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Probability Spaces

A probability space is a triple (Q, F, P) where 2 is a set of “outcomes,” F is a set of “events,” and P : F — [0,1] is

a function that assigns probabilities to events.

Definition. Let  be a set. A nonempty collection F of subsets of € is called o-algebra (or field) if
(i) if A € F then Q\A € F, and
(ll) if Ay, Ag,--- € F, then UA7 e F.
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Example. F = {¢,Q} trivial o—field
F =2%={A| ACQ}: power set =>0—field

Without P, (Q, F) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an o-algebra F, a function
w:F — [0,00] is a measure if

(i) u(A) > pu(¢) =0 for all A € F, and

(iii) For Ay, As,--- € F with A, N A; = ¢ for any i # j,

I (U&) = ZM(Ai)-
i=1 i=1

Definition. (1) p(£2) < co =finite measure
(2) u(2) = 1 =probability measure
(3) Ja partition A, Ag, -+ with [JA; = Q and pu(A;) < co = o—finite measure
=1

Theorem ([1, Theorem 1.1.4]). Let u be a measure on (Q, F).
(1) Monotonicity. If A C B then u(A) < u(B).
(i) Subadditivity. If A C |J A; then p(A) < > p(4;).
i=1 i=1
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(iii) Continuity from below. A, T A (i.e. Ay CAy C -+ and A= G A;) then pu(A4;) T u(A).

i=1

(iv) Continuity from above. A, L A (i.e. Ay DAy D+ and A= ﬁ A;) with u(Ayr) < oo then p(A4;) 4 p(A).
i=1
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Definition. Let A be a class of subsets of Q. Then o(A) denotes the smallest c—algebra that contains A.
For any any A, such o(A) exists and is unique: [1, Exercise 1.1.1].

Definition. Borel o—field on R?, denoted by R?, is the smallest c—field containing all open sets.



Theorem ([1, Theorem 1.1.2]). There is a unique measure u on (R, R) with

ul(a,b) =b—a.
Such measure is called Lebesgue measure.

Example ([1, Example 1.1.3]). Product space
(Q, Fi, P;) : sequence of probability spaces
Let Q=Qy x -+ xQp = {(w1,++ ,wn)| w; € i}
F =JF1 X -+ X F, =the c—field generated by A; x --- X A,,, where A; € F;
P=P x---xP, (le. P(A1 X -+ x Ap) = P1(41) - P, (Ay)

Distribution and Random Variables

Definition. Let (2, F) and (5,S) are measurable spaces. A mapping X : Q@ — S is a measurable map from (£, F)
to (5,8) if

forall BeS, X }(B)={weQ: X(w)€B}ecF.
If (S,S) = (R, B(R?)) and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 14 of a set A € F:

1 weA,
la(w) =
0 w¢ A

If X is a random variable, then X induces a probability measure on R.

Definition. The probability measure p on (R, B(R)) defined as u(A) = P(X € A) for all A € B(R) is called the
distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.
Definition. The distribution function F(x) of a random variable X is defined as F(z) = P(X < z).

Theorem ([1, Theorem 1.2.1]). Any distribution function F has the following properties:
(i) F' is nondecreasing.
(i3) nILH;OF(x) =1, nErPOOF(:E) =0.
(iii) F is right continuous. i.e. lian(y) = F(z).
ylx
(iv) P(X <x)=F(z—) = 1i%nF(x).
ytzx

(v) P(X =x)=F(z) — F(z—).

Theorem ([1, Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [1, Theorem 1.2.1], then it is the distribution function of
some random variable. That is, there exists a triple (2, F, P) and a random variable X such that F(z) = P(X < z).

Theorem. If F satisfies (i) (i) (i), then 3! probability measure u on (R, B(R)) such that for all a <,
p((a,b]) = F(b) — F(a)



Definition. If X and Y induce the same distribution p on (R, B(R)), we say X and Y are equal in distribution.

We write

4

X=Y.

Definition. When the distribution function F(z) = P(X < z) has the form F(z) = [ f(y)dy, then we say X
has the density function f.

Remark. f is not unique, but unique up to Lebesque measure 0.

Theorem ([1, Theorem 1.3.2]). If X : (Q, F) — (S,8) and f: (S,8) — (T, T) are measurable maps, then f(X) is

measurable.

Theorem. f: (S,8) = (T,7) and suppose S = o(open sets), T = o(open sets). Then, if f is continuous then f

18 measurable.

Theorem (|1, Theorem 1.3.3]). If X1, -+, X, are random variables and f : (R™,R™) — (R, R) is measurable, then

f(X1,--+, X,) is a random variable.
Theorem ([1, Theorem 1.3.4]). If X1,--- , X, are random variables then X1 + --- 4+ X,, is a random variable.

