
Overview of Supervised Learning

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2024 1st semester

The lecture note is a minor modification of the lecture notes from Prof. Yongdai Kim’s “Statistical Machine
Learning”.Also, see Section 2.1-2.6, 2.9 from [1].

1 Statistical Machine Learning
There are several fields in machine learning.

• Supervised Learning (지도학습)

– Predict outcome variable (출력변수) using input variable (입력변수)
– 회귀(regression), 분류(classification), etc

• Unsupervised Learning (비지도학습)

– Clarify relations within input variables.
– 군집분석(clustering), 주성분분석(principal component analysis), 요인분석(factor analysis), etc

• Reinforcement Learning (강화학습)

– Learn decision making where environment changes according to actions
– multi-armed bandit problem, markov decision process, etc

This class mostly covers supervised learning.
Data(자료) always comes with random noise(잡음). To see the effect of random noise and whether the algorithm

works correctly, we need statistical analysis. In machine learning, statistical theory provides the following:

• understanding overfitting (과적합)

• understanding curse of dimensionality (차원의 저주)

• statistical theory for algorithm: consistency(일치성), optimality(최적합), uncertaintly quantification(불확실성
의 정량화)

2 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rp, so x = (x1, . . . , xp).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.
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• Assumption(가정): f belongs to a family of functions F . This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

3 Linear Regression Models and Nearest Neighbors
From the additive noise model

y = f(x) + ϵ, f ∈ F ,

Linear Regression Model (선형회귀모형) is that

F =

β0 +

p∑
j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =
n∑

i=1

(yi − f(xi))
2

=

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂p) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

p∑
j=1

β̂jxj .

k-Nearest Neighbor(k-NN, k-최근접이웃) is to use those observations in the training set T closest in input space
to x to form f̂(x). For an input x ∈ Rp, let Nk(x) be the neighborhood of x defined by the k closest points among
the training sample x1, . . . , xn. Then the predicted function for k-nearest neighbor is

f̂(x) =
1

k

∑
xi∈Nk(x)

yi.
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4 Statistical Decision Theory
Let the training data T = {(yi, xi), i = 1, . . . , n} be i.i.d. from P , or y|X = x is i.i.d. (weaker). For the regression,
the most common loss is the square loss

ℓ(y, a) = (y − a)2.

Then the Expected Prediction Error (EPE, 평균예측오차) is

EPE(f) = E(Y,X)∼P [ℓ(Y, f(X))] = E
[
(Y − f(X))2

]
= EX

[
EY |X

[
(Y − f(X))2|X

]]
.

Then
EY |X

[
(Y − f(X))2|X

]
= EY |X

[
(Y − E [Y |X])

2 |X
]
+ (E [Y |X]− f(X))

2
,

so EPE(f) is minimized when f0(x) = E [Y |X = x] . This conditional expectation is called the regression function
(회귀함수). Still, E [Y |X = x] is usually unknown.

The nearest neighbor directly implement this.

f̂(x) = Ave (yi|xi ∈ Nk(x)) ,

where “Ave” denotes average, and Nk(x) is the neighbor containing the k points in T closest to x. Two approximations
are happening here:

• expectation is approximated by averaging over sample data;

• conditioning at a point is relaxed to conditioning on neighbor of x.

In fact, under mild regularity conditions on the joint probability distribution P (X,Y ), one can show that as
n, k → ∞ such that k/n → 0, then

f(x) → E [Y |X = x] .

The condition k/n → 0 means that the model complexity k should grow slower than the sample size n.
For linear regression, we assume that the regression function is approximately linear. For notational convenience,

write x = (1, x1, . . . , xp)
⊤ so that the constant is also included in x. Then we assume

E [Y |X = x] ≈ x⊤β =

p∑
j=0

βjxj .

This is a model-based approach - we specify a model for the regression function. Let

β∗ :=
(
E
[
XX⊤])−1 E [XY ] ,

then EPE becomes

E
[
(Y −X⊤β)2

]
= E

[(
Y −X⊤β∗

)2]
+ E

[(
X⊤β∗ −X⊤β

)2]
,

So β∗ is minimizing EPE. And the least square β̂ = (X⊤X)−1X⊤Y can be thought as the average over empirical
distribution of training data

For the classification so that y ∈ Y = {1, . . . , J}, the Expected Prediction Error (EPE) is

EPE(f) = E(Y,X)∼P [ℓ(Y, f(X))] = E [I(Y ̸= f(X))]

= EX

 J∑
j=1

ℓ(j, f(X))P (Y = j|X)

 .

