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The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning”.

1 Introduction
Often we need to show that a random quantity f(Z1, . . . , Zn) is close to its mean µ(f) = E(f(Z1, . . . , Zn)). That
is, we want a result of the form

P
(∣∣f(Z1, . . . , Zn)− µ(f)

∣∣ > ϵ

)
< δ. (1)

Such results are known as concentration of measure. These results are fundamental for establishing performance
guarantees of many algorithms. In fact, for statistical learning theory, we will need uniform bounds of the form

P

(
sup
f∈F

∣∣∣∣f(Z1, . . . , Zn)− µ(f)

∣∣∣∣ > ϵ

)
< δ (2)

over a class of functions F .

2 Examples
Example (Empirical Risk Minimization for Classification). Consider empirical risk minimization in classification.
The data are (X1, Y1), . . ., (Xn, Yn) where Yi ∈ {0, 1} and Xi ∈ Rd. Given a classifier h : Rd → {0, 1}, the training
error is

R̂n(h) =
1

n

n∑
i=1

I(Yi ̸= h(Xi)).

The true classification error is
R(h) = P(Y ̸= h(X)).

We would like to know if R̂(h) is close to R(h) with high probability. This is precisely of the form (1) with
Zi = (Xi, Yi) and f(Z1, . . . , Zn) = 1

n

∑n
i=1 I(Yi ̸= h(Xi)). Now let H be a set of classifiers. Let ĥ minimize the

training error R̂(h) over H and let h∗ minimize the true error R(h) over H. We will see in the next chapter that if
a uniform inequality like (2) holds then R(ĥ) is close to R(h∗).

Example (k-means Clustering). The risk of k-means clustering with centers c = (c1, . . . , ck) is

R(c) = E
[
min
j

∥X − cj∥2
]

and the empirical risk is

R̂(c) =
1

n

n∑
i=1

[
min
j

∥Xi − cj∥2
]
.

In practice we minimize R̂(c) but we would really like to minimize R(c). To show that minimizing R̂(c) is approxi-
mately the same as minimizing R(c) we need to show that

P

(
sup
c

∥∥∥R̂(c)−R(c)
∥∥∥ > ϵ

)
is small.
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Example (Cross Validation). Concentration of measure can be used to prove that cross-validation chooses good
classifiers and good regression estimators. First consider regression. Let M = {m̂t : t ∈ T} be a set of regression
estimators depending on the training data and depending on a tuning parameter t. Assume that T is finite. Let
m̂∗ ∈ M minimize

∫
|m̂(x) − r(x)|2dP (x) where r(x) = E(Y |X = x) is the true regression function. Choose t̂ to

minimize the hold-out error
1

n

n∑
i=1

(Yi − m̂t(Xi))
2.

Let m̂ = m̂t̂. Then, we shall see that we have the following result (due to [5]). For any δ > 0,

E
∫

|m̂(x)− r(x)|2dP (x) ≤ (1 + δ)E
∫

|m̂∗(x)− r(x)|2dP (x) +
C(1 + log(|T |)

n
.

A similar result holds holds for classification. Suppose H is a set of classifiers indexed by t. Let ĥ∗ be the best
classifier in H. Let D = {(X1, Y1), . . . , (Xn, Yn)} denote hold-out data from which we estimate the risk by

1

n

n∑
i=1

I(Yi ̸= ĥt(Xi)).

We then have

E
[
P (Y ̸= ĥ(X))

]
≤ E

[
P (Y ̸= ĥ∗(X))

]
+

√
C log(|T |)

n
.

Notice that the rate is better for regression than for classification. This is because of the different loss functions.

Besides classification, concentration inequaities are used for studying many other methods such as clustering,
random projections and density estimation.

3 Notation

Notation

If P is a probability measure and f is a function then we define

Pf = P (f) =

∫
f(z)dP (z) = E(f(Z)).

Give Z1, . . . , Zn, let Pn denote the empirical measure that puts mass 1/n at each data point:

Pn(A) =

∑n
i=1 I(Zi ∈ A)

n

where I(Zi ∈ A) = 1 if Zi ∈ A and I(Zi ∈ A) = 0 otherwise. Then we define

Pnf = Pn(f) =

∫
f(z)dPn(z) =

1

n

n∑
i=1

f(Zi).

4 Basic Inequalities
We begin with two key results: Hoeffding’s inequality and McDiarmid’s inequality.

Hoeffding’s Inequality. Suppose that a random variable Z has a finite mean and that P(Z ≥ 0) = 1. Then, for
any ϵ > 0,

E [Z] =

∫ ∞

0

z dP (z) ≥
∫ ∞

ϵ

z dP (z) ≥ ϵ

∫ ∞

ϵ

dP (z) = ϵP(Z > ϵ),
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which yields Markov’s inequality:

P(Z > ϵ) ≤ E(Z)

ϵ
.

An immediate consequence is Chebyshev’s inequality

P (|Z − µ| > ϵ) = P
(
|Z − µ|2 > ϵ2

)
≤ E(Z − µ)2

ϵ2
=

σ2

ϵ2

where µ = E(Z) and σ2 = V ar(Z). If Z1, . . . , Zn are iid with mean µ and variance σ2 then, since V ar(Zn) = σ2/n,
Chebyshev’s inequality yields

P
(∣∣Zn − µ

∣∣ > ϵ
)
≤ σ2

nϵ2
.

While this inequality is useful, it does not decay exponentially fast as n increases.
To improve the inequality, we use Chernoff’s method: for any t > 0,

P(Z > ϵ) = P(eZ > eϵ) = P(etZ > etϵ) ≤ e−tϵE(etZ).

We then minimize over t and conclude that:

P(Z > ϵ) ≤ inf
t≥0

e−tϵE(etZ).

Before proceeding, we need the following result.

Lemma 1. Let Z be a mean 0 random variable such that a ≤ Z ≤ b. Then, for any t,

E
[
etZ
]
< et

2(b−a)2/8.

Proof. Since a ≤ Z ≤ b, we can write Z as a convex combination of a and b, namely, Z = αb + (1 − α)a where
α = (Z − a)/(b− a). By the convexity of the function y → ety we have

etZ ≤ αetb + (1− α)eta =
Z − a

b− a
etb +

b− Z

b− a
eta.

Take expectations of both sides and use the fact that E(Z) = 0 to get

EetZ ≤ − a

b− a
etb +

b

b− a
eta = eg(u)

where u = t(b−a), g(u) = −γu+log(1−γ+γeu) and γ = −a/(b−a). Note that g(0) = g′(0) = 0. Also, elementary
calculus shows that

g′′(u) =
(1− γ)γeu

(1− γ + γeu)2
,

then AM-GM inequality shows that g′′(u) ≤ 1
4 , and the equality holds if and only if u = log

(
− b

a

)
. Now, Taylor’s

theorem with the integral form of the remainder gives

g(u) = g(0) + ug′(0) +

∫ u

0

g′′(s)(u− s)ds =

∫ u

0

g′′(s)(u− s)ds.

