
Shrinkage methods

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2024 1st semester

The lecture note is a minor modification of the lecture notes from Prof. Yongdai Kim’s “Statistical Machine
Learning”, and Prof Larry Wasserman and Ryan Tibshirani’s “Statistical Machine Learning”. Also, see Section 3
from [11].

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rp, so x = (x1, . . . , xp).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions F . This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F
1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).
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1.2 Linear Regression
From the additive noise model

y = f(x) + ϵ, f ∈ F ,

Linear Regression Model (선형회귀모형) is that

F =

β0 +

p∑
j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =

n∑
i=1

(yi − f(xi))
2

=

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂p) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

p∑
j=1

β̂jxj .

2 Introduction
When the dimension of input is large (e.g. larger than the sample size), there are lots of problems in applying simple
methods (e.g. least square method). Twontorious problems in high dimensional problems are

• Multicollinearity : Some input variables are highly correlated. For example, when the dimension of input is
large than the sample size, the least square estimator is not unique.

• Overfitting: A model with too many input variables may be sub-optimal when the true model is sparse ( a
response variable depends only on a small number of input variables).

Possible remedies are:

• Variable selection: Best Subset Selection (최적부분집합선택)

• Shrinkage methods: Ridge Regression (능선회귀), Lasso (라쏘), SCAD

• Dimension reduction techniques: Principal component regression, Partial least square (not covered in the class.
See the text book).

We consider the best subset also as a shrinkage method, and covers Best subset selection, Ridge regression, Lasso.

3 Regularization
How do we deal with such issues? The short answer is regularization. In our present setting, we would modify the
least squares estimator in one of two forms:

min
β∈Rp

∥y −Xβ∥22 s.t. β ∈ C (Constrained form)

min
β∈Rp

∥y −Xβ∥22 + P (β) (Penalized form)

where C is some (typically convex) set, and P (·) is some (typically convex) penalty function. At its core, regular-
ization provides us with a way of navigating the bias-variance tradeoff: we (hopefully greatly) reduce the variance
at the expense of introducing some bias.
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3.1 Three norms: ℓ0, ℓ1, ℓ2
In terms of regularization, we typically choose the constraint set C to be a sublevel set of a norm (or seminorm),
and equivalently, the penalty function P (·) to be a multiple of a norm (or seminorm).

Let’s consider three canonical choices: the ℓ0, ℓ1, and ℓ2 norms:

∥β∥0 =

p∑
j=1

1{βj ̸= 0}, ∥β∥1 =

p∑
j=1

|βj |, ∥β∥2 =

( p∑
j=1

β2
j

)1/2

.

(Truthfully, calling it “the ℓ0 norm” is a misnomer, since it is not a norm: it does not satisfy positive homogeneity,
i.e., ∥aβ∥0 ̸= a∥β∥0 whenever a ̸= 0, 1.)

In constrained form, this gives rise to the problems:

min
β∈Rp

∥y −Xβ∥22 s.t. ∥β∥0 ≤ k (Best subset selection) (1)

min
β∈Rp

∥y −Xβ∥22 s.t. ∥β∥1 ≤ s (Lasso regression) (2)

min
β∈Rp

∥y −Xβ∥22 s.t. ∥β∥22 ≤ s (Ridge regession) (3)

where k, s ≥ 0 are tuning parameters. Note that it makes sense to restrict k to be an integer; in best subset selection,
we are quite literally finding the best subset of variables of size k, in terms of the achieved training error

Though it is likely the case that these ideas were around earlier in other contexts, in statistics we typically
subset selection to [1, 12], ridge regression to [13], and the lasso to [15, 6]

In penalized form, the use of ℓ0, ℓ1, ℓ2 norms gives rise to the problems:

min
β∈Rp

1

2
∥y −Xβ∥22 + λ∥β∥0 (Best subset selection) (4)

min
β∈Rp

1

2
∥y −Xβ∥22 + λ∥β∥1 (Lasso regression) (5)

min
β∈Rp

1

2
∥y −Xβ∥22 + λ∥β∥22 (Ridge regression) (6)

with λ ≥ 0 the tuning parameter. In fact, problems (2), (5) are equivalent. By this, we mean that for any s ≥ 0 and
solution β̂ in (2), there is a value of λ ≥ 0 such that β̂ also solves (5), and vice versa. The same equivalence holds
for (3), (6). (The factors of 1/2 multiplying the squared loss above are inconsequential, and just for convenience)

It means, roughly speaking, that computing solutions of (2) over a sequence of t values and performing cross-
validation (to select an estimate) should be basically the same as computing solutions of (5) over some sequence of
λ values and performing cross-validation (to select an estimate). Strictly speaking, this isn’t quite true, because the
precise correspondence between equivalent s, λ depends on the data X, y

Notably, problems (1), (4) are not equivalent. For every value of λ ≥ 0 and solution β̂ in (4), there is a value of
k ≥ 0 such that β̂ also solves (1), but the converse is not true.

3.2 A Toy Example
It is helpful to first consider a toy example. Let Y = (Y1, . . . , Yp)

⊤ ∈ Rp be a random sample from Np(µ, σ
2I).

Note that the MLE of µ is Y. When p ≤ 2, Y is the best estimator. However, when p ≥ 3, surprisingly, Y is
sub-optimal.

A better estimator can be constructed by shrinking Y toward 0 as follows. In fact, the James-Stein estimator
given as

δJS =

(
1− (p− 2)σ2∑p

i=1 Y
2
i

)
Y

is better than Y . Note that
∥∥δJS∥∥ ≤ ∥Y ∥. The expected prediction risk of Y for L2 loss is

E
[
∥Y − µ∥22

]
= pσ2,

while the expected prediction risk of δJS for L2 loss is

E
[∥∥δJS − µ

∥∥2
2

]
= pσ2 − (p− 2)2σ2E

[
1

∥Y ∥22

]
.
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See TPE, Example 7.1. So the efficiency gain of J-S over the MLE is substantial when p is large.
Let’s consider the three different estimators we get using the following three different loss functions:

1

2
∥Y − µ∥22 + λ ∥µ∥0 ,

1

2
∥Y − µ∥22 + λ ∥µ∥1 ,

1

2
∥Y − µ∥22 + λ ∥µ∥22 .