Hence EPE(f) is minimized when

f0(x) = arg min
k=1,...,J

J∑
j=1

ℓ(j, k)P (Y = j|X = x).
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For the classification, the most common loss is the 0-1 loss

ℓ(y, a) = I(y ̸= a).

And the optimal prediction function is

f0(x) = arg max
j=1,...,J

P (Y = j|X = x).

This optimal classifier is called Bayes rule / Bayes classifier (베이즈분류 / 베이즈모형), and the error rate is called
the Bayes risk (베이즈위험). Still, P (Y = j|X = x) is usually unknown.

Again, k-NN can directly approximate Bayes rule. The conditional probability P (Y = j|X = x) is approximated
as

1

k

∑
xi∈Nk(x)

I(yi = j),

so k-NN classifier becomes

f̂(x) = arg max
j=1,...,J

 ∑
xi∈Nk(x)

I(yi = j)

 .

5 Curse of Dimensionality
Suppose X = (X1, . . . , Xp) ∼ Uniform([0, 1]p). Suppose we want to set a hypercubical neighbor of a target point
x ∈ [0, 1]p to capture a fraction r of the observations. For this, the side length of the hypercube should be

ep(r) = r1/p.

e10(0.01) = 0.63 and e10(0.1) = 0.80, so to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighbor is no longer “local”.

Consider X = (X1, . . . , Xp) ∼ Uniform(BRp(0, 1)), where BRp(0, 1) = {x ∈ Rp : ∥x∥2 = 1} is the unit ball in
R2. For i-th data Xi = (Xi1, . . . , Xip), Ri :=

√∑p
j=1 X

2
ij is the distance of Xi to the origin, and R(1) = min1≤i≤n Ri

is the distance from the origin to the nearest neighbor. Since R(1) is also a random variable, then the median of
R(1) is

Med(R(1)) =
(
1− (1/2)1/n

)1/p

.

If n = 5000 and p = 10, then Med(R(1)) ≈ 0.52, more than halfway to the boundary. Hence most data points are
closer to the boundary of the sample space than to any other data point. This presents a problem since prediction
is much more difficult near the edges of the training sample.

Beyond statistical difficulty for inference, high dimension is very counter-intuitive: reference https://marckhoury.github.io/blog/counterintuitive-
properties-of-high-dimensional-space/

Consider a square with side length 1. At each corner of the square place a circle of radius 1/2, so that the
circles cover the edges of the square. Then consider the circle centered at the center of the square that is just large
enough to touch the circles at the corners of the square. In two dimensions it’s clear that the inner circle is entirely
contained in the square.

We can do the same thing in three dimensions. At each corner of the unit cube place a sphere of radius 1/2,
again covering the edges of the cube. The sphere centered at the center of the cube and tangent to spheres at the
corners of the cube is shown in red in Figure 3. Again we see that, in three dimensions, the inner sphere is entirely
contained in the cube.

To understand what happens in higher dimensions we need to compute the radius of the inner sphere in terms
of the dimension.

(the radius of the inner sphere) = (the length of the half diagonal of the cube)−(the radius of the spheres at the corners).

The radius of the inner sphere is equal to the length of the diagonal of the cube minus the radius of the spheres at
the corners. See Figure . The half diagonal length is

√
d/2, and the latter value is always 1/2, and hence the radius

of the inner sphere is √
d− 1

2
.
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Figure 1: The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit
cube. The figure on the right shows the side-length of the subcube needed to capture a fraction r of the volume
of the data, for different dimensions p. In ten dimensions we need to cover 80% of the range of each coordinate to
capture 10% of the data. Figure 2.6 from [1].

Figure 2: At each corner of the square we place a circle of radius 1/2. The inner circle is just large enough to touch
the circles at the corners. Figure 1 from [2].
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Figure 3: In three dimensions we place a sphere at the each of the eight corners of a cube. Figure 2 from [2].

