
Ensemble

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2025 1학기 (spring)

The lecture note is a minor modification of the lecture notes from Prof. Yongdai Kim’s “Statistical Machine
Learning”, and Prof Larry Wasserman and Ryan Tibshirani’s “Statistical Machine Learning”. Also, see Section 5, 6,
10 from [?].

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rd, so x = (x1, . . . , xd).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x), f ∈ M.

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data. The most common ones are:

– square: ℓ(y, a) = (y − a)2.
– 0− 1: ℓ(y, a) = I(y ̸= a).

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller than M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn [ℓ(Y, f(X))] = argmin
f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

1

1.2 Bayes Classifier
For the classification so that y ∈ Y = {0, . . . ,K − 1}, the risk (위험) is

R(f) = E(Y,X)∼P [ℓ(Y, f(X))] .

Theorem 1. The rule f that minimizes R(f) is

f∗(x) = argmink=0,...,K−1

K−1∑
j=0

ℓ(j, k)P (Y = j|X = x) , (1)

and in particular when ℓ(y, a) = I(y ̸= a),

f∗(x) = argmaxk=0,...,K−1P (Y = k|X = x) .

This optimal rule f∗ is called the Bayes rule / Bayes classifier (베이즈분류 / 베이즈모형). The risk R∗ = R(f∗)
is called the Bayes risk (베이즈위험).

2 Introduction
Ensemble (앙상블) is a generic term for methods of constructing many learners (학습기) (eg. classifiers (분류기))
and combining them to make the final strong (i.e. highly accurate) learner (학습기). Examples of ensemble are:

• Bagging (배깅) (Breiman 1996)

• Boosting (부스팅) (Freund and Schapire 1997)

• Random Forest (랜덤포레스트) (Breiman 2004)

Empirically, ensemble (앙상블) methods perform much better than the best single model. It is very simple and
effective but there is still a large gap between theory and practice.

3 Partitions and Trees
We begin by reviewing trees. As with nonparametric regression, simple and interpretable classifiers can be derived
by partitioning the range of X. Let Πn = {A1, . . . , AN} be a partition of X . Let Aj be the partition element that
contains x. Then

ĥ(x) =

{
1 if

∑
Xi∈Aj

Yi ≥
∑

Xi∈Aj
(1− Yi),

0 otherwise.

This is nothing other than the plugin classifier based on the partition regression estimator

f̂(x) =

N∑
j=1

Y jI(x ∈ Aj)

where Y j = n−1
j

∑n
i=1 YiI(Xi ∈ Aj) is the average of the Yi’s in Aj and nj = #{Xi ∈ Aj}. (We define Y j to be 0

if nj = 0.)
Recall from the results on regression that if m ∈ H1(1, L) and the binwidth b of a regular partition satisfies

b ≍ n−1/(d+2) then
E||f̂ − f0||2P ≤ c

n2/(d+2)
. (2)

We conclude that the corresponding classification risk satisfies R(ĥ)−R(h∗) = O(n−1/(d+2)).
Regression trees and classification trees (also called decision trees) are partition classifiers where the partition

is built recursively. For illustration, suppose there are two covariates, X1 = age and X2 = blood pressure. Figure 1
shows a classification tree using these variables.

The tree is used in the following way. If a subject has Age ≥ 50 then we classify it as Y = 1. If a subject has Age
< 50 then we check his blood pressure. If systolic blood pressure is < 100 then we classify him as Y = 1, otherwise
we classify him as Y = 0. Figure 2 shows the same classifier as a partition of the covariate space.

2

0 1

Blood Pressure 1

Age

< 100 ≥ 100

< 50 ≥ 50

Figure 1: A simple classification tree.

1

0

1

Age

B
lo

od
P

re
ss

ur
e

50

110

Figure 2: Partition representation of classification tree.

3

Method Test Error
Logistic regression 0.23
SVM (Gaussian Kernel) 0.20
Kernel Regression 0.24
Additive Model 0.20
Reduced Additive Model 0.20
11-NN 0.25
Trees 0.20

Table 1: Various methods on the MAGIC data. The reduced additive model is based on using the three most
significant variables from the additive model.

Here is how a tree is constructed. First, suppose that there is only a single covariate X. We choose a split point
t that divides the real line into two sets A1 = (−∞, t] and A2 = (t,∞). Let Y 1 be the mean of the Yi’s in A1 and
let Y 2 be the mean of the Yi’s in A2.

For continuous Y (regression), the split is chosen to minimize the training error. For binary Y (classification),
the split is chosen to minimize a surrogate for classification error. A common choice is the impurity defined by
I(t) =

∑2
s=1 γs where

γs = 1− [Y
2

s + (1− Y s)
2]. (3)

This particular measure of impurity is known as the Gini index. If a partition element As contains all 0’s or all 1’s,
then γs = 0. Otherwise, γs > 0. We choose the split point t to minimize the impurity. Other indices of impurity
besides the Gini index can be used, such as entropy. The reason for using impurity rather than classification error
is because impurity is a smooth function and hence is easy to minimize.

