
Linear Classifiers

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2025 1학기

The lecture note is a minor modification of the lecture notes from Prof. Larry Wasserman’s “Statistical Machine
Learning” and Prof. Yongdai Kim’s “Statistical Machine Learning”. Also, see Section 4 from [1].

1 Review

1.1 Basic Model for Supervised Learning

• Input(입력) / Covariate(설명 변수) : x ∈ Rd, so x = (x1, . . . , xd).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x), f ∈M.

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functionsM. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data. The most common ones are:

– square: ℓ(y, a) = (y − a)2.

– 0− 1: ℓ(y, a) = I(y ̸= a).

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different fromM; F can be smaller thanM.
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• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).

2 Introduction

The problem of predicting a discrete random variable Y from another random variable X is called classification, also
sometimes called discrimination, pattern classification or pattern recognition. We observe iid data (X1, Y1), . . . , (Xn, Yn) ∼
P where Xi ∈ Rd and Yi ∈ Y = {0, 1, . . . ,K − 1}. Often, the covariates X are also called features. The goal is to
predict Y given a new X; here are some examples:

1. The Iris Flower study. The data are 50 samples from each of three species of Iris flowers, Iris setosa, Iris
virginica and Iris versicolor ; see Figure 1. The length and width of the sepal and petal are measured for each
specimen, and the task is to predict the species of a new Iris flower based on these features.

2. The Coronary Risk-Factor Study (CORIS). The data consist of attributes of 462 males between the ages of
15 and 64 from three rural areas in South Africa. The outcome Y is the presence (Y = 1) or absence (Y = 0)
of coronary heart disease and there are 9 covariates: systolic blood pressure, cumulative tobacco (kg), ldl (low
density lipoprotein cholesterol), adiposity, famhist (family history of heart disease), typea (type-A behavior),
obesity, alcohol (current alcohol consumption), and age. The goal is to predict Y from all these covariates.

3. Handwriting Digit Recognition. Here each Y is one of the ten digits from 0 to 9. There are 256 covariates
X1, . . . , X256 corresponding to the intensity values of the pixels in a 16× 16 image; see Figure 2.

4. Political Blog Classification. A collection of 403 political blogs were collected during two months before the
2004 presidential election. The goal is to predict whether a blog is liberal (Y = 0) or conservative (Y = 1)
given the content of the blog.

Figure 1: Three different species of the Iris data. Iris setosa (Left), Iris versicolor (Middle), and Iris virginica
(Right).

We consider the K-class classification problem as

Y = {0, 1, . . . ,K − 1}.
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Figure 2: Examples from the zipcode data.

Hence, a classification rule, or classifier, is a function f : X → Y = {0, . . . ,K − 1} where X is the domain of
X, e.g., X = Rd. When we observe a new X, we predict Y to be f(X). For K = 2, we have a binary classification
problem. For K > 2, we have a multiclass classification problem. To simplify the discussion, we mainly discuss
binary classification, and briefly explain how methods can extend to the multiclass case.

Hence the classification risk, or error rate, of f is defined as

R(f) = E(Y,X)∼P [ℓ(Y, f(X))] ,

and the empirical classification error or training error is

R̂(h) =
1

n

n∑
i=1

ℓ(Yi, f(Xi)).

The usual loss function for classification is the 0-1 loss given as

l(y, a) = I(y ̸= a).

Hence for this case, the classification risk and the empirical classification error become

R(f) = P
(
Y ̸= f(X)

)
, R̂(h) =

1

n

n∑
i=1

I
(
Yi ̸= f(Xi)

)
.

2.1 Linear Classifiers

Intuitively, the classification rule f partitions the input space X into K disjoint decision regions whose boundaries
are called decision boundaries. In these notes, we consider linear classifiers whose decision boundaries are linear
functions of the covariate X.