Then note that
(
1
4 − g′′(s)

)
(u − s) as a function of s is continuous and strictly positive on (0, u) with possibe

exception at s = log
(
− b

a

)
, so

∫ u

0

(
1
4 − g′′(s)

)
(u− s)ds > 0 and

g(u) =

∫ u

0

g′′(s)(u− s)ds <

∫ u

0

1

4
(u− s)ds =

u2

8
.

Hence,
EetZ ≤ eg(u) < et

2(b−a)2/8.
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Theorem 2 (Hoeffding). If Z1, Z2, . . . , Zn are independent with P(ai ≤ Zi ≤ bi) = 1, then for any t > 0

P
(∣∣Zn − µ

∣∣ ≥ ϵ
)
< 2e−2nϵ2/c,

where c = n−1
∑n

i=1(bi − ai)
2 and Zn = 1

n

∑n
i=1 Zi.

Proof. For simplicity assume that E(Zi) = 0. Now we use the Chernoff method. For any t > 0, we have, from
Markov’s inequality, that

P

(
1

n

n∑
i=1

Zi ≥ ϵ

)
= P

(
t

n

n∑
i=1

Zi ≥ tϵ

)
= P

(
e(t/n)

∑n
i=1 Zi ≥ etϵ

)
≤ e−tϵE

[
e(t/n)

∑n
i=1 Zi

]
= e−tϵ

∏
i

E
[
e(t/n)Zi

]
(3)

< e−tϵe(t
2/n2)

∑n
i=1(bi−ai)

2/8

where the last inequality follows from Lemma 1. Now we minimize the right hand side over t. In particular, we set
t = 4ϵn2/

∑n
i=1(bi − ai)

2 and get P
(
Zn ≥ ϵ

)
< e−2nϵ2/c. By a similar argument, P

(
Zn ≤ −ϵ

)
< e−2nϵ2/c and the

result follows.

Corollary 3. If Z1, Z2, . . . , Zn are independent with P(ai ≤ Zi ≤ bi) = 1 and common mean µ, then, with probability
at least 1− δ,

|Zn − µ| ≤

√
c

2n
log

(
2

δ

)
,

where c = n−1
∑n

i=1(bi − ai)
2.

Corollary 4. If Z1, Z2, . . . , Zn are independent Bernoulii random variables with P(Zi = 1) = p then, for any ϵ > 0,

P
(
|Zn − p| ≥ ϵ

)
< 2e−2nϵ2 and with probability at least 1− δ we have that |Zn − p| ≤

√
1
2n log

(
2
δ

)
.

Example (Classification). Returning to the classification problem, let h be a classifier and let f(z) = I(y ̸= h(x))

where z = (x, y). Then Hoeffding’s inequality implies that |R(h)− R̂n(h)| ≤
√

1
2n log

(
2
δ

)
with probability at least

1− δ.

McDiarmid’s Inequality. So far we have focused on sums of random variables. The following result extends
Hoeffding’s inequality to more general functions f(z1, . . . , zn).

Theorem 5 (McDiarmid). Let Z1, . . . , Zn be independent random variables. Suppose that

sup
z1,...,zn,z′

i

∣∣∣∣∣f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)

∣∣∣∣∣ ≤ ci, (4)

for i = 1, . . . , n. Then

P

(∣∣∣f(Z1, . . . , Zn)− E(f(Z1, . . . , Zn))
∣∣∣ ≥ ϵ

)
< 2 exp

(
− 2ϵ2∑n

i=1 c
2
i

)
.

Proof. First we write

P (|f(Z1, . . . , Zn)− E(f(Z1, . . . , Zn))| ≥ ϵ)

= P (f(Z1, . . . , Zn)− E(f(Z1, . . . , Zn)) ≥ ϵ) + P (f(Z1, . . . , Zn)− E(f(Z1, . . . , Zn)) ≤ −ϵ) .

We will show the first inequality. The second follows similarly. Let Vi = E(g|Z1, . . . , Zi)− E(g|Z1, . . . , Zi−1). Then
f(Z1, . . . , Zn)−E(f(Z1, . . . , Zn)) =

∑n
i=1 Vi and E(Vi|Z1, . . . , Zi−1) = 0. Using a similar argument as in Lemma 1,

we have
E(etVi |Z1, . . . , Zi−1) < et

2c2i /8. (5)
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Now, for any t > 0,

P (f(Z1, . . . , Zn)− E(f(Z1, . . . , Zn)) ≥ ϵ) = P

(
n∑

i=1

Vi ≥ ϵ

)
= P

(
et

∑n
i=1 Vi ≥ etϵ

)
≤ e−tϵE

(
et

∑n
i=1 Vi

)
= e−tϵE

(
et

∑n−1
i=1 ViE

(
etVn

∣∣∣∣∣ Z1, . . . , Zn−1

))
< e−tϵet

2c2n/8E
(
et

∑n−1
i=1 Vi

)
...

< e−tϵe(t
2 ∑n

i=1 c2i )/8.

The result follows by taking t = 4ϵ/
∑n

i=1 c
2
i .

If we take f(z1, . . . , zn) = n−1
∑n

i=1 zi then we get back Hoeffding’s inequality. As an example of the application
of McDiarmid’s inequality, we consider bounding an average of the form n−1

∑n
i=1 ϕ(Zi) where ϕ is some, possibly

high-dimensional, mapping.

Theorem 6 (Shawe-Taylor and Cristianini). Suppose that X ∈ Rd and let ϕ : Rd → F where F is a Hilbert space.
Let B = supz ||ϕ(z)|| and assume that B < ∞. Then

P

(∥∥∥∥∥ 1n
n∑

i=1

ϕ(Zi)− E [ϕ(Z)]

∥∥∥∥∥ >
B√
n

[
2 +

√
2 log

(
1

δ

)])
< δ.