Now we continue recursively splitting until some stopping criterion is met. For example, we might stop when
every partition element has fewer than n0 data points, where n0 is some fixed number. The bottom nodes of the
tree are called the leaves. Each leaf has an estimate f̂(x) which is the mean of Yi’s in that leaf. For classification, we
take ĥ(x) = I(f̂(x) > 1/2). When there are several covariates, we choose whichever covariate and split that leads
to the lowest impurity.

The result is a piecewise constant estimator that can be represented as a tree.

3.1 Example
The following data are from simulated images of gamma ray events for the Major Atmospheric Gamma-ray Imaging
Cherenkov Telescope (MAGIC) in the Canary Islands. The data are from archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope.
The telescope studies gamma ray bursts, active galactic nuclei and supernovae remnants. The goal is to predict if
an event is real or is background (hadronic shower). There are 11 predictors that are numerical summaries of the
images. We randomly selected 400 training points (200 positive and 200 negative) and 1000 test cases (500 positive
and 500 negative). The results of various methods are in Table 1. See Figures 3, 4, 5, 6.

4 Bagging
Trees are useful for their simplicity and interpretability. But the prediction error can be reduced by combining many
trees. A common approach is called bagging (배깅), which stands for Bootstrap aggregating. The algorithm is as
follows. Let L = {(yi, xi), i = 1, . . . , n} be the dataset.

1. Make bootstrap samples:{L(b), b = 1, . . . , B} (data sets obtained by with replacement sampling from L).

2. Form predictors: {f(x,L(b)), b = 1, . . . , B} learned on each bootstrap samples L(b).

3. If y is numeric, use fB(x) =
1
B

∑B
j=1 f(x,L(b)) for the predictor

4. If y is categorical (class label), let the {f(x,L(b)), b = 1, . . . , B} vote to form fB(x). That is, fB(x) =
argmaxjNj where Nj = #{b : f(x,L(b)) = j}.

The performance of a single tree (ēS : error for a single tree) vs bagging (ēB : error for bagging) is as follows.
Bagging Classification Trees:

4

−1 0 1 2 3 4 5

−
0.

3
−

0.
2

−
0.

1
0.

0

0 2 4 6

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

−1 0 1 2 3 4

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

−2 −1 0 1 2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−2 −1 0 1 2

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

−4 −2 0 2

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

−4 −2 0 2

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

−6 −2 0 2 4 6

−
0.

1
0.

0
0.

1
0.

2

−1.0 0.0 1.0 2.0
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
−2 −1 0 1 2

−
0.

02
0.

00
0.

01
0.

02
0.

03
0.

04

Figure 3: Estimated functions for additive model.

0 10 20 30 40 50

0.
25

0.
26

0.
27

0.
28

0.
29

k

T
es

t E
rr

or

Figure 4: Test error versus k for nearest neighbor estimator.

5

|xtrain.V9 < −0.189962

xtrain.V1 < 1.21831

xtrain.V4 < 0.411748

xtrain.V8 < −0.912288

xtrain.V6 < −0.274359

xtrain.V3 < −0.463854

xtrain.V10 < 0.4797

xtrain.V5 < 1.41292

xtrain.V1 < −0.787108

xtrain.V4 < −0.769513

xtrain.V1 < −0.536394

xtrain.V10 < −0.369401

xtrain.V3 < −1.14519

xtrain.V2 < −0.607802

xtrain.V3 < −0.96174

xtrain.V7 < 0.015902

xtrain.V8 < −0.199142

xtrain.V4 < 1.95513

xtrain.V2 < 0.343193

0

1 1

1 1

1

0

0

0 0

1

0

0 1 1 0

0

0

0 0

Figure 5: Full tree.

|xtrain.V9 < !0.189962

xtrain.V1 < 1.21831 xtrain.V1 < !0.536394

xtrain.V10 < !0.369401

1 0

1 0

0

Figure 6: Classification tree. The size of the tree was chosen by cross-validation.

6

Data Set Samples Variables Classes ēS ēB Decrease
waveform 300 21 3 29.0 19.4 33%

heart 1395 16 2 10.0 5.3 47%
breast cancer 699 9 2 6.0 4.2 30%
ionosphere 351 34 2 11.2 8.6 23%
diabetes 1036 8 2 23.4 18.8 20%

glass 214 9 6 32.0 24.9 22%
soybean 307 35 19 14.5 10.6 27%

Bagging Regression Trees:

Data Set ēS ēB Decrease
Boston Housing 19.1 11.7 39%

Ozone 23.1 18.0 22%
Friedman # 1 11.4 6.2 46%
Friedman # 2 30,800 21,700 30%
Friedman # 3 .0403 .0249 38%

4.1 Explanation of Bagging
To get some intuition about why bagging is useful, one explanation comes from Breiman (1996). As before, let
f(x,L) be a predictor learned on a random training dataset L. Then the aggregated predictor is

fA(x, P) = ELf(x,L).