Let the classifier(분류기) f : Rd → Y be returning an output label given input. A decision boundary (결정 경계)
is the region of a problem space in which the output label of a classifier is ambiguous. In other words, A decision
boundary between class i and j is the set of points whose neighbor always intersect both regions classified as label
i and label j, i.e.,

{x ∈ X : for all r > 0, B(x, r) ∩ f−1{i} ≠ ∅, B(x, r) ∩ f−1{j} ≠ ∅},

where B(x, r) = {y ∈ X : ∥y − x∥2 < r} is the ball centered at x and radius r. And the decision boundary is the
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union over all pairs i and j, i.e.,⋃
1≤i<j≤K

{x ∈ X : for all r > 0, B(x, r) ∩ f−1{i} ≠ ∅, B(x, r) ∩ f−1{j} ≠ ∅}.

The linear classifier (선형 분류기) is the case where the decision boundary between class i and j is given as a
subset of an affine hyperspace

{x : H(x) = 0}, where H(x) = β0 + x⊤β.

In this case, H(x) is called a linear discriminant function. Specifically, for the linear binary classifier, the classifier
f can be expressed as

f(x) = I(H(x) > 0).

There are three approaches for linear classifier(선형 분류기):

• model joint probability distribution (결합확률분포) : Linear Discriminant Analysis (선형판별분석), Naive
Bayes Classifier (나이브 베이즈 분류기)

• model conditional density function P (class|X) : many classifier (분류기) based on regressions (회귀분석), in
particular, Logistic Classification (로지스틱 분류) using Logistic Regression (로지스틱 회귀)

• Maximize difference between differeng groups: perceptron (퍼셉트론), support vector machine (서포트 벡터
머신)

This class covers Linear Discriminant Analysis (선형판별분석) and Logistic Classification (로지스틱 분류).

2.2 Bayes Classifier

For the classification so that y ∈ Y = {0, . . . ,K − 1}, the Risk is

R(f) = E(Y,X)∼P [ℓ(Y, f(X))] = E [I(Y ̸= f(X))]

= EX

K−1∑
j=0

ℓ(j, f(X))P (Y = j|X)

 .

Hence R(f) is minimized when

f0(x) = arg min
k=0,...,K−1

K−1∑
j=0

ℓ(j, k)P (Y = j|X = x).

For the classification, the most common loss is the 0-1 loss

ℓ(y, a) = I(y ̸= a).

And the optimal prediction function is

f0(x) = arg max
j=1,...,J

P (Y = j|X = x).

This optimal classifier is called Bayes rule / Bayes classifier (베이즈분류 / 베이즈모형), and the error rate is called
the Bayes risk (베이즈위험).
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3 Bayes Classifier

Theorem 1. The rule f that minimizes R(f) is

f∗(x) = argmink=0,...,K−1

K−1∑
j=0

ℓ(j, k)P (Y = j|X = x) , (1)

and in particular when ℓ(y, a) = I(y ̸= a),

f∗(x) = argmaxk=0,...,K−1P (Y = k|X = x) .

This optimal rule f∗ is called the Bayes rule / Bayes classifier (베이즈분류 / 베이즈모형). The risk R∗ = R(f∗)

is called the Bayes risk (베이즈위험). The decision boundary {x ∈ X : m(x) = 1/2} is called the Bayes decision
boundary.

Proof. Note that the classification risk is

R(f) = E [ℓ(Y, f(X))] = EX

[
EY |X [ℓ(Y, f(X))|X]

]
. (2)

Now for each x ∈ X ,

EY |X [ℓ(Y, f(X))|X = x] =

K−1∑
j=0

ℓ(j, f(x))P (Y = j|X = x) .

Hence for each x ∈ X , this is minimized when

f(x) = argmink=0,...,K−1

K−1∑
j=0

ℓ(j, k)P (Y = j|X = x) ,

and this f is the minizer for (2) as well.

Note that for 0− 1 loss and binary classifier,

f∗(x) = I

(
P (Y = 1|X = x) >

1

2

)
.