Proof. Let S = (Z1, . . . , Zn) and let S′ = (Z1, . . . , Zi−1, Z
′
i, Zi+1, . . . , Zn). Define

g(S) =

∥∥∥∥∥ 1n
n∑

i=1

ϕ(Zi)− E [ϕ(Z)]

∥∥∥∥∥ .
Then |g(S)− g(S′)| ≤ 2B/n, so McDiarmid’s inequality implies that

P (g(S)− E(g(S)) > ϵ) ≤ exp

(
−2nϵ2

4B2

)
. (6)

It remains to bound E(g(S)). Let S′ = (Z ′
1, . . . , Z

′
n) denote a second, independent sample and let σ = (σ1, . . . , σn)

denote independent random variables satisfying P(σi = 1) = P(σi = −1) = 1/2. (The random variables σi are called
Rademacher variables and will be discussed in more detail in the next section.) Let ϕS = n−1

∑n
i=1 ϕ(Zi). Then,

E(g(S)) = E
(∣∣∣∣ϕS − E(ϕS)

∣∣∣∣) = E
(∣∣∣∣ϕS − E(ϕS′)

∣∣∣∣)
= E

(∣∣∣∣E(ϕS − (ϕS′))
∣∣∣∣) ≤ E

(∣∣∣∣ϕS − (ϕS′)
∣∣∣∣)

= E

(
1

n

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

σi(ϕ(Zi)− ϕ(Z ′
i))

∣∣∣∣∣
∣∣∣∣∣
)

≤ 2E

(
1

n

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

σiϕ(Zi)

∣∣∣∣∣
∣∣∣∣∣
)

= 2E

 1

n

√√√√ n∑
i=1

σ2
i ϕ

2(Zi) +
∑
i̸=j

σiσjϕ(Zi)ϕ(Zj)



≤ 2

n

√√√√√E

 n∑
i=1

σ2
i ϕ

2(Zi) +
∑
i ̸=j

σiσjϕ(Zi)ϕ(Zj)


=

2

n

√√√√ n∑
i=1

E(ϕ2(Zi)) ≤
2B√
n
.

The result follows by combining this with (6) and setting ϵ = B
√

2
n log

(
1
δ

)
.
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As another example, suppose that Z1, . . . , Zn are real-valued random variables with cdf F . Let Fn(z) =
n−1

∑n
i=1 I(Zi ≤ x) be the empirical cdf. Let f(Z1, . . . , Zn) = supz |Fn(z) − F (z)|. If we change on Zi then f

changes by at most 1/n. Hence,

P

(
sup
z

|Fn(z)− F (z)| − E(sup
z

|Fn(z)− F (z)|) > ϵ

)
≤ e−2nϵ2 . (7)

The Gaussian Tail Inequality. Let X ∼ N(0, 1). Hence, X has density ϕ(x) = (2π)−1/2e−x2/2 and distribution
function Φ(x) =

∫ x

−∞ ϕ(s)ds. For any ϵ > 0,

P(X > ϵ) =

∫ ∞

ϵ

ϕ(s)ds ≤ 1

ϵ

∫ ∞

ϵ

sϕ(s)ds = −1

ϵ

∫ ∞

ϵ

ϕ′(s)ds =
ϕ(ϵ)

ϵ
≤ 1

ϵ
e−ϵ2/2. (8)

By symmetry we have that

P(|X| > ϵ) ≤ 2

ϵ
e−ϵ2/2.

Now suppose that X1, . . . , Xn ∼ N(µ, σ2). Then Xn = n−1
∑n

i=1 Xi ∼ N(µ, σ2/n). Let Z ∼ N(0, 1). Then,

P(|Xn − µ| > ϵ) = P
(√

n|Xn − µ|/σ >
√
nϵ/σ

)
= P

(
|Z| >

√
nϵ/σ

)
(9)

≤ 2σ

ϵ
√
n
e−nϵ2/(2σ2) ≤ e−nϵ2/(2σ2) (10)

for all large n. This bound is very powerful because the probability on the right hand side goes to 0 exponentially
fast as the sample size n increases.

Bernstein’s Inequality. Hoeffding’s inequality does not use any information about the random variables except
the fact that they are bounded. If the variance of Xi is small, then we can get a sharper inequality from Bernstein’s
inequality. We begin with a preliminary result.

Lemma 7. Suppose that |X| ≤ c and E(X) = 0. For any t > 0,

E(etX) ≤ exp

{
t2σ2

(
etc − 1− tc

(tc)2

)}
,

where σ2 = Var(X).

Proof. Let F =
∑∞

r=2
tr−2E(Xr)

r!σ2 . Then,

E(etX) = E

(
1 + tx+

∞∑
r=2

trXr

r!

)
= 1 + t2σ2F ≤ et

2σ2F .

For r ≥ 2, E(Xr) = E(Xr−2X2) ≤ cr−2σ2 and so

F ≤
∞∑
r=2

tr−2cr−2σ2

r!σ2
=

1

(tc)2

∞∑
i=2

(tc)r

r!
=

etc − 1− tc

(tc)2
.

Hence, E(etX) ≤ exp
{
t2σ2 etc−1−tc

(tc)2

}
.

Theorem 8 (Bernstein). If P(|Xi| ≤ c) = 1 and E(Xi) = 0 then, for any t > 0,

P
(
|Xn| > ϵ

)
≤ 2 exp

{
− nϵ2

2σ2 + 2cϵ/3

}
,

where σ2 = 1
n

∑n
i=1 V ar(Xi).

6



Proof. From Lemma 7,

E(etXi) ≤ exp

{
t2σ2

i

etc − 1− tc

(tc)2

}
,

where σ2
i = E(X2

i ). Now,

P
(
Xn > ϵ

)
= P

(
n∑

i=1

Xi > nϵ

)
= P

(
et

∑n
i=1 Xi > etnϵ

)
≤ e−tnϵE(et

∑n
i=1 Xi) = e−tnϵ

n∏
i=1

E(etXi)

≤ e−tnϵ exp

{
nt2σ2 e

tc − 1− tc

(tc)2

}
.

Take t = (1/c) log(1 + ϵc/σ2) to get

P(Xn > ϵ) ≤ exp

{
−nσ2

c2
h
( cϵ

σ2

)}
,

where h(u) = (1 + u) log(1 + u)− u. The results follows by noting that h(u) ≥ u2/(2 + 2u/3) for u ≥ 0.

A useful corollary is the following.

Lemma 9. Let X1, . . . , Xn be iid and suppose that |Xi| ≤ c and E(Xi) = µ. With probability at least 1− δ,

|Xn − µ| ≤
√

2σ2 log(1/δ)

n
+

2c log(1/δ)

3n
.

If σ2 is very small than the first term on the right hand side becomes negligible resulting in a very tight bound.

5 Measures of Complexity
To develop uniform bounds we need to introduce some complexity measures. More specifically, given a class of
functions F , we need some way to measure how complex the class F is. If F = {f1, . . . , fN} is finite then an obvious
measure of complexity is the size of the set, N . The more challenging case is when F is infinite.

Rademacher Complexity. Our first measure is rather subtle but is extremely important: the Rademacher com-
plexity.

Random variables σ1, . . . , σn are called Rademacher random variables if they are independent, identically dis-
tributed and P(σi = 1) = P(σi = −1) = 1/2. Define the Rademacher complexity of F by

Radn(F) = E

(
sup
f∈F

(
1

n

n∑
i=1

σif(Zi)

))
.

Some authors use a slightly different definition, namely,

Radn(F) = E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

σif(Zi)

∣∣∣∣∣
)
.