You should verify that the solutions can be obtained coordinate-wise, and are given as

µ̂i = H(Yi;
√
2λ), µ̂i = S(Yi;λ), µ̂i =

Yi

1 + 2λ

where H(y; a) = yI(|y| > a) is the hard-thresholding operator, and

S(y; a) =


y − a if y > a

0 if − a ≤ y ≤ a

y + a if y < a.

Hard thresholding creates a “zone of sparsity” but it is discontinuous. Soft thresholding also creates a “zone of
sparsity” but it is scontinuous. The L2 loss creates a nice smooth estimator but it is never sparse. (You can verify
the solution to the L1 problem using sub-differentials if you know convex analysis, or by doing three cases separately:
µ > 0, µ = 0, µ < 0.)

3.3 Sparsity
The best subset selection and the lasso estimators have a special, useful property: their solutions are sparse, i.e., at
a solution β̂ we will have β̂j = 0 for many components j ∈ {1, . . . , p}. In problem (1), this is obviously true, where
k ≥ 0 controls the sparsity level. In problem (2), it is less obviously true, but we get a higher degree of sparsity the
smaller the value of s ≥ 0. In the penalized forms, (4), (5), we get more sparsity the larger the value of λ ≥ 0

This is not true of ridge regression, i.e., the solution of (3) or (6) generically has all nonzero components, no
matter the value of t or λ. Note that sparsity is desirable, for two reasons: (i) it corresponds to performing variable
selection in the constructed linear model, and (ii) it provides a level of interpretability (beyond sheer accuracy)

That the ℓ0 norm induces sparsity is obvious. But, why does the ℓ1 norm induce sparsity and not the ℓ2 norm?
There are different ways to look at it; let’s stick with intuition from the constrained problem forms (2), (5). Figure
1 shows the “classic” picture, contrasting the way the contours of the squared error loss hit the two constraint sets,
the ℓ1 and ℓ2 balls. As the ℓ1 ball has sharp corners (aligned with the coordinate axes), we get sparse solutions

Intuition can also be drawn from the orthogonal case. When X is orthogonal, it is not hard to show that the
solutions of the penalized problems (4), (5), (6) are

β̂subset = H√
2λ(X

T y), β̂lasso = Sλ(X
T y), β̂ridge =

XT y

1 + 2λ

respectively, where Hs(·), Ss(·) are the componentwise hard- and soft-thresholding functions at the level s. We see
several revealing properties: subset selection and lasso solutions exhibit sparsity when the componentwise least
squares coefficients (inner products XT y) are small enough; the lasso solution exihibits shrinkage, in that large
enough least squares coefficients are shrunken towards zero by λ; the ridge regression solution is never sparse and
compared to the lasso, preferentially shrinkage the larger least squares coefficients even more

3.4 Convexity
The lasso and ridge regression problems (2), (3) have another very important property: they are convex optimization
problems. Best subset selection (1) is not, in fact it is very far from being convex. Consider using the norm ||β||p as
a penalty. Sparsity requires p ≤ 1 and convexity requires p ≥ 1. The only norm that gives sparsity and convexity is
p = 1. The appendix has a brief review of convexity.

4 Variable Selection
• For given k ≤ p, choose k many input variables, with which the residual mean square error is minimized

among all models having k many input variables. Denote this model Mk.
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3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)
|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β̂2
. .β

1

β 2

β
1

β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.

Figure 1: The “classic” illustration comparing lasso and ridge constraints. From Figure 3.11 of [11].

• Select the optimal model among M0, . . . ,Mp. (we will see this later in Model selection.)

• The complexity of the model is proportional to k.

• If p is very large (say, larger than 40), this approach (all possible search) becomes computationally infeasible.

• An alternative is forward selection, backward elimination and stepwise.

• Variable selection methods are known to be unstable.

• “Unstable” means that small change of data results in large change of the estimator.

• This is because variable selection uses a hard decision rule (survive or die).

• The instability causes sub-optimal prediction accuracy.

• See “Breiman (1996). Heuristics of instability and stabilization in model selection, Annals of Statistics, 24,
2350-2383”.

• Shrinkage methods are promising alternatives.

4.1 Theory For Subset Selection
Despite its computational intractability, best subset selection has some attractive risk properties. A classic result is
due to [8], on the in-sample risk of best subset selection in penalized form (4), which we will paraphrase here. First,
we raise a very simple point: if A denotes the support (also called the active set) of the subset selection solution β̂
in (4)—meaning that β̂j = 0 for all j /∈ A, and denoted A = supp(β̂)—then we have

β̂A = (XT
AXA)

−1XT
Ay,

β̂−A = 0.
(7)

Here and throughout we write XA for the columns of matrix X in a set A, and xA for the components of a vector x
in A. We will also use X−A and x−A for the columns or components not in A. The observation in (7) follows from
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Figure 2: All possible subset models for the prostate cancer example. At each subset size is shown the residual
sum-of-squares for each model of that size. Figure 3.5 from [11].
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the fact that, given the support set A, the ℓ0 penalty term in the subset selection criterion doesn’t depend on the
actual magnitudes of the coefficients (it contributes a constant factor), so the problem reduces to least squares.

Now, consider a standard linear model as with X fixed, and ϵ ∼ N(0, σ2I). Suppose that the underlying
coefficients have support S = β̂(β0), and s0 = |S|. Then, the estimator given by least squares on S, i.e.,

β̂oracle
S = (XT

S XS)
−1XT

S y,

β̂oracle
−S = 0.

is is called oracle estimator, and as we know from our previous calculations, has in-sample risk

1

n
∥Xβ̂oracle −Xβ0∥22 = σ2 s0

n
.