And the average prediction error in f(x,L) under 0− 1 loss is

e = ELEY,X(Y − f(X,L))2,

where (Y,X) ⊥ L and (Y,X) ∼ P . On the other hand, the average prediction error in fA is

eA = EY,X(Y − fA(X,P))2.

Then e and eA are compared using Jensen’s inequality as

e = EY,XY 2 − 2EY,XY ELf(X,L) + EY,XELf
2(X,L)

≥ EY,XY 2 − 2EY,XY fA(X,P) + EY,Xf2
A(X,P)

= EY,X(Y − fA(X,P))2 = eA.

Note that e− eA depends on how unequal of the two sides of

f2
A(X,P) = [ELf(X,L)]2 ≤ ELf

2(X,L).

So, If f(x,L) is stable with respect to L, e and eA are close, and vice versa. Conclusively, fA always improves f ,
but it improves more for unstable predictors.

The bagging fB can be thought to be an estimator of fA provided that L is similar to the population (i.e. P).
To sum up, Bagging works well with unstable learners such as decision trees, variable selection, Neural networks

etc. However, Bagging does not improve much stable learners such as linear models, regularized learners, nearest
neighbor etc. Question is, When and Why is V arL(f(X,L)) large ?

Now, we consider this example from Buhlmann and Yu (2002). Suppose that x ∈ R and use the notation
L = {Y1, . . . , Yn} here. Consider the simple decision rule

f(x,L) = I(Y n ≤ x).

Let µ = E[Yi] and for simplicity assume that Var(Yi) = 1. Suppose that x is close to µ relative to the sample size.
We can model this by setting x ≡ xn = µ+ c/

√
n. Then central limit theorem implies

√
n(Ȳn − µ)

d→ N(0, 1), so

f(x,L) = I(
√
n(Ȳn − µ) ≤ c) ≈ I(Z ≤ c),

where Z ∼ N(0, 1). So the limiting mean and variance of f(x,L) are Φ(c) and Φ(c)(1− Φ(c)). Now the bootstrap
distribution of Y

∗
(conditional on Y1, . . . , Yn) is approximately N(Y , 1/n). That is,

√
n(Y

∗ − Y)|Y1, . . . , Yn
d→

7

N(0, 1). Let E∗ denote the average with respect to the bootstrap randomness. Then, if fB is the bagged estimator
(with the ideal case where B → ∞), we have

fB(xn) = E∗[I(Y
∗ ≤ xn)] = E∗

[
I
(√

n(Y
∗ − Y) ≤

√
n(xn − Y)

)]
≈ Φ(

√
n(xn − Y)) ≈ Φ(c+ Z),

where Z ∼ N(0, 1), and again we used the fact that
√
n(Ȳn − µ)

d→ N(0, 1).
To summarize, f(x,L) ≈ I(Z ≤ c) while fB ≈ Φ(c + Z) which is a smoothed version of I(Z ≤ c). In other

words, bagging is a smoothing operator. In particular, suppose we take c = 0. Then f(x,L) converges to a Bernoulli
with mean 1/2 and variance 1/4. The bagged estimator fB converges to Φ(Z) = Unif(0, 1) which has mean 1/2 and
variance 1/12. The reduction in variance is due to the smoothing effect of bagging.

4.2 Remarks
We see how bagging works on Boston Housing Market data.

• Objective: Find a housing value equation that relates the median value of homes in a Boston area to air
pollution and to 12 other variables.

• Base Classifier: (unpruned) decision trees

• Bagging results in 39% improvement upon the best single tree.

From Figure 4.2, we can say that bootstrapped predictors have at least five different structures. So, the bagged
predictor is a linear combination of these five trees.

Figure 7: 50 Bootstrapped trees on Boston Housing Market data.

So far we have seen the bagging on regression. On the contrary, bagging on classification does not always work.
This is mainly because the loss function (typically 0-1) is not convex. So no nice bias-variance decomposition exists.
Simple example is:

• Pr(Y = 1|X = x) = 0.1

• f(x,L) = 0.95 w.p. 0.5 and = 0.1 w.p. 0.5

• Then fA(x) = 0.525 and the missclassification rate is 0.9, which is worse than that of a single predictor (error
rate= 0.5)

Bagging can make a good classifier better but can make a bad classifier worse (Breiman 1998, Tibshirani 1996,
Friedman, 1996). However, in practice, Bagging works well for classification but no explanation for it.

8

5 Random Forests
Finally we get to random forests. These are bagged trees except that we also choose random subsets of features for
each tree. The estimator can be written as

f̂(x) =
1

M

∑
j

f̂j(x)

where f̂j is a tree estimator based on a subsample (or bootstrap) of size a using p randomly selected features. The
trees are usually required to have some number k of observations in the leaves. There are three tuning parameters:
a, p and k. You could also think of M as a tuning parameter but generally we can think of M as tending to ∞.