You can use either one. They lead to essentially the same results.
Intuitively, Radn(F) is large if we can find functions f ∈ F that “look like” random noise, that is, they are highly

correlated with σ1, . . . , σn. Here are some properties of the Rademacher complexity.

Lemma. 1. If F ⊂ G then Radn(F , Zn) ≤ Radn(G, Zn).

2. Let conv(F) denote the convex hull of F . Then Radn(F , Zn) = Radn(conv(F), Zn).
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3. For any c ∈ R, Radn(cF , Zn) = |c|Radn(F , Zn).

4. Let g : R → R be such that g(0) = 0 and, |g(y) − g(x)| ≤ L|x − y| for all x, y. Then Radn(g ◦ F , Zn) ≤
2LRadn(F , Zn).

The Rademacher complexity arises naturally in many proofs. But it is hard to compute and so it is common to
replace the Rademacher complexity with an upper bound. This leads us to shattering numbers.

Shattering Numbers. Let Z be a set and let F is a class of binary functions on Z. Thus, each f ∈ F maps Z to
{0, 1}. For any z1, . . . , zn define

Fz1,...,zn =
{
(f(z1), . . . , f(zn)) : f ∈ F

}
. (11)

Note that Fz1,...,zn is a finite collection of vectors and that |Fz1,...,zn | ≤ 2n. The set Fz1,...,zn is called the projection
of F onto z1, . . . , zn.

Example. Let F = {ft : t ∈ R} where ft(z) = 1 if z > t and ft(z) = 0 of z ≤ t. Consider three real numbers
z1 < z2 < z3. Then

Fz1,z2,z3 =
{
(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

}
.

Define the growth function or shattering number by

s(F , n) = sup
z1,...,zn

∣∣Fz1,...,zn

∣∣. (12)

A binary function f can be thought of as an indicator function for a set, namely, A = {z : f(x) = 1}. Conversely,
any set can be thought of as a binary function, namely, its indicator function IA(z). We can therefore re-express
the growth function in terms of sets. If A is a class of subsets of Rd then s(A, n) is defined to be s(F , n) where
F = {IA : A ∈ A}| is the set of indicator functions and then s(A, n) is again called the shattering number. It
follows that

s(A, n) = max
F

s(A, F )

where the maximum is over all finite sets of size n and s(A, F ) = |{A ∩ F : A ∈ A}| denotes the number of subsets
of F picked out by A. We say that a finite set F of size n is shattered by A if s(A, F ) = 2n.

Theorem 10. Let A and B be classes of subsets of Rd.

1. s(A, n+m) ≤ s(A, n)s(A,m).

2. If C = A
⋃
B then s(C, n) ≤ s(A, n) + s(B, n)

3. If C = {A
⋃
B : A ∈ A, B ∈ B} then s(C, n) ≤ s(A, n)s(B, n).

4. If C = {A
⋂
B : A ∈ A, B ∈ B} then s(C, n) ≤ s(A, n)s(B, n).

Proof. Exercise.

Theorem 11. Let F be a set of binary functions. Then, for all n,

Radn(F) ≤
√

2 log s(F , n)

n
. (13)

Proof. Let sn be the shattering number of F . Recall that, If Z has mean 0 and a ≤ Z ≤ b then E[etZ ] ≤ et
2(b−a)2/8.

We have

Radn(F) = E

(
sup
f

1

n

∑
i

σif(Zi)

)
= EE sup

f

[
1

n

∑
i

σif(Zi)

∣∣∣∣∣ Z1, . . . , Zn

]
= EQ,

where

Q = Emax
v∈V

[
1

n

∑
i

σivi|Z1, . . . , Zn

]
,

where v = (v1, . . . , vn) and vi = f(Zi). The vector v varies over V = ((f(Z1), . . . , f(Zn)) : ∈ F).

8



Now

etQ = exp

(
tEmax

v

[
1

n

∑
i

σivi|Z1, . . . , Zn

])

≤ E

(
exp

(
tmax

v

[
1

n

∑
i

σivi

]) ∣∣∣∣∣ Z1, . . . , Zn

)

= E

(
max

v
exp

(
t

n

1

n

∑
i

σivi

) ∣∣∣∣∣ Z1, . . . , Zn

)

≤
∑
v

E

(
exp

(
t

n

∑
i

σivi

) ∣∣∣∣∣ Z1, . . . , Zn

)
=
∑
v

∏
i

E
(
etσivi/n|Z1, . . . , Zn

)
=
∑
v

∏
i

et
2/(2n) = sne

t2/(2n).

In the last step, we used the fact that, given Z1, . . . , Zn, σivi has mean 0 and −1/n ≤ σivi ≤ 1/n and then we
applied the Lemma above. Taking the log of both side gives

tQ ≤ log(sn) +
t2

2n
,

and so
Q ≤ log sn

t
+

t

2n
.

Hence,

Radn(F) ≤ log sn
t

+
t

2n
.

Let t =
√
2n log sn. Then we get

Radn(F) ≤
√

2 log sn
n

.

VC Dimension. Recall that a finite set F of size n is shattered by A if s(A, F ) = 2n. The VC dimension (named
after Vapnik and Chervonenkis) of A is the size of the largest set that can be shattered by A.

The VC dimension of a class of set A is

VC(A) = sup
{
n : s(A, n) = 2n

}
. (14)

Similarly, the VC dimension of a class of binary functions F is

VC(F) = sup
{
n : s(F , n) = 2n

}
. (15)

If the VC dimension is finite, then the growth function cannot grow too quickly. In fact, there is a phase
transition: s(F , n) = 2n for n < d and then the growth switches to polynomial.

Theorem 12. Suppose that F has finite VC dimension d. Then,

s(F , n) ≤
d∑

i=0

(
n

i

)
, (16)

and for all n ≥ d,

s(F , n) ≤
(en
d

)d
. (17)

9



Class A VC dimension VA
A = {A1, . . . , AN} ≤ log2 N
Intervals [a, b] on the real line 2
Discs in R2 3
Closed balls in Rd ≤ d+ 2
Rectangles in Rd 2d
Half-spaces in Rd d+ 1
Convex polygons in R2 ∞

Table 1: The VC dimension of some classes A.

Proof. When n = d = 1, (16) clearly holds. We show that now proceed by induction. Suppose that (16) holds for
n−1 and d−1 and also that it holds for n−1 and d. We will show that it holds for n and d. Let h(n, d) =

∑d
i=0

(
n
i

)
.

We need to show that VC(F) ≤ d implies that s(F , n) ≤ h(n, d). Let F1 = {z1, . . . , zn} and F2 = {z2, . . . , zn}.
Let F1 = {(f(z1), . . . , f(zn) : f ∈ F} and F2 = {(f(z2), . . . , f(zn) : f ∈ F}. For f, g ∈ F , write f ∼ g if
g(z1) = 1− f(z1) and g(zj) = f(zj) for j = 2, . . . , n. Let

G =
{
f ∈ F : there exists g ∈ F such that g ∼ f

}
.