[8] consider this setup, and compare the risk of the best subset selection estimator β̂ in (4) to the oracle risk of
σ2s0/n. They show that, if we choose λ ≍ σ2 log p, then the best subset selection estimator satisfies

E∥Xβ̂ −Xβ0∥22/n
σ2s0/n

≤ 4 log p+ 2 + o(1), (8)

as n, p → ∞. This holds without any conditions on the predictor matrix X. Moreover, they prove the lower bound

inf
β̂

sup
X,β0

E∥Xβ̂ −Xβ0∥22/n
σ2s0/n

≥ 2 log p− o(log p),

where the infimum is over all estimators β̂, and the supremum is over all predictor matrices X and underlying
coefficients with ∥β0∥0 = s0. Hence, in terms of rate, best subset selection achieves the optimal risk inflation over
the oracle risk.

Returning to what was said above, the kicker is that we can’t really compute the best subset selection estimator
for even moderately-sized problems. As we will in the following, the lasso provides a similar risk inflation guarantee,
though under considerably stronger assumptions.

Lastly, it is worth remarking that even if we could compute the subset selection estimator at scale, it’s not
at all clear that we would want to use this in place of the lasso. (Many people assume that we would.) We must
remind ourselves that theory provides us an understanding of the performance of various estimators under typically
idealized conditions, and it doesn’t tell the complete story. It could be the case that the lack of shrinkage in the
subset selection coefficients ends up being harmful in practical situations, in a signal-to-noise regime, and yet the
lasso could still perform favorably in such settings.

Update. Some nice recent work in optimization [2] shows that we can cast best subset selection as a mixed
integer quadratic program, and proposes to solve it (in general this means approximately, though with a certified
bound on the duality gap) with an industry-standard mixed integer optimization package like Gurobi. However, in
a recent paper, Hastie, Tibshirani and Tibshirani (arXiv:1707.08692) show that best subset selection does not do
well statistically unless there is an extremely high signal to noise ratio.

5 Ridge Regression
We bring (3) and (6) here: Definition of Ridge estimator is

βridge = argmin

n∑
i=1

(
yi − β0 −

p∑
k=1

xikβk

)2

subject to
p∑

k=1

β2
k ≤ s,

or equivalently,

βridge = argmin

n∑
i=1

(
yi − β0 −

p∑
k=1

xikβk

)2

+ λ

p∑
k=1

β2
k. (9)

There is one-to-one correspondence between s and λ by Lagrange method. s (or λ) controls the complexity of
the model, so the parameter s or λ is called the regularization parameter. If s = 0, the model includes only the
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intercept term while the model becomes the full model when s = ∞. The selection of this parameter is the same as
model selection. We will learn it later.

The ridge estimator was proposed by [13] to resolve the problem of the least square estimator when p > n.
Recall that the least square estimator is given as

β̂ = (X⊤X)−1X⊤Y

where X = (x1, . . . , xn)
⊤ and Y = (y1, . . . , yn)

⊤. When p > n, (X⊤X)−1 does not exist. The initial motivation of
the ridge estimator is to replace (X⊤X)−1 by (X⊤X + λI)−1. Note that the ridge estimator is the solution of (9).

We can extend the ridge estimator for logistic regression easily by

βridge = argmin

n∑
i=1

(
yi(β0 + x⊤

i β)− log(1 + exp(β0 + x⊤
i β))

)2
+ λ

p∑
k=1

β2
k,

with the computation again using the Iteratively Reweighted Least Squares (IRLS) algorithm.

5.1 Bayesian justification
Assume that

Y = Xβ + ϵ,

where
ϵ ∼ Nn(0, σ

2I).

A priori, we assume
β ∼ Np(0, τ

2I).

Then we can easily see that the log posterior of β is equal to (up to constant)

n∑
i=1

1

2σ2

(
yi − β0 −

p∑
k=1

xkβk

)2

+
1

2τ2

p∑
k=1

β2
k.

Hence, the ridge estimator is the maximum a posteriori (MAP) estimator with λ = τ2/σ2. In fact, any estimators
based on Bayesian methods are shirnkage estimators (shrinkage toward a prior).

6 LASSO
A disadvantage of the ridge regression is that the interpretation is not easy since all input variables are used. A
question is whether we can do selection and shrinkage at the same time. Surprisingly, it is possible. The first of such
methods is LASSO (Least Absolute Shrinkage and Selection Operator), firstly proposed by [15].

We bring (2) and (5) here: LASSO estimates β by

βLASSO = argmin

n∑
i=1

(
yi − β0 −

p∑
k=1

xikβk

)2

subject to
p∑

k=1

|βk| ≤ s,

or equivalently,

βLASSO = argmin

n∑
i=1

(
yi − β0 −

p∑
k=1

xikβk

)2

+ λ

p∑
k=1

|βk| .

The only difference to ridge is the penalty function. We can say that the l1 penalty is used in LASSO while the
l2 penalty is used in Ridge. This seemingly tiny difference makes qualitative gaps practically as well as theoretically.
As we have seen above, one very interesting property of LASSO is that the predictive model is sparse (i.e. some
coefficients are exactly 0).

We can see that a key property of sparse penalty function is that it is nondifferentiable around 0. That is, for
sparse learning, we need to optimize a nondifferentiable objective function. Hence, standard numerical optimization
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methods such as gradient descent and Newton-Raphson can not be applied directly. Since LASSO was proposed
firstly, optimization issue has been one of the hottest issues in statistics and machine learning society.

Roughly speaking, there are three algorithms, one based on the QP, the second based on angle, and the last one
based on gradient descent.

The optimization problem of LASSO can be written as

minimize
n∑

i=1

l(yi, x
⊤
i β)

subject to
p∑

j=1

|βj | ≤ s.

When l(y, a) = (y− a)2, this is a quadratic programming problem with linear constraints, and so we can apply any
QP algorithm, which was done by [15].

Later, Osborne (2000a, 2000b), Efron et al. (2004) and Rosset and Zhu (2007) developed more efficient algo-
rithms.