For 0 − 1 loss case, we can rewrite f∗ in a different way. Assume X is discrete for simplicity, then from Bayes
theorem,

P (Y = j|X = x)P (X = x) = P (Y = j,X = x)

= P (X = x|Y = j)P (Y = j) = πjpj(x),

where πj = P(Y = j) and pj(x) = P (X = x|Y = j). And hence

P(Y = j|X = x) =
P (Y = j,X = x)

P (X = x)

=
P (Y = j,X = x)∑K−1

l=0 P (Y = l,X = x)

=
πjpj(x)∑K−1
l=0 πlpl(x)

. (3)
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From the above equality, we have that

P(Y = k|X = x) > P(Y = j|X = x) is equivalent to
pk(x)

pj(x)
>

πj

πk
.

Thus the Bayes rule can be rewritten as

f∗(x) = k when
pk(x)

pj(x)
>

πj

πk
for all j ̸= k,

or
f∗(x) = arg max

j=0,...,K−1
πjfj(x).

If H is a set of classifiers then the classifier fo ∈ H that minimizes R(f) is the oracle classifier. Formally,

R(fo) = inf
f∈H

R(f)

and Ro = R(fo) is called the oracle risk of H. In general, if f is any classifier and R∗ is the Bayes risk then,

R(f)−R∗ = R(f)−R(fo)︸ ︷︷ ︸
distance from oracle

+ R(fo)−R∗.︸ ︷︷ ︸
distance of oracle from Bayes error

The first term is analogous to the variance, and the second is analogous to the squared bias in linear regression.

4 Logistic Classification (로지스틱 분류)

One approach to the classification is to estimate the regression function mj(x) = E(I(Y = j)|X = x) = P(Y =

j|X = x) and, once we have an estimate m̂j(x), use the classification rule

f̂(x) = k if m̂k(x) > m̂j(x) for all j ̸= k. (4)

For binary classification problems, one possible choice is the linear regression model

I(Y = k) = m(X) + ϵ = β0 +

d∑
j=1

βjXj + ϵ.

The linear regression model does not explicitly constrain I(Y = k) to take on binary values. A more natural
alternative is to use logistic regression, which is the most common binary classification method.

Before we describe the logistic regression model, let’s recall some basic facts about binary random variables. If
Y takes values 0 and 1, we say that Y has a Bernoulli distribution with parameter π1 = P(Y = 1). The probability
mass function for Y is p(y;π1) = πy

1 (1 − π1)
1−y for y = 0, 1. The likelihood function for π1 based on iid data

Y1, . . . , Yn is

L(π1) =

n∏
i=1

p(Yi;π1) =

n∏
i=1

πYi
1 (1− π1)

1−Yi .

The logistic model assumes that for 1 ≤ k ≤ K − 1,

P(Y = k|x) = exp(βk0 + x⊤βk)

1 +
∑K−1

j=1 exp(βj0 + x⊤βj)
≡ πk(x, {βj0}, {βj}). (5)
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and
P(Y = 0|x) = 1

1 +
∑K−1

l=1 exp(βl0 + x⊤βl)
≡ π0(x, {βj0}, {βj}).

In other words, we set β00 = 0 and β0 = 0, which is for identifiablity problem. In other words, given X = x,
I(Y = k) is Bernoulli with mean πk(x, {βj0}, {βj}). The Bayes classifier is

f∗(x) = arg max
j=0,...,K−1

P(y = j|x).

Lemma 2. Both linear regression and logistic regression models have linear decision boundaries.

Proof. Recall that the Bayes classifier is

f∗(x) = arg max
j=0,...,K−1

P(Y = j|X = x).

Now, the decision boundary for i and j is a subset of where P(Y = i|X = x) = P(Y = j|X = x), and for both linear
regression and the logistic regression, this is a hyperplane defined as

{
x ∈ Rd : (βi0 − βj0) + x⊤(βi − βj) = 0

}
.

In particular for the logistic regression, this follows from the monotonicity of the logistic function.

