ︸
Var(f̂(x))

, (2)

the latter terms being the squared estimation bias or simply bias, and the estimation variance or simply vari-
ance, respectively. The decomposition (2) is called the bias-variance decomposition or bias-variance tradeoff

• From the bias-variance tradeoff (2), we can see that even if our prediction is unbiased, i.e., E[f̂(x)] = f(x),
we can still incur a large error if it is highly variable. Meanwhile, even when our prediction is stable and not
variable, we can incur a large error if it is badly biased. There is a tradeoff here, but it need it is really never
be one-to-one; e.g., in some cases, it can be worth sacrificying a little bit of bias to gain large decrease in
variance

• Typical trend: underfitting means high bias and low variance, overfitting means low bias but high variance.
E.g., think about k in k-nearest-neighbors regression: recall that, trained on (xi, yi), i = 1, . . . n, the k-nearest-
neighbors regression fit at an input point x is

f̂(x) =
1

k

∑
i∈Nk(x)

yi, (3)

where Nk(x) denotes the indices of the k training inputs closest to x. How do the bias and variance behave
for small k, and for large k?
Let’s consider the input training points x1, . . . xn all fixed (nonrandom) for simplicity. Then for the k-nearest-
neighbors fit f̂ ,

E
[(
Y − f̂(X)

)2∣∣X = x
]
= σ2 +

(
f(x)− 1

k

∑
i∈Nk(x)

f(xi)
)2

+
σ2

k
.

Hence we can explicitly see that as k increases, the variance decreases, and the bias (likely) increases. Note
that, for fixed x1, . . . xn, the k-nearest-neighbors fit f̂(x) in (3), at any input x, is just a linear function of
y1, . . . yn. This is an example of what is called a linear smoother, which we’ll discuss more later in Section 9

• Finally, unconditionally over X, the bias-variance decomposition reads

E
[(
Y − f̂(X)

)2]
= σ2 +

∫
Bias2(f̂(x))PX(dx) +

∫
Var(f̂(x))PX(dx),

where PX is the distribution of X (this follows from taking an expectation over X in (2)). In words, the
expected test error is the Bayes error + average (squared) bias + average variance

4

4 Training error and optimism
• Now that we have convinced ourselves that the expected test error (1) is a useful quantity, how do we

estimate it? Clearly if we had a test set (x′
1, y

′
1), . . . (x

′
m, y′m), independent of the training set and from the

same distribution, then the observed average test error

1

m

m∑
i=1

(
y′i − f̂(x′

i)
)2

would serve as an unbiased estimate for E[(Y − f̂(X))2]. But we are often not this fortunate to have test data

• What’s wrong with the average training error

1

n

n∑
i=1

(
yi − f̂(xi)

)2
?

This measures the squared error of f̂ around the data we used to fit it—the problem is that this will be,
generally speaking, far too optimistic. Why? Because we chose f̂ so that it fit well to the training data (xi, yi),
i = 1, . . . n, of course its error is going to look too small

• This rules out using the training error for the first purpose described above, model assessment. But if the
expected training error was systematically (always) different than the expected test error by the same amount,
then we could use it for the second purpose, model selection. E.g., if it the training error curve had the right
shape with k (but just not the right height), then we could still use it to choose k in k-nearest-neighbors
regression. Unforunately, this is essentially never the case; in almost all real examples, the training error curve
has both the wrong magnitude and the wrong shape. (What is the 1-nearest-neighbor training error?)

• The expected test and training errors can be linked in a useful way, if we again assume that fixed inputs, for
simplicity. That is, let (x1, y

′
1), . . . (xn, y

′
n) denote a test set, independent of and having the same distribution as

as (x1, y1), . . . (xn, yn). The inputs x1, . . . xn are fixed in both sets, and only the observations yi, y′i, i = 1, . . . n
are random, drawn according to

yi = f(xi) + ϵi, i = 1, . . . n,

y′i = f(xi) + ϵ′i, i = 1, . . . n,

all errors ϵi, ϵ
′
i, i = 1, . . . n i.i.d. with mean zero and variance σ2

In vector notation, write y, y′ ∈ Rn for the training and test observations, and write f̂ = (f̂(x1), . . . f̂(xn)) ∈ Rn

for the training fitted values. Then the expected test error is

1

n
E∥y′ − f̂∥22,

where the expectation is taken over y, y′. Now write f = (f(x1), . . . f(xn)) ∈ Rn, and decompose