Now we turn to subgradient optimality (sometimes called the KKT conditions) for the lasso problem in (5).
They tell us that any lasso solution β̂ must satisfy

XT (y −Xβ̂) = λs, (10)

where s ∈ ∂∥β̂∥1, a subgradient of the ℓ1 norm evaluated at β̂. Precisely, this means that

sj ∈


{+1} β̂j > 0

{−1} β̂j < 0

[−1, 1] β̂j = 0,

j = 1, . . . , p. (11)

From (10) we can read off a straightforward but important fact: even though the solution β̂ may not be uniquely
determined, the optimal subgradient s is a function of the unique fitted value Xβ̂ (assuming λ > 0), and hence is
itself unique.

Now from (11), note that the uniqueness of s implies that any two lasso solutions must have the same signs
on the overlap of their supports. That is, it cannot happen that we find two different lasso solutions β̂ and β̃
with β̂j > 0 but β̃j < 0 for some j, and hence we have no problem interpretating the signs of components of lasso
solutions.

Let’s assume henceforth that the columns of X are in general position (and we are looking at a nontrivial
end of the path, with λ > 0), so the lasso solution β̂ is unique. Let A = supp(β̂) be the lasso active set, and let
sA = sign(β̂A) be the signs of active coefficients. From the subgradient conditions (10), (11), we know that

XT
A(y −XAβ̂A) = λsA,

and solving for β̂A gives
β̂A = (XT

AXA)
−1(XT

Ay − λsA),

β̂−A = 0
(12)

(where recall we know that XT
AXA is invertible because X has columns in general position). We see that the active

coefficients β̂A are given by taking the least squares coefficients on XA, (XT
AXA)

−1XT
Ay, and shrinking them by an

amount λ(XT
AXA)

−1sA. Contrast this to, e.g., the subset selection solution in (7), where there is no such shrinkage.
Now, how about this so-called shrinkage term (XT

AXA)
−1XT

Ay? Does it always act by moving each one of the least
squares coefficients (XT

AXA)
−1XT

Ay towards zero? Indeed, this is not always the case, and one can find empirical
examples where a lasso coefficient is actually larger (in magnitude) than the corresponding least squares coefficient
on the active set. Of course, we also know that this is due to the correlations between active variables, because
when X is orthogonal, as we’ve already seen, this never happens.

On the other hand, it is always the case that the lasso solution has a strictly smaller ℓ1 norm than the least
squares solution on the active set, and in this sense, we are (perhaps) justified in always referring to (XT

AXA)
−1XT

Ay
as a shrinkage term. To see this, note that, for any vector b, ||b||1 = sT b where s is the vector of signs of b. So
||β̂||1 = sT β̂ = sTAβ̂A and so

∥β̂∥1 = sTA(X
T
AXA)

−1XT
Ay − λsTA(X

T
AXA)

−1sA < ∥(XT
AXA)

−1XT
Ay∥1. (13)

The first term is less than or equal to ∥(XT
AXA)

−1XT
Ay∥1, and the term we are subtracting is strictly negative

(because (XT
AXA)

−1 is positive definite).
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7 Theoretical analysis of the lasso

7.1 Slow rates
There has been an enormous amount theoretical work analyzing the performance of the lasso. Some references
(warning: a highly incomplete list) are [10, 9, 7, 5, 14, 17, 4, 16]; a helpful text for these kind of results is [3].

We begin by stating what are called slow rates for the lasso estimator. Most of the proofs are simple enough
that they are given below. These results don’t place any real assumptions on the predictor matrix X, but deliver
slow(er) rates for the risk of the lasso estimator than what we would get under more assumptions, hence their name.

First, note the maximal Gaussian inequality:

Lemma. Suppose we have random variables X1, . . . , Xp with Xj ∼ N(0, σ2), but Xj’s are not necessarily indepen-
dent. Then

P

(
max

i=1,...,p
|Xj | ≥ t

)
≤ 2p exp

(
− t2

2σ2

)
,

or equivalently, with probability 1− δ,
max

i=1,...,p
|Xj | ≤ σ

√
2 log(2p/δ).

The Gaussian condition Xj ∼ N(0, σ2) can be relaxed to the subgaussian condition.
We will assume the standard linear model with X fixed, and ϵ ∼ N(0, σ2). We will also assume that ∥Xj∥22 ≤ n,

for j = 1, . . . , p. That the errors are Gaussian can be easily relaxed to sub-Gaussianity.

Theorem. Suppose the linear model Y = Xβ0+ ϵ with ϵi i.i.d. from N(0, σ2). If we choose s = ∥β0∥1 as the tuning
parameter, then

1

n
∥Xβ̂ −Xβ0∥22 ≲

∥β0∥1∥XT ϵ∥∞
n

.

Suppose ∥Xj∥2 =
√
n. Then with high probability,

1

n
∥Xβ̂ −Xβ0∥22 ≲ ∥β0∥1

√
log p

n
.

The lasso estimator in bound form (2) is particularly easy to analyze. Suppose that we choose s = ∥β0∥1 as the
tuning parameter. Then, simply by virtue of optimality of the solution β̂ in (2), we find that

∥y −Xβ̂∥22 ≤ ∥y −Xβ0∥22 = ∥ϵ∥22 .

By developing squares,

∥y −Xβ̂∥22 =
∥∥∥Xβ0 + ϵ−Xβ̂

∥∥∥2
2

=
∥∥∥X(β̂ − β0)

∥∥∥2
2
+ ∥ϵ∥22 − 2

〈
ϵ,X(β̂ − β0)

〉
,

and combining gives
∥Xβ̂ −Xβ0∥22 ≤ 2⟨ϵ,Xβ̂ −Xβ0⟩.

Here we denote ⟨a, b⟩ = aT b. The above is sometimes called the basic inequality (for the lasso in bound form). Now,
rearranging the inner product, using Holder’s inequality, and recalling the choice of bound parameter:

∥Xβ̂ −Xβ0∥22 ≤ 2⟨XT ϵ, β̂ − β0⟩ ≤ 4∥β0∥1∥XT ϵ∥∞.