There are several ways to motivate logistic regression: for simplicity consider binary classifiction, so Y = {0.1}.
1. Consider a linear regression

P(y = 1|x) = β0 + x⊤β.

It violates that the constraint
P(y = 1|x) ∈ [0, 1].

A simple remedy for this problem is to set

P(y = 1|x) = F (β0 + x⊤β),

where F is a continuous and strictly increasing function with F (−∞) = 0 and F (∞) = 1. Some examples for F are:

• Gaussian: Probit model

• Gompertz: F (x) = exp(− exp(x)), popularly used in Insurance

• Logistic: F (x) = exp(x)/(1 + exp(x)).

2. Consider the decision boundary
{x : Pr(Y = 1|X = x) = 0.5}.

This is equivalent to
{x : log(Pr(Y = 1|X = x)/Pr(Y = 2|X = x)) = 0}.

Suppose that the log-odds is linear. That is,

log(Pr(Y = 1|X = x)/Pr(Y = 2|X = x)) = β0 + x⊤β,
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and this implies that

Pr(Y = 1|X = x) =
exp(β0 + x⊤β)

1 + exp(β0 + x⊤β)
.

The parameters βj0 and βj = (βj1, . . . , βjd)
⊤ can be estimated by maximum conditional likelihood. The likeli-

hood is simply the probability of the observations given as

L({βj0}, {βj}) =
n∏

i=1

Pr(Y = Yi|X = Xi),

and we estimate β by maximizing the log-likelihood. For simplicity, we consider the binary case where Y = {0, 1},
and write β0 for β10, β for β1. The conditional likelihood function for β0, β is

L({βj0}, {βj}) =
n∏

i=1

π1(xi, β0, β)
Yi(1− π1(xi, β0, β))

1−Yi .

Thus the conditional log-likelihood is

ℓ(β0, β) =

n∑
i=1

{
Yi log π1(Xi, β0, β)− (1− Yi) log(1− π1(Xi, β0, β)

}
(6)

=

n∑
i=1

{
Yi(β0 +X⊤

i β)− log
(
1 + exp(β0 +X⊤

i β)
)}

. (7)

The maximum conditional likelihood estimators β̂0 and β̂ cannot be found in closed form. However, the loglike-
lihood function is concave and can be efficiently solve by the Newton’s method in an iterative manner as follows.

Note that the logistic regression classifier is essentially replacing the 0-1 loss with a smooth loss function. In
other words, it uses a surrogate loss function.

For notational simplicity, we redefine (local to this section) the d-dimensional covariate xi and parameter vector
β as the following (d+ 1)-dimensional vectors:

xi ← (1, x⊤
i )

T and β ← (β0, β
T )T .

Thus, we write π1(x, β0, β) as π(x, β) and ℓ(β0, β) as ℓ(β).
To maximize ℓ(β), the (k + 1)th Newton step in the algorithm replaces the kth iterate β̂(k) by

β̂(k+1) ← β̂(k) −

(
∂2ℓ(β̂(k))

∂β∂βT

)−1
∂ℓ(β̂(k))

∂β
. (8)

The gradient ∂s∂ℓ(β̂(k))
∂β and Hessian ∂s∂2ℓ(β̂(k))

∂β∂βT are both evaluated at β̂(k) and can be written as

∂ℓ(β̂(k))

∂β
=

n∑
i=1

(π(xi, β̂
(k))− Yi)Xi and

∂2ℓ(β̂(k))

∂β∂βT
= −XTWX

where W = diag(w
(k)
11 , w

(k)
22 , . . . , w

(k)
dd ) is a diagonal matrix with

w
(k)
ii = π(xi, β̂

(k))
(
1− π(xi, β̂

(k))
)
. (9)
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Let π
(k)
1 =

(
π1(x1, β̂

(k)), . . . , π1(xn, β̂
(k))
)T , (8) can be written as

β̂(k+1) = β̂(k) + (XTWX)−1XT (y − π
(k)
1 ) (10)