For each tree, we can estimate the prediction error on the un-used data. (The tree is built on a subsample.)
Averaging these prediction errors gives an estimate called the out-of-bag error estimate.

5.1 Theories
Unfortunately, it is very difficult to develop theory for random forests since the splitting is done using greedy
methods. Much of the theoretical analysis is done using simplified versions of random forests.

We first do analysis using somewhat Bayesian approach. suppose each tree is Tk(x) = T (x : θk) and θk
iid∼ π(θ).

Let

mg(x, y) =
1

M

M∑
k=1

I(Tk(x) = y)− 1

M

M∑
k=1

I(Tk(x) = −y).

Let PE∗
M be the prediction error. Then

PE∗
M = P(X,Y)(mg(X,Y) < 0).

By SLLN, as M → ∞,

PE∗
M → PE∗ = P(X,Y) {Pθ(T (X : θ) = Y)− Pθ(T (X : θ) = −Y) < 0} .

We will derive the upper bound of PE∗ as a function of the correlation and strength.
Let

mr(X,Y) = Pθ(T (X : θ) = Y)− Pθ(T (X : θ) = −Y)

Then the strength of a single tree is
s = E(X,Y)(mr(X,Y)).

Chebychev’s inequality gives
PE∗ ≤ V ar(mr)/s2.

Now we calculate V ar(mr).mr(X,Y) can be expanded as

mr(X,Y) = Eθ(I(T (X : θ) = Y)− I(T (X : θ) = −Y))

= Eθ(rmg(θ,X, Y)),

where rmg(θ,X, Y) = I(T (X : θ) = Y)− I(T (X : θ) = −Y). Note that

mr(X,Y)2 = Eθ,θ′ rmg(θ,X, Y)rmg(θ
′
, X, Y),

where θ and θ′ are independent and θ, θ
′ ∼ π(θ). Then

V ar(mr) = Eθ,θ′ cov(rmg(θ,X, Y), rmg(θ
′
, X, Y))

= Eθ,θ′ (ρ(θ, θ′)sd(θ)sd(θ′)) ,

where
ρ(θ, θ

′
) = corr(X,Y)

(
rmg(θ,X, Y), rmg(θ

′
, X, Y)|θ, θ

′
)

and sd(θ) = std(X,Y)(rmg(θ,X, Y)|θ). Then

V ar(mr) = ρ̄ (Eθ(sd(θ)))
2 ≤ ρ̄Eθ(sd

2(θ))

9

where
ρ̄ = Eθ,θ′

(
ρ(θ, θ

′
)sd(θ)sd(θ

′
)
)
/Eθ,θ′ (sd(θ)sd(θ

′
)).

Write

Eθ(sd
2(θ)) ≤ Eθ(E(X,Y)(rmg(θ,X, Y)2))− Eθ(E(X,Y)(rmg(θ,X, Y)))2

≤ 1− s2.

To sum up, we have
PE∗ ≤ ρ̄(1− s2)/s2.

It shows that the two ingredients involved in the generalization error for random forests are the strength of the
individual classifiers in the forest, and the correlation between them in terms of the raw margin functions. It is the
first of its kind to explain that an important ingredient in success of ensemble methods is diversity of base learners.
For example, random perturbation can be understood as a tool of increasing the diversity.

One example of a simplified tree is the centered forest is defined as follows. Suppose the data are on [0, 1]d.
Choose a random feature, split in the center. Repeat until there are k leaves. This defines one tree. Now we average
M such trees. Breiman (2004) and Biau (2002) proved the following.

Theorem. If each feature is selected with probability 1/d, k = o(n) and k → ∞ then

E[|f̂(X)− f0(X)|2] → 0

as n → ∞.

Under stronger assumptions we can say more:

Theorem. Suppose that m is Lipschitz and that m only depends on a subset S of the features and that the probability
of selecting j ∈ S is (1/S)(1 + o(1)). Then

E|f̂(X)− f0(X)|2 = O

(
1

n

) 3
4|S| log 2+3

.

This is better than the usual Lipschitz rate n−2/(d+2) if |S| ≤ p/2. But the condition that we select relevant
variables with high probability is very strong and proving that this holds is a research problem.

A significant step forward was made by Scornet, Biau and Vert (2015). Here is their result.

Theorem. Suppose that Y =
∑

j fj(X(j)) + ϵ where X ∼ Uniform[0, 1]d, ϵ ∼ N(0, σ2) and each fj is continuous,
with f0(X) =

∑
j fj(X(j)). Assume that the split is chosen using the maximum drop in sums of squares. Let tn be

the number of leaves on each tree and let an be the subsample size. If tn → ∞, an → ∞ and tn(log an)
9/an → 0

then
E[|f̂(X)− f0(X)|2] → 0

as n → ∞.

Again, the theorem has strong assumptions but it does allow a greedy split selection. Scornet, Biau and Vert
(2015) provide another interesting result. Suppose that (i) there is a subset S of relevant features, (ii) p = d, (iii)
mj is not constant on any interval for j ∈ S. Then with high probability, we always split only on relevant variables.