1

n
E∥y′ − f̂∥22 =

1

n
E∥y′ − f + f − f̂∥22

= σ2 +
1

n
E∥f − f̂∥22

= 2σ2 +
1

n
E∥y − f̂∥22 +

2

n
E(f − y)T (y − f̂)

=
1

n
E∥y − f̂∥22 +

2

n
tr
(
Cov(y, f̂)

)
.

In other words, the optimism—difference in expected test and expected training errors—can be expressed as

1

n
E∥y′ − f̂∥22 −

1

n
E∥y − f̂∥22 =

2

n
tr
(
Cov(y, f̂)

)
=

2

n

n∑
i=1

Cov
(
yi, f̂(xi)

)
. (4)

So the higher the correlation between yi and its fitted value f̂(xi), the greater the optimism. We’ll see that in
many cases we can either evaluate or estimate the right-hand side above, which can be extremely useful

5

5 Degrees of freedom and unbiased risk estimation

• For f̂ = (f̂(x1), . . . f̂(xn)) ∈ Rn and the same setup as before—that is, x1, . . . xn considered fixed, and f̂
trained on (x1, y1), . . . (xn, yn)—the degrees of freedom of f̂ is defined as

df(f̂) =
1

σ2

n∑
i=1

Cov
(
yi, f̂(xi)

)
. (5)

Hence the optimism in (4) can be more succintly written as

1

n
E∥y′ − f̂∥22 −

1

n
E∥y − f̂∥22 =

2σ2

n
df(f̂). (6)

Intuitively, we can think of df(f̂) as the effective number of parameters used by the fit f̂ , a measure of
complexity of f̂ . A few simple examples that support this intuition:

– If f̂ = (y1, . . . yn), then df(f̂) = n

– If f̂(xi) = ȳ = 1
n

∑n
j=1 yj for each i = 1, . . . n, then df(f̂) = 1

– If f̂(xi) =
1
k

∑
j∈Nk(x)

yj for each i = 1, . . . n, then df(f̂) = n/k

• Suppose that we can compute the degrees of freedom of f̂ , or even more broadly, compute an unbiased estimate
d̂f(f̂), with the property

E[d̂f(f̂)] = df(f̂).

Then following from (6), the quantity

T̂ =
1

n
∥y − f̂∥22 +

2σ2

n
d̂f(f̂)

serves as unbiased estimate for the expected test error of f̂ , i.e.,

E(T̂) =
1

n
E∥y′ − f̂∥22

• Often times you will encounter this principle referred to in terms of unbiased risk estimation, since

R̂ = T̂ − σ2 =
1

n
∥y − f̂∥22 +

2σ2

n
d̂f(f̂)− σ2

serves as an unbiased estimate for the risk,

E(R̂) =
1

n
E∥f − f̂∥22

We’ll see how to explicitly compute degrees of freedom for linear smoothers, in Section 9. This is a suprisingly
broad class. Later in the course, we’ll see how to use Stein’s formula to compute unbiased estimates of degrees
of freedom in an even more general setting, too

• Note: all of the above assumes that σ2 is known, which is not realisic. In practice, we’d have to estimate it

• An example of how to use this for model selection: suppose that we were considering fitted models f̂θ indexed
by a parameter θ ∈ Θ; e.g., this could represent the number of neighbors k in k-nearest-neighbors regression.
Suppose also that had access to d̂f(f̂θ) at each value of θ. Then we could choose the parameter by minimizing
our test error estimate,

θ̂ = argminθ∈Θ

1

n
∥y − f̂θ∥22 +

2σ2

n
d̂f(f̂θ).