= (XTWX)−1XTW
(
Xβ̂(k) +W−1(y − π

(k)
1 )
)

(11)

= (XTWX)−1XTWz(k) (12)

where z(k) ≡ (z
(k)
1 , . . . , z

(k)
n )T = XT β̂(k) +W−1(y − π

(k)
1 ) with

z
(k)
i = log

(
π1(xi, β̂

(k))

1− π1(xi, β̂(k))
+

yi − π1(xi, β̂
(k))

π1(xi, β̂(k))(1− π1(xi, β̂(k)))

)
. (13)

Given the current estimate β̂(k), the above Newton iteration forms a quadratic approximation to the negative
log-likelihood using Taylor expansion at β̂(k):

−ℓ(β) = 1

2
(z − Xβ)TW(z − Xβ)︸ ︷︷ ︸

ℓQ(β)

+constant. (14)

The update equation (12) corresponds to solving a quadratic optimization

β̂(k+1) = argminβℓQ(β). (15)

We then get an iterative algorithm called iteratively reweighted least squares. See Algotirhm 1.

9



Algorithm 1 Finding the Logistic Regression MLE.

Iteratively Reweighted Least Squares Algorithm

Choose starting values β̂(0) = (β̂
(0)
0 , β̂

(0)
1 , . . . , β̂

(0)
d )T and compute π1(xi, β̂

(0)) using Equation (5), for
i = 1, . . . , n with βj replaced by its initial value β̂

(0)
j .

For k = 1, 2, . . ., iterate the following steps until convergence.

1. Calculate z
(k)
i according to (13) for i = 1, . . . , n.

2. Calculate β̂(k+1) according to (12). This corresponds to doing a weighted linear regression of
z on X.

3. Update the π(xi, β̂)’s using (5) with the current estimate of β̂(k+1).

We can get the estimated standard errors of the final solution β̂. For the kth iteration, recall that the Fisher
information matrix I(β̂(k)) takes the form

I(β̂(k)) = −E

(
∂2ℓ(β̂(k))

∂β∂βT

)
≈ XTWX, (16)

we estimate the standard error of β̂j as the jth diagonal element of I(β̂)−1.

Example 3. We apply the logistic regression on the Coronary Risk-Factor Study (CORIS) data and yields the
following estimates and Wald statistics Wj for the coefficients:

Covariate β̂j se Wj p-value

Intercept -6.145 1.300 -4.738 0.000
sbp 0.007 0.006 1.138 0.255
tobacco 0.079 0.027 2.991 0.003
ldl 0.174 0.059 2.925 0.003
adiposity 0.019 0.029 0.637 0.524
famhist 0.925 0.227 4.078 0.000
typea 0.040 0.012 3.233 0.001
obesity -0.063 0.044 -1.427 0.153
alcohol 0.000 0.004 0.027 0.979
age 0.045 0.012 3.754 0.000

5 Linear Discriminant Analysis (선형판별분석)

Let pj(x) is the class conditional density of x in class y = j where y ∈ Y = {0, . . . ,K − 1}, i.e.,

pj(x) = p(x|y = j), j = 0, . . . ,K − 1.

Let
πj = Pr(y = j), j = 0, . . . ,K − 1,

be the prior probabilities, with
∑K−1

j=0 πj = 1. Recall from the above that the Bayes classifier is
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f∗(x) = arg max
j=0,...,K−1

pj(x)πj .

Suppose that we model each class density pj(x) = p(x|Y = k) as multivariate Gaussian:

pj(x) =
1

(2π)d/2|Σj |1/2
exp

(
−1

2
(x− µj)

TΣ−1
j (x− µj)

)
, j = 0, 1 . . . ,K − 1,

where µj is the mean vector, Σj is the d× d covariance matrix, so that X|Y = j ∼ N (µj ,Σj).
Given a square matrix A, we define |A| to be the determinant of A. For a binary classification problem with

Gaussian distributions, we have the following theorem.