Define F3 = {(f(z2), . . . , f(zn)) : f ∈ G}. Then |F1| = |F2|+ |F3|. Note that VC(F2) ≤ d and VC(F3) ≤ d− 1. The
latter follows since, if F3 shatters a set, then we can add z1 to create a set that is shattered by F1. By assumption
|F2| ≤ h(n− 1, d) and |F3| ≤ h(n− 1, d− 1). Hence,

|F1| ≤ h(n− 1, d) + h(n− 1, d− 1) = h(n, d).

Thus, s(F , n) ≤ h(n, d) which proves (16).
To prove (17), we use the fact that n ≥ d and so:

d∑
i=0

(
n

i

)
≤

(n
d

)d d∑
i=0

(
n

i

)(
d

n

)i

≤
(n
d

)d n∑
i=0

(
n

i

)(
d

n

)i

≤
(n
d

)d(
1 +

d

n

)n

≤
(n
d

)d
ed.

The VC dimensions of some common examples are summarized in Table 1.

Theorem 13. Suppose that F has finite VC dimension d. There exists a universal constant C > 0 such that
Radn(F) ≤ C

√
d/n.

For a proof, see, for example, [4].

6 Uniform Bounds
Now we extend the concentration inequalities to hold uniformly over sets of functions. We start with finite collections.

Theorem 14. Suppose that F = {f1, . . . , fN} is a finite set of bounded functions. Then, with probability at least
1− δ,

sup
f∈F

|Pn(f)− P (f)| ≤

√
c

2n
log

(
2N

δ

)
,

where c = 4maxj ∥fj∥2∞.

Proof. It follows from Hoeffding’s inequality that, for each f ∈ F , P (|Pn(f)− P (f)| > ϵ) ≤ 2e−2nϵ2/c. Hence,

P
(
max
f∈F

|Pn(f)− P (f)| > ϵ

)
= P (|Pn(f)− P (f)| > ϵ for some f ∈ F)

≤
N∑
j=1

P (|Pn(fj)− P (fj)| > ϵ) ≤ 2Ne−2nϵ2/c.

The conclusion follows.
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Now we consider results for the case where F is infinite. We begin with an important result due to Vapnik and
Chervonenkis [7]. Also see Theorem 12.5 in [3]

Theorem 15 (Vapnik and Chervonenkis). Let F be a class of binary functions. For any t >
√
2/n,

P

(
sup
f∈F

|(Pn − P )f | > t

)
≤ 4 s(F , 2n)e−nt2/8,

and hence, with probability at least 1− δ,

sup
f∈F

|Pn(f)− P (f)| ≤

√
8

n
log

(
4s(F , 2n)

δ

)
. (18)

Before proving the theorem, we need the symmetrization lemma. Let Z ′
1, . . . , Z

′
n denote a second independent

sample from P . Let P ′
n denote the empirical distribution of this second sample. The variables Z ′

1, . . . , Z
′
n are called

a ghost sample.

Lemma 16 (Symmetrization). For all t >
√

2/n,

P

(
sup
f∈F

|(Pn − P )f | > t

)
≤ 2P

(
sup
f∈F

|(Pn − P ′
n)f | > t/2

)
.

Proof. Let fn ∈ F maximize |(Pn −P )f |. Note that fn is a random function as it depends on Z1, . . . , Zn. We claim
that if |(Pn − P )fn| > t and |(P − P ′

n)fn| ≤ t/2 then |(P ′
n − Pn)fn| > t/2. This follows since

t < |(Pn − P )fn| = |(Pn − P ′
n + P ′

n − P )fn| ≤ |(Pn − P ′
n)fn|+ |(P ′

n − P )fn| ≤ |(Pn − P ′
n)fn|+

t

2

and hence |(P ′
n − Pn)fn| > t/2. So

I(|(Pn − P )fn| > t) I(|(P − P ′
n)fn| ≤ t/2) = I(|(Pn − P )fn| > t, |(P − P ′

n)fn| ≤ t/2)

≤ I(|(P ′
n − Pn)fn| > t/2).

Now take the expected value over Z ′
1, . . . , Z

′
n and conclude that

I(|(Pn − P )fn| > t)P′(|(P − P ′
n)fn| ≤ t/2) ≤ P′(|(P ′

n − Pn)fn| > t/2).

By Chebyshev’s inequality,

P′(|(P − P ′
n)fn| > t/2) ≤ 4V ar′(fn)

nt2
≤ 1

nt2
<

1

2
.

(Here we used the fact that W ∈ {0, 1} implies that V ar(W ) ≤ 1/4.) So

P′(|(P − P ′
n)fn| ≤ t/2) ≥ 1

2
.

Thus,
I(|(Pn − P )fn| > t) ≤ 2P′(|(P ′

n − Pn)fn| > t/2).

Thus
I
(
sup
f∈F

|(Pn − P )f | > t
)
≤ 2P′

(
sup
f∈F

|(P ′
n − Pn)f | > t/2

)
.

Now take the expectation over Z1, . . . , Zn to conclude that

P
(
sup
f∈F

|(Pn − P )f | > t
)
≤ 2P

(
sup
f∈F

|(P ′
n − Pn)f | > t/2

)
.

The importance of symmetrization is that we have replaced (Pn − P )f , which can take any real value, with
(Pn − P ′

n)f , which can take only finitely many values. Now we prove the Vapnik-Chervonenkis theorem.
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Proof. By using the symmetrization lemma,

P

(
sup
f∈F

|(Pn − P )f | > t

)
≤ 2P

(
sup
f∈F

|(P ′
n − Pn)f | >

t

2

)
.

Now we introduce Rademacher variables σ1, . . . , σn, i.i.d. with P (σi = +1) = P (σi = −1) = 1
2 . Note that{

1

n

n∑
i=1

(f(Z ′
i)− f(Zi))

}
f∈F

d
=

{
1

n

n∑
i=1

σi(f(Z
′
i)− f(Zi))

}
f∈F

where d
= means “equal in distribution.” Hence,

2P

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Z ′
i)− f(Zi))

∣∣∣∣∣ > t

2

)
= 2P

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

σi(f(Z
′
i)− f(Zi))

∣∣∣∣∣ > t

2

)
.