5.2 Connection to Nearest Neighbors
Lin and Jeon (2006) showed that there is a connection between random forests and k-NN methods. We say that Xi

is a layered nearest neighbor (LNN) of x If the hyper-rectangle defined by x and Xi contains no data points except
Xi. Now note that if tree is grown until each leaf has one point, then f̂(x) is simply a weighted average of LNN’s.
More generally, Lin and Jeon (2006) call Xi a k-potential nearest neighbor k − PNN if there are fewer than k
samples in the the hyper-rectangle defined by x and Xi. If we restrict to random forests whose leaves have k points
then it follows easily that f̂(x) is some weighted average of the k − PNN ’s.

Let us know return to LNN’s. Let Ln(x) denote all LNN’s of x and let Ln(x) = |Ln(x)|. We could directly define

f̂(x) =
1

Ln(x)

∑
i

YiI(Xi ∈ Ln(x)).

10

Biau and Devroye (2010) showed that, if X has a continuous density,

(d− 1)!E[Ln(x)]

2d(log n)d−1
→ 1.

Moreover, if Y is bounded and m is continuous then, for all p ≥ 1,

E|f̂(X)− f0(X)|p → 0

as n → ∞. Unfortunately, the rate of convergence is slow. Suppose that Var(Y |X = x) = σ2 is constant. Then

E|f̂(X)− f0(X)|p ≥ σ2

E[Ln(x)]
∼ σ2(d− 1)!

2d(log n)d−1
.

If we use k-PNN, with k → ∞ and k = o(n), then the results Lin and Jeon (2006) show that the estimator is
consistent and has variance of order O(1/k(log n)d−1).

As an aside, Biau and Devroye (2010) also show that if we apply bagging to the usual 1-NN rule to subsamples
of size k and then average over subsamples, then, if k → ∞ and k = o(n), then for all p ≥ 1 and all distributions P ,
we have that E|f̂(X)−f0(X)|p → 0. So bagged 1-NN is universally consistent. But at this point, we have wondered
quite far from random forests.

5.3 Connection to Kernel Methods
There is also a connection between random forests and kernel methods (Scornet 2016). Let Aj(x) be the cell
containing x in the jth tree. Then we can write the tree estimator as

f̂(x) =
1

M

∑
j

∑
i

YiI(Xi ∈ Aj(x))

Nj(x)
=

1

M

∑
j

∑
i

WijYj

where Nj(x) is the number of data points in Aj(x) and Wij = I(Xi ∈ Aj(x))/Nj(x). This suggests that a cell Aj

with low density (and hence small Nj(x)) has a high weight. Based on this observation, Scornet (2016) defined
kernel based random forest (KeRF) by

f̂(x) =

∑
j

∑
i YiI(Xi ∈ Aj(x))∑

j Nj(x)
.

With this modification, f̂(x) is the average of each Yi weighted by how often it appears in the trees. The KeRF can
be written as

f̂(x) =

∑
i YiK(x,Xi)∑
s Kn(x,Xs)

where
Kn(x, z) =

1

M

∑
j

I(x ∈ Aj(x)).

The trees are random. So let us write the jth tree as Tj = T (Θj) for some random quantity Θj . So the forests
is built from T (Θ1), . . . , T (ΘM). And we can write Aj(x) as A(x,Θj). Then Kn(x, z) converges almost surely (as
M → ∞) to κn(x, z) = PΘ(z ∈ A(x,Θ)) which is just the probability that x and z are connected, in the sense that
they are in the same cell. Under some assumptions, Scornet (2016) showed that KeRF’s and forests are close to
each other, thus providing a kernel interpretation of forests.

Recall the centered forest we discussed earlier. This is a stylized forest — quite different from the forests used in
practice — but they provide a nice way to study the properties of the forest. In the case of KeRF’s, Scornet (2016)
shows that if m(x) is Lipschitz and X ∼ Unif([0, 1]d) then

E[(f̂(x)− f0(x))
2] ≤ C(log n)2

(
1

n

) 1
3+d log 2

.

This is slower than the minimax rate n−2/(d+2) but this probably reflects the difficulty in analyzing forests.

11

5.4 Variable Importance
Let f̂ be a random forest estimator. How important is feature X(j)?

LOCO. One way to answer this question is to fit the forest with all the data and fit it again without using
X(j). When we construct a forest, we randomly select features for each tree. This second forest can be obtained by
simply average the trees where feature j was not selected. Call this f̂(−j). Let H be a hold-out sample of size m.
Then let

∆̂j =
1

m

∑
i∈H

Wi

where
Wi = (Yi − f̂(−j)(Xi))

2 − (Yi − f̂(Xi))
2.

Then ∆j is a consistent estimate of the prediction risk inflation that occurs by not having access to X(j). Formally,
if T denotes the training data then,

E[∆̂j |T] = E

[
(Y − f̂(−j)(X))2 − (Y − f̂(X))2

∣∣∣∣∣ T
]
≡ ∆j .