Theorem 4. If X|Y = j ∼ N (µj ,Σj), then the Bayes rule is

f∗(x) = j if δj(x) > δl(x) for all l ̸= j,

where
δj(x) := −

1

2
log |Σj | −

1

2
(x− µj)

⊤Σ−1
j (x− µj) + log πj .

Note that (x− µj)
⊤Σ−1

j (x− µj) is the Mahalanobis distance between x and µj .

Proof. By definition, the Bayes rule is

f∗(x) = j if πjpj(x) > πlpl(x) for all l ̸= j.

By plugging in the specific forms of pj ’s and taking the logarithms,

log (πjpj(x)) = −
1

2
log |Σj | −

1

2
(x− µj)

⊤Σ−1
j (x− µj) + log πj −

d

2
log(2π).

Hence we get f∗(x) = k if and only if
δj(x) > δl(x) for all l ̸= j.

An equivalent way of expressing the Bayes rule is

f∗(x) = argmaxj=0,...,K−1δj(x).

The functions δj is called the (Gaussian) discriminant function. The decision boundary of the above classifier can
be characterized by the set {x ∈ X : δi(x) = δj(x)}, which is quadratic so this procedure is called quadratic
discriminant analysis (QDA).

In practice, we use sample quantities of πj , µj ,Σj in place of their population values, namely

π̂j =
nj

n
, where nj =

n∑
i=1

I(yi = j), (17)

µ̂j =
1

nj

n∑
i=1

XiI(Yi = j), (18)

Σ̂j =
1

nj − 1

n∑
i=1

(Xi − µ̂0)(Xi − µ̂0)
⊤I(Yi = j). (19)

11



(Note: we could also estimate Σj using its maximum likelihood estimate, which replace nj − 1 with nj .)
A simplification occurs if we assume that

Σj = Σ for all j.

In this case, we can see that

log
P (Y = j|X = x)

P (Y = l|X = x)
= log

pj(x)

pl(x)
+ log

πj

πl

= log
πj

πl
− 1

2
(µj + µl)

⊤Σ(µj − µl) + x⊤Σ(µj − µl).

Hence the Bayes classifier is given as
f∗(x) = argmaxkδk(x),

where now
δj(x) := x⊤Σ−1µj −

1

2
µj

⊤Σ−1µj + log πj . (20)

The decision boundary between class i and j, i.e., {x ∈ X : δi(x) = δj(x)} is linear, so the Bayes classifier is
a linear classifier. The functions δj are called the linear discriminant functions, and this method is called linear
discrimination analysis (LDA). The parameters are estimated as before, except that we use a pooled estimate of
the Σ:

Σ̂ =
1

n−K

K∑
j=1

(nj − 1)Σ̂j . (21)

When the dimension d is large, fully specifying the QDA decision boundary requires d + d(d − 1) parameters,
and fully specifying the LDA decision boundary requires d + d(d − 1)/2 parameters. Such a large number of free
parameters might induce a large variance. To further regularize the model, two popular methods are diagonal
quadratic discriminant analysis (DQDA) and diagonal linear discriminant analysis (DLDA). The only difference
between DQDA and DLDA with QDA and LDA is that after calculating Σ̂1 and Σ̂0 as in (19), we set all the
off-diagonal elements to be zero. This is also called the independence rule.

Example 5. Let us return to the Iris data example. Recall that there are 150 observations made on three classes
of the iris flower: Iris setosa, Iris versicolor, and Iris virginica. There are four features: sepal length, sepal width,
petal length, and petal width. In Figure 3 we visualize the datasets. Within each class, we plot the densities for each
feature. It’s easy to see that the distributions of petal length and petal width are quite different across different
classes, which suggests that they are very informative features.

Figures 4 and 5 provide multiple figure arrays illustrating the classification of observations based on LDA
and QDA for every combination of two features. The classification boundaries and error are obtained by simply
restricting the data to these a given pair of features before fitting the model. We see that the decision boundaries
for LDA are linear, while the decision boundaries for QDA are highly nonlinear. The training errors for LDA and
QDA on this data are both 0.02. From these figures, we see that it is very easy to discriminate the observations of
class Iris setosa from those of the other two classes.