Now, let V = FZ′
1,...,Z

′
n,Z1,...,Zn

, and write the notation (v′, v) ∈ V with v′, v ∈ {0, 1)n. Then

2P

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

σi(f(Z
′
i)− f(Zi))

∣∣∣∣∣ > t

2

)
= 2E

[
P

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

σi(f(Z
′
i)− f(Zi))

∣∣∣∣∣ > t

2

∣∣∣∣∣ Z ′, Z

)]

= 2E

[
P

(
max

(v′,v)∈V

∣∣∣∣∣ 1n
n∑

i=1

σi(v
′
i − vi)

∣∣∣∣∣ > t

2

∣∣∣∣∣ Z ′, Z

)]

≤ 2E

 ∑
(v′,v)∈V

P

(∣∣∣∣∣ 1n
n∑

i=1

σi(v
′
i − vi)

∣∣∣∣∣ > t

2

∣∣∣∣∣ Z ′, Z

)
≤ 2E

 ∑
(v′,v)∈V

2 exp

(
−nt2

8

) (Hoeffding′s inequality)

≤ 4s(F , 2n)e−nt2/8.

Recall that, for a class with finite VC dimension d, s(F , n) ≤ (en/d)d. In this case, (18) implies that

sup
f∈F

|Pn(f)− P (f)| ≤

√
8

n

(
log

(
4

δ

)
+ d log

(ne
d

))
.

Now we obtain uniform bounds using Rademacher complexity. For this, we bound the symmetrization by
Rademacher complexity.

Lemma 17 (Symmetrization).

E

[
sup
f∈F

|(Pn − P )f |

]
≤ 2Radn(F).

Proof. Once again we introduce a ghost sample Z ′
1, . . . , Z

′
n and Rademacher variables σ1, . . . , σn, Note that P (f) =

E′P ′
n(f). Also note that

1

n

n∑
i=1

(f(Z ′
i)− f(Zi))

d
=

1

n

n∑
i=1

σi(f(Z
′
i)− f(Zi))

12



where d
= means “equal in distribution.” Hence,

E

[
sup
f∈F

(P (f)− Pn(f))

]
= E

[
sup
f∈F

(E′(P ′
n(f)− Pn(f)))

]

≤ EE′

[
sup
f∈F

(P ′
n(f)− Pn(f))

]
= EE′

[
sup
f∈F

(
1

n

n∑
i=1

(f(Z ′
i)− f(Zi))

)]

= EE′

[
sup
f∈F

(
1

n

n∑
i=1

σi(f(Z
′
i)− f(Zi))

)]

≤ E′

[
sup
f∈F

(
1

n

n∑
i=1

σi f(Z
′
i)

)]
+ E

[
sup
f∈F

(
1

n

n∑
i=1

σi f(Zi)

)]
= 2Radn(F).

Theorem 18. With probability at least 1− δ,

sup
f∈F

|Pn(f)− P (f)| ≤ 2Radn(F) +

√
1

2n
log

(
2

δ

)
,

and

sup
f∈F

|Pn(f)− P (f)| ≤ 2Radn(F , Zn) +

√
4

n
log

(
2

δ

)
.

Proof. The proof has two steps. First we show that supf∈F |Pn(f)−P (f)| is close to its mean. Then we bound the
mean.
Let g(Z1, . . . , Zn) = supf∈F (Pn(f)−P (f)). If we change Zi to some other value Z ′

i then |g(Z1, . . . , Zn)−g(Z1, . . . , Z
′
i, . . . , Zn)| ≤

1
n . By McDiarmid’s inequality,

P (|g(Z1, . . . , Zn)− E[g(Z1, . . . , Zn)]| > ϵ) ≤ 2 e−2nϵ2 .

Hence, with probability at least 1− δ,

g(Z1, . . . , Zn) ≤ E[g(Z1, . . . , Zn)] +

√
1

2n
log

(
2

δ

)
. (19)

Then the mean E[g(Z1, . . . , Zn)] is bounded by Lemma 17 as

E[g(Z1, . . . , Zn)] = E

[
sup
f∈F

(P (f)− Pn(f))

]
≤ 2Radn(F).

Combining this bound with (19) proves the first result.
To prove the second result, let a(Z1, . . . , Zn) = Radn(F , Zn) and note that a(Z1, . . . , Zn) changes by at most

1/n if we change one observation. McDiarmid’s inequality implies that |Radn(F , Zn) − Radn(F)| ≤
√

1
2n log

(
2
δ

)
with probability at least 1− δ. Combining this with the first result yields the second result.

Combining this theorem some Theorem 11 and Theorem 13 we get the following result.

Corollary 19. With probability at least 1− δ,

sup
f∈F

|Pn(f)− P (f)| ≤
√

8 log s(F , n)

n
+

√
1

2n
log

(
2

δ

)
.

If F has finite VC dimension d then, with probability at least 1− δ,

sup
f∈F

|Pn(f)− P (f)| ≤ 2C

√
d

n
+

√
1

2n
log

(
2

δ

)
.
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7 Example: Classification
Let H be a set of classifiers with finite VC dimension d. The optimal classifier h∗ ∈ H minimizes

R(h) = P(Y ̸= h(X)).

The empirical risk minimizer is the classifier ĥ that minimizes

R̂n(h) =
1

n

n∑
i=1

I(Yi ̸= h(Xi)).

From the VC theorem, with high probability,

sup
h∈H

|R̂(h)−R(h)| ⪯
√

d log n

n
.

Hence, with high probability

R(ĥ) ⪯ R̂(ĥ) +

√
d log n

n
⪯ R̂(h∗) +

√
d log n

n
⪯ R(h∗) +

√
d log n

n
.

So empirical risk minimization comes close to the best risk in the class if the VC dimension is finite.

8 Example: k-means Clustering
We can use concentration of measure to prove some properties of k-means clustering. Let C = {c1, . . . , ck} and
define the risk R(C) = E ∥X −ΠC [X]∥2 where ΠC [x] = argmincj ∥|x− cj∥2. Let C∗ = {c∗1, . . . , c∗k} be a minimizer
of R(C).

Theorem 20. Suppose that P(||Xi||2 ≤ B) = 1 for some B < ∞. Then

E(R(Ĉ))−R(C∗) ≤ c

√
k(d+ 1) log n

n
,

for some c > 0.

Warning! The fact that R(Ĉ) is close to R(C∗) does not imply that Ĉ is close to C∗.
This proof is due to [6].