Figure 4: The size of the radius of the inner sphere is growing as the dimension increases because the distance to
the corner increases while the radius of the corner sphere remains constant. Figure 3 from [2].
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Figure 5: Test and training error as a function of model complexity. Figure 2.11 from [1].

When d ≤ 3,
√
d−1
2 < 1

2 and the sphere is strictly inside the cube. However in four dimensions, the radius of the
inner sphere is

√
d−1
2 = 1

2 , so the inner sphere touches the sides of the cube. In five dimensions, the radius of the
inner sphere is 0.618034, and the sphere starts poking outside of the cube! By ten dimensions, the radius is 1.08114
and the sphere is poking very far outside of the cube!

6 Overfitting and the Bias-Variance Tradeoff
In k-Nearest Neighbor, the neighbor size k determines the complexity of the prediction model. To choose k, if
we know the probability distribution (Y,X) ∼ P , then we can minimize the Expected Prediction Error (EPE,
평균예측오차 / 예측오차)

E(Y,X)∼P [ℓ(Y, f(X))] .

However, P is usually unknown. One way to estimate EPE is by Training Error (TE, 학습오차)

1

n

n∑
i=1

ℓ(Yi, f(Xi)),

where the training data T = {(Yi, Xi) : i = 1, . . . , n}.
However, training error always underestimates prediction error, since the same dataset T is used for estimating

the prediction model and estimating prediction error. Better estimation for the prediction error is the test error,
where the prediction error is computed on the separate test data. The typical behavior of the prediction error on
the test set is as in Figure 5. As the model becomes more complex, the prediction error first decreases but then
increases, while test error monotonically decreases. Hence, when the model is chosen according to the training error,
then the prediction error can be large: this is called overfitting. This phenomenon is explained by the bias-variance
tradeoff.

Suppose the regression model
Y = f(X) + ϵ,

with E [ϵ] = 0 and V ar [ϵ] = σ2, and we use the square loss ℓ(y, a) = (y−a)2. Let f(X, T ) be the predicted function
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trained on the training set T . Then EPE for f(X, T ) is

EPE = E
[
(Y − f(X, T ))2

]
= E

[
(Y − f(X))2

]
+ E

[
(f(X)− f(X, T ))2

]
= σ2 + EX

[
(f(X)− ET [f(X, T )|X])

2
]
+ EX

[
ET

[
(f(X, T )− ET [f(X, T )|X])

2 |X
]]

= σ2 + EX

[
BiasT (X)2 + V arianceT (X)

]
.

Then
EY |X

[
(Y − f(X))2|X

]
= EY |X

[
(Y − E [Y |X])

2 |X
]
+ (E [Y |X]− f(X))

2
,

In general, as the model becomes more complex, then the bias(편의) decreases and the variance(분산) increases.
For k-Nearest Neighbor,

f̂(x) = f(x, T ) =
1

k

k∑
l=1

(f(x(l)) + ϵ(l)),

where (l) is the index for l-th nearest neighbor. Then the bias and variance becomes

BiasT (x) = f(x)− 1

k

k∑
l=1

f(x(l)),

and

V arianceT (x) =
σ2

k
.

When k = 1, then the bias is minimized and the variance is maximized. On the other hand, when k = n, then the
bias is maximized and the variance is minimized.

7 Comparison of Linear Regression with Nearest Neighbors
Below is the code for comparing linear regression with nearest neighbors. We measure the performance by MSE
(Mean Squared Error)

1

n

n∑
i=1

(Yi − f(Xi))
2,

either on training data or test data.

require(caret)