6 LDA or Logistic Classification

• Logistic classification and LDA both have linear decision boundaries.

• Logistic classification only needs the specification of the conditional distribution Pr(Y = j|X = x), that is,
Pr(X = x) is completely undetermined. On the other hand, the LDA needs the specification of the joint
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Figure 3: The Iris data: The estimated densities for different features are plotted within each class. It’s easy to see
that the distributions of petal length and petal width are quite different across different classes, which suggests that
they are very informative features.

distribution Pr(Y,X). In fact, in LDA, the marginal distribution of x is a mixture of Gaussians

Pr(x) =

K∑
j=1

πjN(µj ,Σ).

Hence, LDA needs more assumptions and hence less applicability than the logistic regression.

• Categorical input variables are allowable for the logistic regression (using dummy variables) while LDA has
troubles with such inputs.

• However, LDA is a useful tool when some of the output are missing (semi-supervised learning).

• LDA is useful when Gaussian assumptions are reasonable.

• LDA works better for multi-class problems (K > 2).

• In practice, for a two-class problem, logistic classification and LDA are often very similar.

6.1 Multi-class problems with regression approach

There is a serious problem with the regression approach when the number of classes K ≥ 3, especially prevalent
when K is large. Because of the rigid nature of the regression model, classes can be masked by others. Figure 6
illustrates an extreme situation when K = 3. The three classes are perfectly separated by linear decision boundaries,
yet linear regression misses the middle class completely.

In Figure 7 we have projected the data onto the line joining the three centroids (there is no information in the
orthogonal direction in this case), and we have included and coded the three response variables Y1, Y2, and Y3.
The three regression lines (left panel) are included, and we see that the line corresponding to the middle class is
horizontal and its fitted values are never dominant! Thus, observations from class 2 are classified either as class 1 or
class 3. The right panel uses quadratic regression rather than linear regression. For this simple example a quadratic

13
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Figure 4: Classifying the Iris data using LDA. The multiple figure array illustrates the classification of observations
based on LDA for every combination of two features. The classification boundaries and error are obtained by simply
restricting the data to a given pair of features before fitting the model. In these plots, “s” represents the class label
Iris setosa, “e” represents the class label Iris versicolor, and “v” represents the class label Iris virginica. The red
letters illustrate the misclassified observations.

rather than linear fit (for the middle class at least) would solve the problem, but in general, if K ≥ 3 classes are
lined up, polynomial terms up to degree K − 1 might be needed to resolve them.

Note: masking problem is severe in ordinary regression (that is, regress Y on X), but it is also present in logistic
regression as well. For tackling masking problem, LDA is better than logistic classification.
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Figure 5: Classifying the Iris data using QDA. The multiple figure array illustrates the classification of observations
based on QDA for every combination of two features. The classification boundaries are displayed and the classifica-
tion error by simply casting the data onto these two features are calculated. In these plots, “s” represents the class
label Iris setosa, “e” represents the class label Iris versicolor, and “v” represents the class label Iris virginica. The
red letters illustrate the misclassified observations.

Figure 6: The data come from three classes in R2 and are easily separated by linear decision boundaries. The right
plot shows the boundaries found by linear discriminant analysis. The left plot shows the boundaries found by linear
regression of the indicator response variables. The middle class is completely masked (never dominates). Figure 4.2
from [1].
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Figure 7: The effects of masking on linear regression in IR for a three-class problem. The rug plot at the base
indicates the positions and class membership of each observation. The three curves in each panel are the fitted
regressions to the three-class indicator variables; for example, for the blue class, yblue is 1 for the blue observations,
and 0 for the green and orange. The fits are linear and quadratic polynomials. Above each plot is the training error
rate. The Bayes error rate is 0.025 for this problem, as is the LDA error rate. Figure 4.3 from [1].
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