Notice that ∥XT ϵ∥∞ = maxj=1,...,p |XT
j ϵ| is a maximum of p Gaussians, each with mean zero and variance upper

bounded by σ2n. By a standard maximal inequality for Gaussians, for any δ > 0,

max
j=1,...,p

|XT
j ϵ| ≤ σ

√
2n log(2p/δ),

with probability at least 1−δ. Plugging this to the second-to-last display and dividing by n, we get the finite-sample
result for the lasso estimator

1

n
∥Xβ̂ −Xβ0∥22 ≤ 4σ∥β0∥1

√
2 log(2p/δ)

n
, (14)
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with probability at least 1− δ.
The high-probability result (14) implies an in-sample risk bound of

1

n
E∥Xβ̂ −Xβ0∥22 ≲ ∥β0∥1

√
log p

n
.

Compare to this with the risk bound (8) for best subset selection, which is on the (optimal) order of s0 log p/n when
β0 has s0 nonzero components. If each of the nonzero components here has constant magnitude, then above risk
bound for the lasso estimator is on the order of s0

√
log p/n, which is much slower.

Predictive risk. Instead of in-sample risk, we might also be interested in out-of-sample risk, as after all that
reflects actual (out-of-sample) predictions. In least squares, recall, we saw that out-of-sample risk was generally
higher than in-sample risk. The same is true for the lasso [?] gives a nice, simple analysis of out-of-sample risk for
the lasso. He assumes that x0, xi, i = 1, . . . , n are i.i.d. from an arbitrary distribution supported on a compact set
in Rp, and shows that the lasso estimator in bound form (2) with t = ∥β0∥1 has out-of-sample risk satisfying

E(xT
0 β̂ − xT

0 β)
2 ≲ ∥β0∥21

√
log p

n
.

The proof is not much more complicated than the above, for the in-sample risk, and reduces to a clever application
of Hoeffding’s inequality, though we omit it for brevity. Note here the dependence on ∥β0∥21, rather than ∥β0∥1 as
in the in-sample risk. This agrees with the analysis we did in the previous set of notes where we did not assume the
linear model. (Only the interpretation changes.)

Oracle inequality. If we don’t want to assume linearity of the mean then we can still derive an oracle inequality
that characterizes the risk of the lasso estimator in excess of the risk of the best linear predictor. For this part only,
assume the more general model

y = µ(X) + ϵ,

with an arbitrary mean function µ(X), and normal errors ϵ ∼ N(0, σ2). We will analyze the bound form lasso
estimator (2) for simplicity. By optimality of β̂, for any other β̃ feasible for the lasso problem in (2), it holds that1

⟨XT (y −Xβ̂), β̃ − β̂⟩ ≤ 0. (15)

Rearranging gives
⟨µ(X)−Xβ̂,Xβ̃ −Xβ̂⟩ ≤ ⟨XT ϵ, β̂ − β̃⟩.

Now using the polarization identity ∥a∥22 + ∥b∥22 − ∥a− b∥22 = 2⟨a, b⟩,

∥Xβ̂ − µ(X)∥22 + ∥Xβ̂ −Xβ̃∥22 ≤ ∥Xβ̃ − µ(X)∥22 + 2⟨XT ϵ, β̂ − β̃⟩,

and from the exact same arguments as before, it holds that

1

n
∥Xβ̂ − µ(X)∥22 +

1

n
∥Xβ̂ −Xβ̃∥22 ≤ 1

n
∥Xβ̃ − µ(X)∥22 + 4σt

√
2 log(2p/δ)

n
,

with probability at least 1 − δ. This holds simultaneously over all β̃ with ∥β̃∥1 ≤ s. Thus, we may write, with
probability 1− δ,

1

n
∥Xβ̂ − µ(X)∥22 ≤

{
inf

∥β̃∥1≤s

1

n
∥Xβ̃ − µ(X)∥22

}
+ 4σt

√
2 log(2p/δ)

n
.

Also if we write Xβ̃best as the best linear that predictor of ℓ1 at most s, achieving the infimum on the right-hand
side (which we know exists, as we are minimizing a continuous function over a compact set), then

1

n
∥Xβ̂ −Xβ̃best∥22 ≤ 4σt

√
2 log(2p/δ)

n
,

with probability at least 1− δ

1To see this, consider minimizing a convex function f(x) over a convex set C. Let x̂ be a minimizer. Let z ∈ C be any other point
in C. If we move away from the solution x̂ we can only increase f(x̂). In other words, ⟨∇f(x̂), z − ẑ⟩ ≥ 0.
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7.2 Fast rates
Under very strong assumptions we can get faster rates. For example, if we assume that X satisfies the restricted
eigenvalue condition with constant ϕ0 > 0, i.e.,

1

n
∥Xv∥22 ≥ ϕ2

0∥v∥22 for all subsets J ⊆ {1, . . . , p} such that |J | = s0

and all v ∈ Rp such that ∥vJc∥1 ≤ 3∥vJ∥1. (16)

Theorem. Suppose Y = Xβ0 + ϵ with X fixed, ϵi i.i.d. from N(0, σ2), with ∥β0∥0 = s0. Suppose X satisfies the
restricted eigenvalue condition in (16). If λ ≥ 2

∥∥X⊤ϵ
∥∥
∞, then

1

n
∥Xβ̂ −Xβ0∥22 ≲

s0λ
2

n2ϕ4
0

,

and

∥β̂ − β0∥22 ≲
s0λ

2

n2ϕ4
0

.

Suppose ∥Xj∥2 =
√
n, and λ is chosen as λ = 2σ

√
2n log(2p/δ). Then with high probability,

1

n
∥Xβ̂ −Xβ0∥22 ≲

s0 log(p)

nϕ2
0

,

and
∥β̂ − β0∥22 ≲

s0 log p

nϕ2
0

(17)

with probability tending to 1.

(This condition can be slightly weakened, but not much.) The condition is unlikely to hold in any real problem.
Nor is it checkable.

We may interpret the restricted eigenvalue condition roughly as follows: the requirement (1/n)∥Xv∥22 ≥ ϕ2
0∥v∥22

for all v ∈ Rn would be a lower bound of ϕ2
0 on the smallest eigenvalue of (1/n)XTX; we don’t require this (as this

would of course mean that X was full column rank, and couldn’t happen when p > n), but instead that require
that the same inequality hold for v that are “mostly” supported on small subsets J of variables, with |J | = s0

Here is a proof of the theorem. There are many flavors of fast rates, and the conditions required are all very
closely related. [?] provides a nice review and discussion.