Proof. Note that R(Ĉ) − R(C∗) = R(Ĉ) − Rn(Ĉ) + Rn(Ĉ) − R(C∗) ≤ R(Ĉ) − Rn(Ĉ) + Rn(C
∗) − R(C∗) ≤

2 supC∈Ck
|R(Ĉ)−Rn(Ĉ)|. For each C define a function fC by fC(x) = ||x−ΠC [x]||2. Note that supx |fC(x)| ≤ 4B

for all C. Now, using the fact that E(Y ) =
∫∞
0

P(Y ≥ t)dt whenever Y ≥ 0, we have

2 sup
C∈Ck

|R(Ĉ)−Rn(Ĉ)| = 2 sup
C

∣∣∣∣∣ 1n
n∑

i=1

(fC(Xi)− E(fC(X)))

∣∣∣∣∣
= 2 sup

C

∣∣∣∣∣
∫ 4B

0

(
1

n

n∑
i=1

I(fC(Xi) > u)− P(fC(Z) > u)

)
du

∣∣∣∣∣
≤ 8B sup

C,u

∣∣∣∣∣ 1n
n∑

i=1

I(fC(Xi) > u)− P(fC(Z) > u)

∣∣∣∣∣
= 8B sup

A

∣∣∣∣∣ 1n
n∑

i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ ,

14



where A varies over all sets A of the form {fC(x) > u}. The shattering number of A is s(A, n) ≤ nk(d+1). This
follows since each set {fC(x) > u} is a union of the complements of k spheres. By Theorem 11,

P(R(Ĉ)−R(C∗) > ϵ) ≤ P

(
8B sup

A

∣∣∣∣∣ 1n
n∑

i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ > ϵ

)

= P

(
sup
A

∣∣∣∣∣ 1n
n∑

i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ > ϵ

8B

)
≤ 4(2n)k(d+1)e−nϵ2/(512B2).

Now apply Theorem 24 to conclude that E(R(Ĉ)−R(C∗)) ≤ C
√
k(d+ 1)

√
logn
n .

A sharper result, together with a lower bound is the following.

Theorem 21 ([1]). Suppose that P
(
∥X∥2 ≤ 1

)
= 1 and that n ≥ k4/d,

√
dk1−2/d log n ≥ 15, kd ≥ 8, n ≥ 8d and

n/ log n ≥ dk1+2/d. Then,

E(R(Ĉ))−R(C∗) ≤ 32

√
dk1−2/d log n

n
= O

(√
dk log n

n

)
.

Also, if k ≥ 3, n ≥ 16k/(2Φ2(−2)) then, for any method Ĉ that selects k centers, there exists P such that

E(R(Ĉ))−R(C∗) ≥ c0

√
k1−4/d

n

where c0 = Φ4(−2)2−12/
√
6 and Φ is the standard Gaussian distribution function.

See [1] for a proof. It follows that k-means is risk consistent in the sense that R(Ĉ) − R(C∗)
P→ 0, as long as

k = o(n/(d3 log n)). Moreover, the lower bound implies that we cannot find any other method that improves much
over the k-means approach, at least with respect to this loss function.

The previous results depend on the dimension d. It is possible to get a dimension-free result at the expense
of replacing

√
k with k. In fact, the following result even applies to functions instead of vectors. In that case, we

interpret || · || to be the norm in a Hilbert space. The proof uses Radaemacher variables instead of VC arguments.

Theorem 22 ([2]). Suppose that P(||Xi|| ≤ B) = 1. Then

E(R(Ĉ))−R(C∗) ≤ 12B2k√
n

.

Proof. Define W (C,P ) = EP

(
min1≤j≤k

[
−2⟨X, cj⟩+ ||cj ||2

])
. Minimizing R(C) is equivalent to minimizing W (C,P )

and minimizing Rn(C) is equivalent to minimizing W (C,Pn) where Pn is the empirical measure that puts mass 1/n
at each Xi. Arguing as in the proof of Theorem 20,

E(W (Ĉ, P ))−W (C∗, P ) ≤ 2E
(
sup
C

W (C,P )−W (C,Pn)
)
.

Let σ1, . . . , σn be Rademacher random variables. That is, σ1, . . . , σn are iid and P(σi = +1) = P(σi = −1) = 1/2.
Let X ′

1, . . . , X
′
n be a second independent sample. Let ℓc(x) = −2⟨x, c⟩+ ∥c∥2. Then,

E
(
sup
C

W (C,P )−W (C,Pn)
)
≤ E

(
sup
C

1

n

n∑
i=1

σi

[
min

1≤j≤n
ℓcj (Xi)− min

1≤j≤n
ℓcj (X

′
i)

])

≤ E

(
sup
C

1

n

n∑
i=1

σi

[
min

1≤j≤n
ℓcj (Xi)

])

+ E

(
sup
C

1

n

n∑
i=1

(−σi)

[
min

1≤j≤n
ℓcj (Xi)

])

= 2E

(
sup
C

1

n

n∑
i=1

σi

[
min

1≤j≤n
ℓcj (Xi)

])
.
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An inductive argument shows that

2E

(
sup
C

1

n

n∑
i=1

σi

[
min

1≤j≤n
ℓcj (Xi)

])
≤ 4k

[
E sup

c∈Rd

1

n

n∑
i=1

σi⟨Xi, c⟩+
B2

2
√
n

]
Also,

E

(
sup
c∈Rd

1

n

n∑
i=1

σi⟨Xi, c⟩

)
= E

(
sup
c∈Rd

1

n

〈
n∑

i=1

σiXi, c

〉)
=

B

n
E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

σiXi

∣∣∣∣∣
∣∣∣∣∣

≤ B

n

√√√√E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

σiXi

∣∣∣∣∣
∣∣∣∣∣
2

= B

√
E||X||2

n
≤ B2

√
n
.

9 Example: Density Estimation
Let X1, . . . , Xn ∼ P where P has density p and Xi ∈ Rd. Let

p̂h(x) =
1

n

n∑
i=1

K

(
||x−Xi||

h

)
,

be the kernel density estimator. Let ph(x) = E[p̂h(x)]. Then

∥p̂h − p∥∞ ≤ ∥p̂h − ph∥∞ + ∥ph − p∥∞ .

The second term, the bias, is bounded by Ch2 under standard smoothness conditions. What above the first term?
Let us first focus on a single point x.

Theorem 23. Suppose that (log n/n)1/d ≤ h ≤ C for some C > 0. Then

P(|p̂h(x)− ph(x)| > ϵ) ≤ c1e
−nc2ϵ

2hd

.

Proof. This can be proved by Bernstein’s inequality. We leave the proof as an exercise. If you use Hoeffding’s
inequality you will not get a sharp bound.

The more general result is the following.

Theorem. Suppose that P has compact support and that (log n/n)1/d ≤ h ≤ C for some C > 0. Under weak
conditions on K, we have

P (∥p̂h − ph∥∞ > ϵ) ≤ c1e
−nc2ϵ

2hd

.

The proof is essentially the same except that one has to replace Bernstein’s inequality by Talagrand’s inequality.
You can think of Talagrand’s inequality as an extension of Benstein’s inequality over infinite sets of functions.
The theorm can also be proved used a bracketing argument combined with Bernstein’s inequality. (Bracketing is
discussed in a later section.)

10 Bounds on Expected Values
Suppose we have an exponential bound on P(Xn > ϵ). In that case we can bound E(Xn) as follows.