## Loading required package: caret
## Warning: package ’caret’ was built under R version 4.3.3
## Loading required package: ggplot2
## Loading required package: lattice

mse <- function(y_pred, y_true) {

return (mean((y_pred - y_true)^2))
}

linear_knn_compare <- function(data_train, data_test) {

par(mfrow = c(2, 2))

model_lr <- lm(y ~ x, data = data_train)
plot(data_train[["x"]], data_train[["y"]], main = "Linear Regression",

xlab = "x", ylab = "y", pch = 16)
abline(model_lr)
cat(c("MSE of Linear Regression on Training:",

mse(data_train[["y"]], predict(model_lr, newdata = data_train)), "\n"))
cat(c("MSE of Linear Regression on Test:",

mse(data_test[["y"]], predict(model_lr, newdata = data_test)), "\n"))
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for (k in c(1, 5, 15)) {
model_knn <- caret::knnreg(y ~ x, data = data_train, k = k)
plot(data_train[["x"]], data_train[["y"]],

main = paste("Nearest Neighbor with k =", k), xlab = "x", ylab = "y",
pch = 16)

lines(data_train[["x"]], predict(model_knn, newdata = data_train))
cat(c("MSE of Nearest Neighbor with k =", k, "on Training:",

mse(data_train[["y"]], predict(model_knn, newdata = data_train)),
"\n"))

cat(c("MSE of Nearest Neighbor with k =", k, "on Test:",
mse(data_test[["y"]], predict(model_knn, newdata = data_test)), "\n"))

}
}

set.seed(0)
x <- rnorm(1000)
ep <- rnorm(1000)
train <- sort(x[1:100], index.return = TRUE)[["ix"]]
test <- 101:1000

Suppose we have 100 training data and 900 test data, and ϵ ∼ N(0, 1).

set.seed(0)
x <- rnorm(1000)
ep <- rnorm(1000)
train <- sort(x[1:100], index.return = TRUE)[["ix"]]
test <- 101:1000

First, we consider the simulation
y = x+ ϵ.

The result is as follows:

Method MSE on Training MSE on Test
Linear 1.0447 1.1621
1-NN 0 2.0972
5-NN 0.9381 1.2779
15-NN 1.0053 1.2757

# y = x + ep
y_l <- x + ep
data_l_train <- list(x = x[train], y = y_l[train])
data_l_test <- list(x = x[test], y = y_l[test])

linear_knn_compare(data_l_train, data_l_test)

## MSE of Linear Regression on Training: 1.04471978605025
## MSE of Linear Regression on Test: 1.16212381385859
## MSE of Nearest Neighbor with k = 1 on Training: 0
## MSE of Nearest Neighbor with k = 1 on Test: 2.09716012610056
## MSE of Nearest Neighbor with k = 5 on Training: 0.938067727758741
## MSE of Nearest Neighbor with k = 5 on Test: 1.27788806945154
## MSE of Nearest Neighbor with k = 15 on Training: 1.00528738504805
## MSE of Nearest Neighbor with k = 15 on Test: 1.27565679650095
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Second, we consider the simulation
y = x(1− x) + ϵ.

The result is as follows:

Method MSE on Training MSE on Test
Linear 2.4477 3.2330
1-NN 0 2.2437
5-NN 1.1955 1.7266
15-NN 1.5284 2.0868

# y = x(1-x) + ep
y_q <- x * (1 - x) + ep
data_q_train <- list(x = x[train], y = y_q[train])
data_q_test <- list(x = x[test], y = y_q[test])
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linear_knn_compare(data_q_train, data_q_test)

## MSE of Linear Regression on Training: 2.44774751766011
## MSE of Linear Regression on Test: 3.23304666428842
## MSE of Nearest Neighbor with k = 1 on Training: 0
## MSE of Nearest Neighbor with k = 1 on Test: 2.24369404278609
## MSE of Nearest Neighbor with k = 5 on Training: 1.19552889833504
## MSE of Nearest Neighbor with k = 5 on Test: 1.72664570974827
## MSE of Nearest Neighbor with k = 15 on Training: 1.52842407126519
## MSE of Nearest Neighbor with k = 15 on Test: 2.08680791517323
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From the simulations, we can compare Linear Regression vs Nearest Neighbor as follows:
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Method Linear Regression Nearest Neighbor
Assumption Linear X

Required Data Size (Relative) Small Large
Interpretation Easy Impossible

Prediction Good if Linear is satisfied, Bad otherwise works regardless of assumptions
Tuning Parameter X neighborhood size k

Also, we can see that:

• training error is not a good estimate of prediction error.

• As model complexity grows, we can see bias-variance tradeoff

• Neighborhood size k determines the model complexity of Nearest Neighbor
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