For the lasso of the penalized form, we have

∥y −Xβ̂∥22 + 2λ
∥∥∥β̂∥∥∥

1
≤ ∥y −Xβ0∥22 + 2λ ∥β0∥1 .

Hence for this, the basic inequality becomes

∥Xβ̂ −Xβ0∥22 ≤ 2⟨ϵ,X⊤(β̂ − β0)⟩+ 2λ
(
∥β0∥1 −

∥∥∥β̂∥∥∥
1

)
≤ 2

∥∥X⊤ϵ
∥∥
∞

∥∥∥β̂ − β0

∥∥∥
1
+ 2λ

(
∥β0∥1 −

∥∥∥β̂∥∥∥
1

)
.

Then using the condition λ ≥ 2
∥∥X⊤ϵ

∥∥
∞ gives

∥Xβ̂ −Xβ0∥22 ≤ λ∥β̂ − β0∥1 + 2λ(∥β0∥1 − ∥β̂∥1).

Let ∆̂ = β̂ − β0 for convenience. Then since β0,−S = 0,

∥β0∥1 − ∥β̂∥1 = ∥β0,S∥1 − ∥β0,S + ∆̂S∥1 − ∥∆̂−S∥1
≤ ∥∆̂S∥1 − ∥∆̂−S∥1,

where the inequality followed from the triangle inequality. Hence

∥Xβ̂ −Xβ0∥22 ≤ λ∥β̂ − β0∥1 + 2λ(∥β0∥1 − ∥β̂∥1)
≤ λ

(
∥∆̂S∥1 + ∥∆̂−S∥1

)
+ 2λ(∥∆̂S∥1 − ∥∆̂−S∥1)

= 3λ∥∆̂S∥1 − λ∥∆̂−S∥1,

12



As ∥Xβ̂ −Xβ0∥22 ≥ 0, we have shown
∥∆̂−S∥1 ≤ 3∥∆̂S∥1,

and thus we may apply the restricted eigenvalue condition (??) to the vector ∆̂ = β̂ − β0. This gives us two bounds:
one on the fitted values, and the other on the coefficients. Both start with the key inequality (from the second-to-last
display)

∥Xβ̂ −Xβ0∥22 ≤ 3λ∥∆̂S∥1. (18)

For the fitted values, we upper bound the right-hand side of the key inequality (18) with

∥∆̂S∥1 ≤ √
s0∥∆̂S∥2 ≤ √

s0∥∆̂∥2,

to get

∥Xβ̂ −Xβ0∥22 ≤ 3λ
√
s0∥β̂ − β0∥2

≤ 3λ

√
s0
nϕ2

0

∥Xβ̂ −Xβ0∥2.

And dividing through both sides by ∥Xβ̂ −Xβ0∥2, then squaring both sides, and dividing by n,

1

n
∥Xβ̂ −Xβ0∥22 ≤ 9s0λ

2

n2ϕ2
0

.

Now, we have seen that when ∥Xj∥2 =
√
n, with high probability,

∥∥X⊤ϵ
∥∥
∞ ≤ σ

√
2n log(2p/δ) of probability at

least 1− δ. Hence by choosing λ = 2σ
√
2n log(2p/δ), with probability 1− δ, we have that

1

n
∥Xβ̂ −Xβ0∥22 ≤ 72σ2s0 log(2p/δ)

nϕ2
0

, (19)

with probability at least 1 − δ. Notice the similarity between (19) and (8): both provide us in-sample risk bounds
on the order of s0 log p/n, but the bound for the lasso requires a strong compability assumption on the predictor
matrix X, which roughly means the predictors can’t be too correlated

For the coefficients, we have from the restricted eigenvalue condition that

∥β̂ − β0∥22 ≤ 1

nϕ2
0

∥∥∥Xβ̂ −Xβ0

∥∥∥2
2

≤ 9s0λ
2

n2ϕ4
0

.

Plugging in λ = 2σ
√
2n log(ep/δ), we have shown that

∥β̂ − β0∥22 ≤ 72σ2s0 log(2p/δ)

nϕ4
0

, (20)

with probability at least 1− δ. This is an error bound on the order of s0 log p/n for the lasso coefficients.

7.3 Support recovery
Here we discuss results on support recovery of the lasso estimator. There are a few versions of support recovery
results and again [3] is a good place to look for a thorough coverage. Here we describe a result due to [16], who
introduced a proof technique called the primal-dual witness method. The assumptions are even stronger (and less
believable) than in the previous section. In addition to the previous assumptions we need:

Mutual incoherence: for some γ > 0, we have

∥(XT
S XS)

−1XT
S Xj∥1 ≤ 1− γ, for j /∈ S,

Minimum eigenvalue: for some C > 0, we have

Λmin

(
1

n
XT

S XS

)
≥ C,

13



where Λmin(A) denotes the minimum eigenvalue of a matrix A
Minimum signal:

β0,min = min
j∈S

|β0,j | ≥ λ∥(XT
S XS)

−1∥∞ +
4γλ√
C
,

where ∥A∥∞ = maxi=1,...,m

∑q
j=1 |Aij | denotes the ℓ∞ norm of an m× q matrix A

Under these assumptions, once can show that, if λ is chosen just right, then

P (support(β̂) = support(β)) → 1. (21)

8 Geometry of the solutions
One undesirable feature of the best subset selection solution (7) is the fact that it behaves discontinuously with y.
As we change y, the active set A must change at some point, and the coefficients will jump discontinuously, because
we are just doing least squares onto the active set. So, does the same thing happen with the lasso solution (12)?
The answer it not immediately clear. Again, as we change y, the active set A must change at some point; but if
the shrinkage term were defined “just right”, then perhaps the coefficients of variables to leave the active set would
gracefully and continously drop to zero, and coefficients of variables to enter the active set would continuously move
form zero. This would make whole the lasso solution continuous. Fortuitously, this is indeed the case, and the lasso
solution β̂ is continuous as a function of y. It might seem a daunting task to prove this, but a certain perspective
using convex geometry provides a very simple proof. The geometric perspective in fact proves that the lasso fit
Xβ̂ is nonexpansive in y, i.e., 1-Lipschitz continuous, which is a very strong form of continuity. Define the convex
polyhedron C = {u : ∥XTu∥∞ ≤ λ} ⊆ Rn. The dual problem for the penalized lasso

minimizeβ∈Rp

1

2
∥y −Xβ∥22 + λ∥β∥1 (22)

can be obtained using convex optimization as

minimizeu∈Rn∥y − u∥22
subject to

∥∥X⊤u
∥∥
∞ ≤ λ. (23)

And from the KKT conditions, the solution β̂ of (22) and the solution û of (23) are linked as

Xβ̂ = y − û.