An important point to be aware of: while T̂ (f̂θ) =
1
n∥y − f̂θ∥22 + 2σ2

n d̂f(f̂θ) gives an unbiased estimate for the
expected test error at any fixed θ, we should anticipate that T̂ (f̂θ̂) is itself downward biased (optimistic) as
an estimate for the expected test error at θ̂. Why?

6

6 Cross-validation
• Cross-validation (CV) is quite a general tool for estimating the expected test error (1), that makes minimal

assumptions—i.e., it doesn’t assume that Y = f(X) + ε with ε independent of X, it doesn’t assume that the
training inputs x1, . . . xn are fixed, all it really assumes is that the training samples (x1, y1), . . . (xn, yn) are
i.i.d.

We split up our training set into K divisions or folds, for some number K; usually this is done randomly. Write
these as F1, . . . FK , so F1 ∪ . . . ∪ FK = {1, . . . n}. Now for each k = 1, . . .K, we fit our prediction function on
all points but those in the kth fold, denoted f̂−(k), and evaluate squared errors on the points in the kth fold,

CVk(f̂
−(k)) =

1

nk

∑
i∈Fk

(
yi − f̂−(k)(xi)

)2
.

Here nk denotes the number of points in the kth fold, nk = |Fk|. We average these fold-based errors to yield
an estimate of the expected test error,

CV(f̂) =
1

K

K∑
k=1

CVk(f̂
−(k)). (7)

This is called K-fold cross-validation; the special case when K = n is referred to as leave-one-out cross-
validation

• What is the difference between choosing say K = 5 (a common choice) versus K = n?

– When K = 5, the function f̂−(k) in each fold k is fit on about 4/5 · n samples, and so we are looking at
the errors incurred by a procedure that is trained on less data than the full f̂ in (1). Therefore the mean
of the CV estimate (7) could be off. When K = n, this is not really an issue, since each f−(k) is trained
on n− 1 samples

– When K = n, the CV estimate (7) is an average of n extremely correlated quantities; this is because each
f̂−(k) and f̂−(ℓ) are fit on n − 2 common training points. Hence the CV estimate will likely have very
high variance. When K = 5, the CV estimate will have lower variance, since it the average of quantities
that are less correlated, as the fits f̂−(k), k = 1, . . . 5 do not share as much overlapping training data

This is tradeoff (the bias-variance tradeoff, in fact!). Usually, a choice like K = 5 or K = 10 is more common
in practice than K = n, but this is probably an issue of debate

• For K-fold CV, it’s can be helpful to assign a notion of variability to the CV error estimate. We argue that

Var
(
CV(f̂)

)
= Var

(1

K

K∑
k=1

CVk(f̂
−(k))

)
≈ 1

K
Var(CV1(f̂

−(1))). (8)

Why is this an approximation? This would hold exactly if CV1(f̂
−(1)), . . .CVK(f̂−(K)) were i.i.d., but they’re

not. This approximation is valid for small K (e.g., K = 5 or 10) but not really for big K (e.g., K = n),
because then the quantities CV1(f̂

−(1)), . . .CVK(f̂−(K)) are highly correlated

• For small K (e.g., K = 5 or 10), we can leverage (8) to get an estimate of the variance of the CV error
estimate. We just use the sample variance appropriately, so that

1

K

K∑
k=1

(
CVk(f̂

−(k))− CV(f̂)
)2

is our estimate of the variance of CV(f̂)

• We can use this variance estimate to draw approximate standard deviation bands around a CV error curve,
and this leads to model selection heuristics like the one-standard-error rule. That is, the usual rule for selecting
a parameter θ in a family of fitted models f̂θ, θ ∈ Θ would be to minimize the CV error:

θ̂ = argminθ∈Θ CV(f̂θ).