In fact, since ∆̂j is simply an average, we can easily construct a confidence interval. This approach is called LOCO
(Leave-Out-COvariates). Of course, it is easily extended to sets of features. The method is explored in Lei, G’Sell,
Rinaldo, Tibshirani, Wasserman (2017) and Rinaldo, Tibshirani, Wasserman (2015).

Permutation Importance. A different approach is to permute the values of X(j) for the out-of-bag observa-
tions, for each tree. Let Oj be the out-of-bag observations for tree j and let O∗

j be the out-of-bag observations for
tree j with X(j) permuted.

Γ̂j =
1

M

∑
j

∑
i

Wij

where
Wij =

1

mj

∑
i∈O∗

j

(Yi − f̂j(Xi))
2 − 1

mj

∑
i∈Oj

(Yi − f̂j(Xi))
2.

This avoids using a hold-out sample. This is estimating

Γj = E[(Y − f̂(X ′
j))

2]− E[(Y − f̂(X))2]

where X ′
j has the same distribution as X except that X ′

j(j) is an independent draw from X(j). This is a lot like
LOCO but its meaning is less clear. Note that f̂j is not changed when X(j) is permuted. Gregorutti, Michel and
Saint Pierre. (2013) show that, when (X, ϵ) is Gaussian, that Var(X) = (1− c)I + c11T and that Cov(Y,X(j)) = τ
for all j then

Γj = 2

(
τ

1− c+ dc

)2

.

It is not clear how this connects to the actual importance of X(j). In the case where Y =
∑

j mj(X(j)) + ϵ with
E[ϵ|X] = 0 and E[ϵ2|X] < ∞, they show that Γj = 2Var(mj(X(j)).

5.5 Inference
Using the theory of infinite order U -statistics, Mentch and Hooker (2015) showed that

√
n(f̂(x) − E[f̂(x)])/σ

converges to a Normal(0,1) and they show how to estimate σ.
Wager and Athey (2017) show asymptotic normality if we use sample splitting: part of the data are used to build

the tree and part is used to estimate the average in the leafs of the tree. Under a number of technical conditions —
including the fact that we use subsamples of size s = nβ with β < 1 — they show that (f̂(x)−f0(x))/σn(x)⇝ N(0, 1)
and they show how to estimate σn(x). Specifically,

σ̂2
n(x) =

n− 1

n

(
n

n− s

)2 ∑
i

(Cov(f̂j(x), Nij)
2

where the covariance is with respect to the trees in the forest and Nij = 1 of (Xi, Yi) was in the jth subsample and
0 otherwise.

12

5.6 Empirical Results
Random forest vs single tree, Bagging, Boosting:

Data Set Single Bagging AdaBoost RF1 RF1-L
waveform 29.0 19.4 18.2 17.2 16.1

breast cancer 6.0 5.3 3.2 2.9 2.9
ionosphere 11.2 8.6 5.9 7.1 5.7
diabetes 23.4 18.8 20.2 24.2 23.1

glass 32.0 24.9 22.0 20.6 23.5

Moreover, random forest is robust to noise. If we inject 5% noise to output labels, then increases in error rates
due to noise are:

Data Set AdaBoost RF1
breast cancer 43.2 1.8
ionosphere 27.7 3.8
diabetes 6.8 1.8

glass 1.6 0.4

5.7 Summary
Random forests are considered one of the best all purpose classifiers. But it is still a mystery why they work so well.
The situation is very similar to deep learning. We have seen that there are now many interesting theoretical results
about forests. But the results make strong assumptions that create a gap between practice and theory. Furthermore,
there is no theory to say why forests outperform other methods. The gap between theory and practice is due to the
fact that forests — as actually used in practice — are complex functions of the data.

6 Boosting
Boosting is a method of combing weak learners (learners slightly better than random guess) to produce a strong
committee. Freund and Schapire (1997) first proposed a practically usable boosting algorithm called “AdaBoost
(Adaptive Boost)”. Since then, many researches have been done to understand and extend boosting. A motivating
example is the horse race. Suppose there are 100 gamblers who claim that they are expert in predicting the horse
race results. Since they spend lots of time to study horse race, we can admit that their winning probabilities are
slightly better than random guess (i.e. 50%). Now, the question is “Is it possible to combine 100 predictions of the
100 experts to make a better prediction?”. Surprisingly, it is possible, which is called weak learnability. AdaBoot is
the first algorithm to implement the idea of weak learnability. Let Zi = (Xi, Yi) where Yi ∈ {−1,+1}. We make the
weak learning assumption: for some γ > 0 we have an algorithm returns h ∈ H such that, for all P ,

P (R(h) ≤ 1/2− γ) ≥ 1− δ

where γ > 0 is the edge.

AdaBoost algorithm is as follows:

1. Set D1(i) = 1/n for i = 1, . . . , n.

2. Repeat for t = 1, . . . , T :

(a) Let ht = argminh∈HPDt
(Yi ̸= h(Xi)).