Hence the lasso solution β̂ satisfies
Xβ̂ = (I − PC)(y),

the residual from projecting y onto C. A picture to show this (just look at the left panel for now) is given in Figure
3.

The projection onto any convex set is nonexpansive, i.e., ∥PC(y)−PC(y
′)∥2 ≤ ∥y−y′∥2 for any y, y′. This should

be visually clear from the picture. Actually, the same is true with the residual map: I − PC is also nonexpansive,
and hence the lasso fit is 1-Lipschitz continuous. Viewing the lasso fit as the residual from projection onto a convex
polyhedron is actually an even more fruitful perspective. Write this polyhedron as

C = (XT )−1{v : ∥v∥∞ ≤ λ},

where (XT )−1 denotes the preimage operator under the linear map XT . The set {v : ∥v∥∞ ≤ λ} is a hypercube in
Rp. Every face of this cube corresponds to a subset A ⊆ {1, . . . p} of dimensions (that achieve the maximum value
|λ|) and signs sA ∈ {−1, 1}|A| (that tell which side of the cube the face will lie on, for each dimension). Now, the
faces of C are just faces of {v : ∥v∥∞ ≤ λ} run through the (linear) preimage transformation, so each face of C
can also indexed by a set A ⊆ {1, . . . p} and signs sA ∈ {−1, 1}|A|. The picture in Figure 3 attempts to convey this
relationship with the colored black face in each of the panels.

Now imagine projecting y onto C; it will land on some face. We have just argued that this face corresponds to
a set A and signs sA. One can show that this set A is exactly the active set of the lasso solution at y, and sA are
exactly the active signs. The size of the active set |A| is the co-dimension of the face. Looking at the picture: we can
that see that as we wiggle y around, it will project to the same face. From the correspondence between faces and
active set and signs of lasso solutions, this means that A, sA do not change as we perturb y, i.e., they are locally

14



constant. But this isn’t true for all points y, e.g., if y lies on one of the rays emanating from the lower right corner
of the polyhedron in the picture, then we can see that small perturbations of y do actually change the face that it
projects to, which invariably changes the active set and signs of the lasso solution. However, this is somewhat of an
exceptional case, in that such points can be form a of Lebesgue measure zero, and therefore we can assure ourselves
that the active set and signs A, sA are locally constant for almost every y.

From the lasso KKT conditions (10), (11), it is possible to compute the lasso solution in (5) as a function of λ,
which we will write as β̂(λ), for all values of the tuning parameter λ ∈ [0,∞]. This is called the regularization path
or solution path of the problem (5). Path algorithms like the one we will describe below are not always possible; the
reason that this ends up being feasible for the lasso problem (5) is that the solution path β̂(λ), λ ∈ [0,∞] turns out
to be a piecewise linear, continuous function of λ. Hence, we only need to compute and store the knots in this path,
which we will denote by λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0, and the lasso solution at these knots. From this information, we
can then compute the lasso solution at any value of λ by linear interpolation.

The knots λ1 ≥ . . . ≥ λr in the solution path correspond to λ values at which the active set A(λ) = supp(β̂(λ))
changes. As we decrease λ from ∞ to 0, the knots typically correspond to the point at which a variable enters the
active set; this connects the lasso to an incremental variable selection procedure like forward stepwise regression.
Interestingly though, as we decrease λ, a knot in the lasso path can also correspond to the point at which a variables
leaves the active set. See Figure 4.

The lasso solution path was described by [?, ?, ?]. Like the construction of all other solution paths that followed
these seminal works, the lasso path is essentially given by an iterative or inductive verification of the KKT conditions;
if we can maintain that the KKT conditions holds as we decrease λ, then we know we have a solution. The trick
is to start at a value of λ at which the solution is trivial; for the lasso, this is λ = ∞, at which case we know the
solution must be β̂(∞) = 0.

Why would the path be piecewise linear? The construction of the path from the KKT conditions is actually
rather technical (not difficult conceptually, but somewhat tedious), and doesn’t shed insight onto this matter. But
we can actually see it clearly from the projection picture in Figure 3.

As λ decreases from ∞ to 0, we are shrinking (by a multiplicative factor λ) the polyhedron onto which y is
projected; let’s write Cλ = {u : ∥XTu∥∞ ≤ λ} = λC1 to make this clear. Now suppose that y projects onto the
relative interior of a certain face F of Cλ, corresponding to an active set A and signs sA. As λ decreases, the point
on the boundary of Cλ onto which y projects, call it û(λ) = PCλ

(y), will move along the face F , and change linearly
in λ (because we are equivalently just tracking the projection of y onto an affine space that is being scaled by λ).
Thus, the lasso fit Xβ̂(λ) = y − û(λ) will also behave linearly in λ. Eventually, as we continue to decrease λ, the
projected point û(λ) will move to the relative boundary of the face F ; then, decreasing λ further, it will lie on a
different, neighboring face F ′. This face will correspond to an active set A′ and signs sA′ that (each) differ by only
one element to A and sA, respectively. It will then move linearly across F ′, and so on.