7

The one-standard-error rule, instead, chooses the simplest model that is within one standard error (i.e., one
standard deviation) of the minimum CV error. How to measure simplicity? Well, degrees of freedom is one
way to do so! Often, the parametrization f̂θ will be such that df(f̂θ) behaves monotonically with θ; e.g., in
k-nearest-neighbors, the degrees of freedom increases as k increases (in fact, it equals k). When df(f̂θ) is
monotone increasing with θ, the one-standard-error rule can be written as

θ̃ = min
{
θ ∈ Θ : CV(f̂θ) ≤ CV(f̂θ̂) + SE(f̂θ̂)

}
,

where SE(f̂θ) denotes our estimate of the standard deviation of CV(f̂θ), as explained above. Just to be
perfectly clear, this is

SE(f̂θ) =
1√
K

[K∑
k=1

(
CVk(f̂

−(k)
θ)− CV(f̂θ)

)2
]1/2

6.1 Cross-validation with KL divergence
For comparing CV, AIC and BIC, we use KL divergence instead of ℓ2 loss. KL divergence between two densities p
and q is defined as

KL(p, q) =

∫
p(x) log

(
p(x)

q(x)

)
dx.

Suppose we find the mle θ̂j for model Mj . Let p be the true density of Y and pj = p(·; θ̂j) be the estimated density
of Y from model Mj . The idea is to choose j which minimizes K(p, pj), i.e.,

ĵ = argminjKL(p, pj).

Notice that minimizing K(p, pj) is the same as maximizing

Rj =

∫
p(x) log pj(x)dx.

For K-fold cross validation, we can estimate Rj from calculating from all points but those in the kth fold and
averaging them as

CV(f̂) =
1

K

K∑
k=1

1

nk

∑
i∈Fk

log p(xi; θ̂
−(k)
j).

7 AIC
Suppose we don’t want to use data-splitting because of lack of data or lack of computational resources. We could
try to estimate Rj by

R̂j =
1

n

∑
i

log p(xi; θ̂j) = (1/n)ℓj(θ̂j).

But, as we discussed above, this is very biased. And the more parameters there are, ther more biased this will
be. Akaike proved that the bias is approximately equal to dj/n where dj is the dimension of the model Mj . So a
bias-adjusted estimator is

R̂j = (1/n)[ℓj(θ̂j)− dj].

For a variety of historical reasons, we will multiple by 2n which does not affect which model is the maximizer. This
leads to the criterion

AICj = 2ℓj(θ̂j)− 2dj .

We choose j to maximize AICj . It is best to think of this as an approximation to CV.

8

8 BIC
The BIC crierion is

BICj = 2ℓj(θ̂j)− dj log n.

This is basically AIC but with a harsher penalty. This approach was proposed by Gideon Schwartz based on the
following Bayesian argument. We place prior probabilities ν1, . . . , νk for each model. Then we put priors pj(θj) for
the parameters in model Mj . By Bayes’ theorem

p(Mj |X1, . . . , Xn) =
p(X1, . . . , Xn|Mj)νj∑
s p(X1, . . . , Xn|Ms)νs

=
νj

∫
Lj(θj)dθj∑

s νs
∫
Ls(θs)dθs

.

Schwartz showed that
log p(Mj |X1, . . . , Xn) ≈ BICj .

Suppose that the true density is in one of the models. Let Mj be the smallest model that contains p. Then it can
be shown that ĵ

P→ j where ĵ is the model chosen by BIC.

9 Linear smoothers
• Consider a prediction function f̂ trained on (xi, yi), i = 1, . . . n, that can be written as

f̂(x) =

n∑
i=1

wi(x)yi = w(x)T y.

Here the weights wi(x), i = 1, . . . n are allowed to depend on the query point x and x1, . . . xn. With x1, . . . xn

considered fixed, this just a linear function of y1, . . . yn, and therefore such a function f̂ is called a linear
smoother

• We saw that the k-nearest-neighbor regression fit is a linear smoother, but so are many other interesting
examples. We’ll see a lot more in the the nonparametric regression lectures, but e.g., both linear regression
and ridge regression are examples of linear smoothers. In these cases, each xi ∈ Rp, i = 1, . . . n, and we write
X ∈ Rn×p as the matrix whose ith row is xi. Then for linear regression of y on X,

f̂(x) = xT β̂ = xT (XTX)−1XT y,

and for ridge regression of y on X, with tuning parameter λ ≥ 0,

f̂(x) = xT β̂λ = xT (XTX + λI)−1XT y

• A linear smoother produces fitted values µ̂ = (f̂(x1), . . . f̂(xn)) of the form