(b) ϵt = PDt
(Yi ̸= ht(Xi)).

(c) αt = (1/2) log((1− ϵt)/ϵt).

(d) Let

Dt+1(i) =
Dt(i)e

−Yiαtht(Xi)

Zt

where Zt is a normalizing constant.

13

3. Set g(x) =
∑

t αtht(x).

4. Return h(x) = signg(x).

AdaBoost increases the weights for misclassified observations and decreases the weights for correctly classified
observations.

6.1 Empirical Results
Data Set Single AdaBoost Decrease Bagging
waveform 29.0 18.2 37% 19.4

breast cancer 6.0 3.2 47% 5.3
ionosphere 11.2 5.9 47% 8.6
diabetes 23.4 20.2 14% 18.8

glass 32.0 22.0 31% 24.9

AdaBoost outperforms the single best model. Moreover, AdaBoost is more accurate than Bagging in most cases
(except diabetes).

6.2 Training Error
ht, t = 1, . . . , T , called base learners, are typically slightly better than random guess. In particular, Freund and
Schapire (1997) showed that the training error converges to 0 exponentially fast if

errt < 0.5− γ

for some γ > 0. They conjectured that the overfitting emerges if T is too large since the model is too complex.

Lemma. We have
Zt = 2

√
ϵt(1− ϵt).

Proof. Since
∑

i Dt(i) = 1 we have

Zt =
∑
i

Dt(i)e
−αtYiht(Xi) =

∑
Yiht(Xi)=1

Dt(i)e
−αt +

∑
Yiht(Xi)=−1

Dt(i)e
αt

= (1− ϵt)e
−αt + ϵte

αt = 2
√

ϵt(1− ϵt).

since αt = (1/2) log((1− ϵt)/ϵt).

Theorem. Suppose that γ ≤ (1/2)− ϵt for all t. Then

R̂(h) ≤ e−2γ2T .

Hence, the training error goes to 0 quickly.

Proof. Recall that D1(i) = 1/n. So

Dt+1(i) =
Dt(i)e

−αtYiht(Xi)

Zt
=

Dt−1(i)e
−αt−1Yiht−1(Xi)e−αtYiht(Xi)

ZtZt−1

= · · · = e−Yi
∑

t αtht(Xi)

n
∏

t Zt
=

e−Yig(Xi)

n
∏

t Zt

which implies that
e−Yig(Xi) = nDT+1(i)

∏
t

Zt. (4)

14

Since I(u ≤ 0) ≤ e−u we have

R̂(h) =
1

n

∑
i

I(Yig(Xi) ≤ 0) ≤ 1

n

∑
i

e−Yig(Xi) =
1

n

∑
i

n(
∏
t

Zt)DT+1(i) =

T∏
t=1

Zt

=
∏
t

2
√

ϵt(1− ϵt) =
∏
t

√
1− 4(1/2− ϵt)2

≤
∏
t

e−2(1/2−ϵt)
2

since 1− x ≤ e−x

= e−2
∑

t(1/2−ϵt)
2

≤ e−2γ2T .

6.3 Generalization Error
The training error gets small very quickly. But how well do we do in terms of prediction error?

Let

F =

{
sign(

∑
t

αtht) : αt ∈ R, ht ∈ H

}
.

For fixed h = (h1, . . . , hT) this is just a set of linear classifiers which has VC dimension T . So the shattering number
is (en

T

)T

.

If H is finite then the shattering number is (en
T

)T

.|H|T .

If H is infinite but has VC dimension d then the shattering number is bounded by(en
T

)T (en
d

)dT

⪯ nTd.

By the VC theorem, with probability at least 1− δ,

R(ĥ) ≤ R̂(h) +

√
Td log n

n
.

Unfortunately this depends on T . We can fix this using margin theory.

Margins. Consider the classifier h(x) = sign(g(x)) where g(x) =
∑

t αtht(x). The classifier is unchanged if we
multiply g by a scalar. In particular, we can replace g with g̃ = g/||α||1. This form of the classifier is a convex
combination of the ht’s.

We define the margin at x of g =
∑

t αtht by

ρ(x) =
yg(x)

||α||1
= yg̃(x).

Think of |ρ(x)| as our confidence in classifying x. The margin of g is defined to be

ρ = min
i

ρ(Xi) = min
i

Yig(Xi)

||α||1
.

Note that ρ ∈ [−1, 1].

15

To proceed we need to review Radamacher complexity. Given a class of functions F with −1 ≤ f(x) ≤ 1 we
define

Rn(F) = Eσ

[
sup
f∈F

1

n

∑
i

σif(Zi)

]
where P (σi = 1) = P (σi = −1) = 1/2. If H is finite then

Rn(H) ≤
√

2 log |H|
n

.

If H has VC dimension d then

Rn(H) ≤
√

2d log(en/d)

n
.