Now we will walk through the technical derivation of the lasso path, starting at λ = ∞ and β̂(∞) = 0, as
indicated above. Consider decreasing λ from ∞, and continuing to set β̂(λ) = 0 as the lasso solution. The KKT
conditions (10) read

XT y = λs,

where s is a subgradient of the ℓ1 norm evaluated at 0, i.e., sj ∈ [−1, 1] for every j = 1, . . . , p. For large enough
values of λ, this is satisfied, as we can choose s = XT y/λ. But this ceases to be a valid subgradient if we decrease
λ past the point at which λ = |XT

j y| for some variable j = 1, . . . , p. In short, β̂(λ) = 0 is the lasso solution for all
λ ≥ λ1, where

λ1 = max
j=1,...,p

|XT
j y|. (24)

What happens next? As we decrease λ from λ1, we know that we’re going to have to change β̂(λ) from 0 so that
the KKT conditions remain satisfied. Let j1 denote the variable that achieves the maximum in (24). Since the
subgradient was |sj1 | = 1 at λ = λ1, we see that we are “allowed” to make β̂j1(λ) nonzero. Consider setting

β̂j1(λ) = (XT
j1Xj1)

−1(XT
j1y − λsj1)

β̂j(λ) = 0, for all j ̸= j1,
(25)

as λ decreases from λ1, where sj1 = sign(XT
j1
y). Note that this makes β̂(λ) a piecewise linear and continuous

function of λ, so far. The KKT conditions are then

XT
j1

(
y −Xj1(X

T
j1Xj1)

−1(XT
j1y − λsj1)

)
= λsj1 ,
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which can be checked with simple algebra, and∣∣∣XT
j

(
y −Xj1(X

T
j1Xj1)

−1(XT
j1y − λsj1)

)∣∣∣ ≤ λ,

for all j ̸= j1. Recall that the above held with strict inequality at λ = λ1 for all j ̸= j1, and by continuity of the
constructed solution β̂(λ), it should continue to hold as we decrease λ for at least a little while. In fact, it will hold
until one of the piecewise linear paths

XT
j (y −Xj1(X

T
j1Xj1)

−1(XT
j1y − λsj1)), j ̸= j1

becomes equal to ±λ, at which point we have to modify the solution because otherwise the implicit subgradient

sj =
XT

j (y −Xj1(X
T
j1
Xj1)

−1(XT
j1
y − λsj1))

λ

will cease to be in [−1, 1]. It helps to draw yourself a picture of this.
Thanks to linearity, we can compute the critical “hitting time” explicitly; a short calculation shows that, the

lasso solution continues to be given by (25) for all λ1 ≥ λ ≥ λ2, where

λ2 = max+j ̸=j1, sj∈{−1,1}
XT

j (I −Xj1(X
T
j1
Xj1)

−1Xj1)y

sj −XT
j Xj1(X

T
j1
Xj1)

−1sj1
, (26)

and max+ denotes the maximum over all of its arguments that are < λ1.
To keep going: let j2, s2 achieve the maximum in (26). Let A = {j1, j2}, sA = (sj1 , sj2), and consider setting

β̂A(λ) = (XT
AXA)

−1(XT
Ay − λsA)

β̂−A(λ) = 0,
(27)

as λ decreases from λ2. Again, we can verify the KKT conditions for a stretch of decreasing λ, but will have to stop
when one of

XT
j (y −XA(X

T
AXA)

−1(XT
Ay − λsA), j /∈ A

becomes equal to ±λ. By linearity, we can compute this next “hitting time” explicitly, just as before. Furthermore,
though, we will have to check whether the active components of the computed solution in (27) are going to cross
through zero, because past such a point, sA will no longer be a proper subgradient over the active components.
We can again compute this next “crossing time” explicitly, due to linearity. Therefore, we maintain that (27) is the
lasso solution for all λ2 ≥ λ ≥ λ3, where λ3 is the maximum of the next hitting time and the next crossing time.
For convenience, the lasso path algorithm is summarized below.

As we decrease λ from a knot λk, we can rewrite the lasso coefficient update in Step 1 as

β̂A(λ) = β̂A(λk) + (λk − λ)(XT
AXA)

−1sA,

β̂−A(λ) = 0.
(28)

We can see that we are moving the active coefficients in the direction (λk − λ)(XT
AXA)

−1sA for decreasing λ. In
other words, the lasso fitted values proceed as

Xβ̂(λ) = Xβ̂(λk) + (λk − λ)XA(X
T
AXA)

−1sA,

for decreasing λ. [?] call XA(X
T
AXA)

−1sA the equiangular direction, because this direction, in Rn, takes an equal
angle with all Xj ∈ Rn, j ∈ A.

For this reason, the lasso path algorithm in Algorithm ?? is also often referred to as the least angle regression
path algorithm in “lasso mode”, though we have not mentioned this yet to avoid confusion. Least angle regression
is considered as another algorithm by itself, where we skip Step 3 altogether. In words, Step 3 disallows any
component path to cross through zero. The left side of the plot in Figure 4 visualizes the distinction between
least angle regression and lasso estimates: the dotted black line displays the least angle regression component path,
crossing through zero, while the lasso component path remains at zero.

Lastly, an alternative expression for the coefficient update in (28) (the update in Step 1) is

β̂A(λ) = β̂A(λk) +
λk − λ

λk
(XT

AXA)
−1XT

Ar(λk),

β̂−A(λ) = 0,

(29)
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where r(λk) = y −XAβ̂A(λk) is the residual (from the fitted lasso model) at λk. This follows because, recall, λksA
are simply the inner products of the active variables with the residual at λk, i.e., λksA = XT

A(y −XAβ̂A(λk)). In
words, we can see that the update for the active lasso coefficients in (29) is in the direction of the least squares
coefficients of the residual r(λk) on the active variables XA.
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Figure 3: A geometric picture of the lasso solution. The left panel shows the polyhedron underlying all lasso fits,
where each face corresponds to a particular combination of active set A and signs s; the right panel displays the
“inverse” polyhedron, where the dual solutions live
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Figure 4: An example of the lasso path. Each colored line denotes a component of the lasso solution β̂j(λ), j = 1, . . . , p
as a function of λ. The gray dotted vertical lines mark the knots λ1 ≥ λ2 ≥ . . .
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