Theorem 24. Suppose that Xn ≥ 0 and that for every ϵ > 0,

P(Xn > ϵ) ≤ c1e
−c2nϵ

2

, (20)

for some c2 > 0 and c1 > 1/e. Then,

E(Xn) ≤
√

C

n
.

where C = (1 + log(c1))/c2.
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Proof. Recall that for any nonnegative random variable Y , E(Y ) =
∫∞
0

P(Y ≥ t)dt. Hence, for any a > 0,

E(X2
n) =

∫ ∞

0

P(X2
n ≥ t)dt =

∫ a

0

P(X2
n ≥ t)dt+

∫ ∞

a

P(X2
n ≥ t)dt ≤ a+

∫ ∞

a

P(X2
n ≥ t)dt.

Equation (20) implies that P(Xn >
√
t) ≤ c1e

−c2nt. Hence,

E(X2
n) ≤ a+

∫ ∞

a

P(X2
n ≥ t)dt = a+

∫ ∞

a

P(Xn ≥
√
t)dt ≤ a+ c1

∫ ∞

a

e−c2ntdt = a+
c1e

−c2na

c2 n
.

Set a = log(c1)/(nc2) and conclude that

E(X2
n) ≤

log(c1)

nc2
+

1

nc2
=

1 + log(c1)

nc2
.

Finally, we have

E(Xn) ≤
√
E(X2

n) ≤

√
1 + log(c1)

nc2
.

Now we consider bounding the maximum of a set of random variables.

Theorem 25. Let X1, . . . , Xn be random variables. Suppose there exists σ > 0 such that E(etXi) ≤ etσ
2/2 for all

t > 0. Then

E
(

max
1≤i≤n

Xi

)
≤ σ

√
2 log n.

Proof. By Jensen’s inequality,

exp

{
tE
(

max
1≤i≤n

Xi

)}
≤ E

(
exp

{
t max
1≤i≤n

Xi

})
= E

(
max
1≤i≤n

exp {tXi}
)

≤
n∑

i=1

E (exp {tXi}) ≤ net
2σ2/2.

Thus,

E
(

max
1≤i≤n

Xi

)
≤ log n

t
+

tσ2

2
.

The result follows by setting t =
√
2 log n/σ.

11 Covering Numbers and Bracketing Numbers
Often the VC dimension is infinite. In such cases we need other measures of complexity.

If Q is a measure and p ≥ 1 we define

∥f∥LP (Q) =

(∫
|f(x)|pdQ(x)

)1/p

.

When Q is Lebesgue measure we simply write ∥f∥p. We also define

∥f∥∞ = sup
x

|f(x)|.

A set C = {f1, . . . , fN} is an ϵ-cover of F if, for every f ∈ F there exists a fj ∈ C such that ∥f − fj∥Lp(Q) < ϵ.

Definition. The size of the smallest ϵ-cover is called the covering number and is denoted by Np(ϵ,F , Q). The
uniform covering number is defined by

Np(ϵ,F) = sup
Q

Np(ϵ,F , Q),

where the supremum is over all probability measures Q.
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Now we show how covering numbers can be used to obtain bounds.

Theorem 26. Suppose that ∥f∥∞ ≤ B for all f ∈ F . Then,

P
(
sup
f∈F

|Pn(f)− P (f)| > ϵ
)
≤ 2N(ϵ/3,F , L∞)e−nϵ2/(18B2).

Proof. Let N = N(ϵ/3,F , L∞) and let C = {f1, . . . , fN} be such that B∞(f1, ϵ/3), . . . , B∞(fN , ϵ/3) is an ϵ/3 cover.
For any f ∈ F there is an fj ∈ C such that ||f − fj ||∞ ≤ ϵ/3. So

|Pn(f)− P (f)| ≤ |Pn(f)− Pn(fj)|+ |Pn(fj)− P (fj)|+ |P (fj)− P (f)|

≤ |Pn(fj)− P (fj)|+
2ϵ

3
.

Hence,

P(sup
f∈F

|Pn(f)− P (f)| > ϵ) ≤ P
(
max
fj∈C

|Pn(fj)− P (fj)|+
2ϵ

3
> ϵ

)
= P

(
max
fj∈C

|Pn(fj)− P (fj)| >
ϵ

3

)
≤

N∑
j=1

P
(
|Pn(fj)− P (fj)| >

ϵ

3

)
≤ 2N(ϵ/3,F , L∞)e−nϵ2/(18B2),

from the union bound and Hoeffding’s inequality.

When the VC is finite, it can be used to bound covering numbers.

Theorem 27. Let F be a class of functions f : Rd → [0, B] with V C dimension d such that 2 ≤ d < ∞. Let p ≥ 1
and 0 < ϵ < B/4. Then

Np(ϵ,F) ≤ 3

(
2eBp

ϵp
log

(
3eBp

ep

))d

.

However, there are cases where the covering numbers are finite and yet the VC dimension is infinite.

Bracketing Numbers. Another measure of complexity is the bracketing number. A collection of pairs of functions
(ℓ1, u1), . . . , (ℓN , uN ) is a bracketing of F if, for each f ∈ F there exists a pair (ℓj , uj) such that ℓj(x) ≤ f(x) ≤ uj(x)
for all x. The collection is an ϵ-bracketing if it is a bracketing and (

∫
|uj(x)− ℓj(x)|pdQ(x))1/p ≤ ϵ for j = 1, . . . , N .

The bracketing number N[ ](ϵ,F , Q, p) is the size of the smallest ϵ bracketing. Bracketing number are a little larger
than covering numbers but provide stronger control of the class F .

Theorem 28. 1. Np(ϵ,F , P ) ≤ N[ ](2ϵ,F , P, p).

2. There are positive constants c1, c2, c3 such that, for any ϵ > 0,

P

(
sup
f∈F

|Pn(f)− P (f)| > ϵ

)
≤ c1 N[ ](c2ϵ,F , P, 1)e−nc3ϵ

2

.

3. Let X1, . . . , Xn ∼ P . If Suppose that N[ ](ϵ,F , P, 1) < ∞ for all ϵ > 0. Then, for every δ > 0,

P

(
sup
f∈F

|Pn(f)− P (f)| > δ

)
→ 0,

as n → ∞.
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12 Summary
The three most important results in this chapter are Hoeffding’s inequality:

P(|Xn − µ| > ϵ) ≤ 2e−2nϵ2/c,

the Vapnik-Chervonenkis bound,

P

(
sup
f∈F

|(Pn − P )f | > t

)
≤ 4 s(F , 2n)e−nt2/8,

and the Rademacher bound: with probability at least 1− δ,

sup
f∈F

|Pn(f)− P (f)| ≤ 2Radn(F) +

√
1

2n
log

(
2

δ

)
.

These, and similar results, provide the theoretical basis for many statistical machine learning methods. The literature
cantains many refinements and extensions of these results.
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