We will need the following two facts. First,

Rn(conv(H)) = Rn(H)

where conv(H) is the convex hull of H. Second, if

|ϕ(x)− ϕ(y)| ≤ L||x− y||

for all x, y then
Rn(ϕ ◦ F) ≤ LRn(F).

The set of margin functions is
M = {yf(x) : f ∈ conv(H)}.

We then have
Rn(M) = Rn(conv(H)) = Rn(H).

A key result is that, with probability at least 1− δ, for all f ∈ F ,

E[f(Z)] ≤ 1

n

∑
i

f(Zi) + 2Rn(F) +

√
2 log(1/δ)

n
. (5)

Now fix a number ρ and define the margin-sensitive loss function

ϕ(u) =


1 u ≤ 0

1− u
ρ 0 ≤ ρ

0 u ≥ ρ.

Note that
I(u ≤ 0) ≤ ϕ(u) ≤ I(u ≤ ρ).

Assume that H has VC dimension d. Then

Rn(ϕ ◦M) ≤ LRn(M) ≤ LRn(H) ≤ 1

ρ

√
2d log(en/d)

n
.

Now define the empirical margin sensitive loss of a classifer f by

R̂ρ =
1

n

∑
i

I(Yif(Xi) ≤ ρ).

Theorem. With probability at least 1− δ,

R(g) ≤ R̂ρ(g/||α||1) ≤
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.

16

Proof. Recall that I(u ≤ 0) ≤ ϕ(u) ≤ I(u ≤ ρ). Also recall that g and g̃ = g/||α||1 are equivalent classifiers. Then
using (5) we have

R(g) = R(g̃) = P (Y g̃(X) ≤ 0) ≤ 1

n

∑
i

ϕ(Yig̃(Xi)) + 2Rn(ϕ ◦M) +

√
2 log(2/δ)

n

≤ 1

n

∑
i

ϕ(Yig̃(Xi)) +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n

= R̂ρ(g/||α||1) +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.

Next we bound R̂ρ(g/||α||1).

Theorem. We have

R̂ρ(g/||α||1) ≤
T∏

t=1

√
4ϵ1−ρ

t (1− ϵt)1+ρ.

Proof. Since ϕ(u) ≤ I(u ≤ ρ) we have

R̂ρ(g/||α||1) ≤
1

n

∑
i

I(Yig(Xi)− ρ||α||1 ≤ 0)

≤ eρ||α||1
1

n

∑
i

e−Yig(Xi)

= eρ||α||1
1

n

∑
i

nDT+1(i)
∏
t

Zt = eρ||α||1
∏
t

Zt

=

T∏
t=1

√
4ϵ1−ρ

t (1− ϵt)1+ρ

since Zt = 2
√
ϵt(1− ϵt) and αt = (1/2) log((1− ϵt)/ϵt).

Assuming γ ≤ (1/2− ϵt) and ρ < γ then it can be shown that
√
4ϵ1−ρ

t (1− ϵt)1+ρ ≡ b < 1. So R̂ρ(g/||α||1) ≤ bT .
Combining with the previous result we have, with probability at least 1− δ,

R(g) ≤ bT +
1

ρ

√
2d log(en/d)

n
+

√
2 log(2/δ)

n
.

This shows that we get small error even with T large (unlike the earlier bound based only on VC theory).

7 References
Biau, Devroye and Lugosi. (2008). Consistency of Random Forests and Other Average Classifiers. JMLR.

Biau, Gerard, and Scornet. (2016). A random forest guided tour. Test 25.2: 197-227.
Biau, G. (2012). Analysis of a Random Forests Model. arXiv:1005.0208.
Buhlmann, P., and Yu, B. (2002). Analyzing bagging. Annals of Statistics, 927-961.
Gregorutti, Michel, and Saint Pierre. (2013). Correlation and variable importance in random forests. arXiv:1310.5726.
Lei J, G’Sell M, Rinaldo A, Tibshirani RJ, Wasserman L. (2017). Distribution-free predictive inference for

regression. Journal of the American Statistical Association.
Lin, Y. and Jeon, Y. (2006). Random Forests and Adaptive Nearest Neighbors. Journal of the American Statis-

tical Association, 101, p 578.
L. Mentch and G. Hooker. (2015). Ensemble trees and CLTs: Statistical inference for supervised learning. Journal

of Machine Learning Research.
Rinaldo A, Tibshirani R, Wasserman L. (2015). Uniform asymptotic inference and the bootstrap after model

selection. arXiv preprint arXiv:1506.06266.

17

Scornet E. Random forests and kernel methods. (2016). IEEE Transactions on Information Theory. 62(3):1485-
500.

Wager, S. (2014). Asymptotic Theory for Random Forests. arXiv:1405.0352.
Wager, S. (2015). Uniform convergence of random forests via adaptive concentration. arXiv:1503.06388.
Wager, S. and Athey, S. (2017). Estimation and inference of heterogeneous treatment effects using random

forests. Journal of the American Statistical Association.

18