µ̂ = Sy

for a matrix S ∈ Rn×n, whose ith row is wi(x). Just to emphasize, the matrix S can depend on x1, . . . xn, and
also on external quantities like a tuning parameter, but it cannot depend on y = (y1, . . . yn). E.g., for linear
regression, S = X(XTX)−1XT , and for ridge regression, S = X(XTX + λI)−1XT

• It turns out that a lot of specific things can be said about linear smoothers. The degrees of freedom of a linear
smoother is easily computed:

df(f̂) =
1

σ2
tr
(
Cov(y, ŷ)

)
= tr(S),

with tr(S) denoting the trace of the smoother matrix S. For linear regression, this turns out to be tr(X(XTX)−1XT) =
p, and for ridge regression, this is tr(X(XTX + λI)−1XT) < p when λ > 0.

9

9.1 Cross-validation
K-fold cross-validation can be used to estimate the prediction error and choose tuning parameters.

For linear smoothers µ̂ = (f̂(x1), . . . f̂(xn)) = SY , leave-one-out cross-validation can be particularly appealing
because in many cases we have the seemingly magical reduction

CV(f̂) =
1

n

n∑
i=1

(
Yi − f̂−(i)(Xi)

)2
=

1

n

n∑
i=1

(
Yi − f̂(Xi)

1− Sii

)2

, (9)

where f̂−(i) denotes the estimated regression function that was trained on all but the ith pair (Xi, Yi). This leads to
a big computational savings since it shows us that, to compute leave-one-out cross-validation error, we don’t have
to actually ever compute f̂−(i), i = 1, . . . , n.

Why does (9) hold, and for which linear smoothers µ̂ = Sy? Just rearranging (9) perhaps demystifies this
seemingly magical relationship and helps to answer these questions. Suppose we knew that f̂ had the property

f̂−(i)(Xi) =
1

1− Sii

(
f̂(Xi)− SiiYi

)
. (10)

That is, to obtain the estimate at Xi under the function f̂−(i) fit on all but (Xi, Yi), we take the sum of the linear
weights (from our original fitted function f̂) across all but the ith point, f̂(Xi)− SiiYi =

∑
i ̸=j SijYj , and then

renormalize so that these weights sum to 1.
This is not an unreasonable property; e.g., we can immediately convince ourselves that it holds for kernel

smoothing. A little calculation shows that it also holds for smoothing splines (using the Sherman-Morrison update
formula).

From the special property (10), it is easy to show the leave-one-out formula (9). We have

Yi − f̂−(i)(Xi) = Yi −
1

1− Sii

(
f̂(Xi)− SiiYi

)
=

Yi − f̂(Xi)

1− Sii
,

and then squaring both sides and summing over n gives (9).
Finally, generalized cross-validation is a small twist on the right-hand side in (9) that gives an approximation

to leave-one-out cross-validation error. It is defined as by replacing the appearances of diagonal terms Sii with the
average diagonal term tr(S)/n,

GCV(f̂) =
1

n

n∑
i=1

(
Yi − f̂(Xi)

1− tr(S)/n

)2

= (1− ν/n)−2R̂

where ν is the effective degrees of freedom and R̂ is the training error. This can be of computational advantage in
some cases where tr(S) is easier to compute than individual elements Sii.

10 What to do?
The derivations of AIC and BIC depend on many technical assumptions about the model. CV does not depend on
any model assumptions. For this reason, CV is the better choice if it is feasible.

A difficult problem that we have not considered is how to account for model selection when doing inference.
This is a complicated topic. The simplest think, if we have lots of data, is to keep some hold out data. After model
selection, we use the hold out data which is not affected by the model selection process.

Another issue that we have not considered is interpretability. Getting good predictions is not the only goal. We
might be willing to sacrice a bit of prediction accuracy to have a more interpretable model. This is an area of active
research.

References
[1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning. Springer Series

in Statistics. Springer, New York, second edition, 2009. Data mining, inference, and prediction.

10