Remark. If X,Y are random variables, then
cX (cis scalar), X £V, XY, sin(X), X2, ---,

are all random variables.

Theorem ([1, Theorem 1.3.5]). infX,,, supX,,, limsupX,, liminfX, are random variables.

Integration

Let p be a o-finite measure on (2, F).

Definition. For any predicate Q(w) defined on Q, we say @ is true (u—)almost everywhere (or a.e.) if p({w :
Q(w) is false}) =0

Step 1.

n
Definition. ¢ is a simple function if p(w) = Y a;14, with A; € F
i=1
If ¢ is a simple function and ¢ > 0, we let
n

[ edu = 2o ai(As)

Step 2.

Definition. If f is measurable and f > 0 then we let
J fdpw=sup{[hdp: 0 <h < fand h simple}



Step 3.

Definition. We say measurable f is integrable if [ |f|du < oo

let fT(x):= f(x) V0, f~(z):= (—f)(z) V0 where a V b = max(a, b)

We define the integral of f by

Jfdu= [ frdp— [ fdu

we can also define [ fdp if [ ffdp=oc and [ f~dp < oo, or [ ftdu < oo and [ f~dp = oo
Theorem. (1.4.7) Suppose f and g are integrable.

(i) If f >0 a.e. then [ fdu >0

(it) Va € R, [afdp=a [ fdu

(i) [ f+gdu= [ fdu+ [ gdp

(iv) If g < f a.e. then [ gdp < [ fdp

(v) If g = [ a.e. then [ gdp = [ fdu

(vi) | [ fdp| < [|fldp

Several techniques of integration

e The pushforward measure of a transformation 7" is Ty = u(T~(A)). The change of variables formula for

/ fonu:/ fdTup.
Q T(Q)

Now, consider a probability space (Q, F, P), and consider a measurable map X : (Q,F) — (5,S) as a

pushforward measures is

transformation. Then the distribution measure px of X is in fact the pushforward measure px(A) = P(X €
A) = P(X~!(A)), and hence the change of variable formula becomes

— [ ee@nap@) = [ fadux(o)
Q X(Q)

e For Lebesgue measure A and Riemann integrable function f, f[a b fd\ is the same as the Riemann integral
f; f(x)dx

o [ fdé, = f(x), where §, is the Dirac-delta measure, i.e., §,(A) = I(z € A).

- [ X / / dtdP(w)
[0,X (w)]

/ dt x dP(w)

{(w,)€2%[0,00):0<t< X (w)}

- / / dP(w)dt
0 {we:X (w)>t}

oo

P(X >t)d

e For a random variable X > 0,

2

(=)

Independence

Definition. Let (Q, F, P) be probability space. Two events A, B € F are independent if
P(ANnB)=P(A) x P(B)

Two random variables X and Y are independent if



VO, DeR, P(XeC,YeD)=P(XeC)P(Y € D)
Two o-fields F1 and F»(C F) are independent if
VA € Fi, VB € F3, A and B are independent.

Remark. An infinite collection of objects (o—fields, random variables, or sets) is said to be independent if every

finite subcollection is.

Definition. o—fields Fi,--- ,F, are independent if
P(()4) = ﬁP(A» VA € F,
random Varlableb X L , X,, are independent if
(ﬂ{X € B;}) = HP(X € B;), VB;€R
Sets Al, , A, are 1ndependent if

P(NA4) = HP( ;) forall T C {1,---,n}

el el
Remark. the definition of independent events is not enough to assume pairwise independent, which is P(4;NA;) =

P(A;)P(A;), i # j. It is clear that indenendent events are pairwise independent, but converse is not true.

Example. Let X, X», X3be independent random variables with P(X; =0) = P(X; =1) = 1
Let Ay = {X5 = X3}, 4y = {X3 = X;} and A3 = {X; = X2}. These events are pairwise independent but not

independent.

Theorem ([1, Theorem 1.3.5]). Suppose X andY are independent, and f,g : R — R are measurable functions with
frg>00rE|f(X)],E|g(X)| < oo, then

Ep[f(X)g(Y)] = Ep[f(X)]Ep[g(Y)].

Conditional Expectation

Definition. Let (2, Fo, P) be a given probability space, a o-field F C Fy, and a random variable X € Fy
E(X|F) (conditional expectation of X given F) is a random variable Y such that
) YeF
(i) VAe F, [, XdP = [,YdP
Any Y satisfying (i) and (ii) is said to be a version of E(X|F)
Lemma ([1, Lemma 5.1.1]). IfY satisfies (i) and (ii), then it is integrable.

Remark. Uniqueness.
Suppose there are two random variables Y and Y’ satisfying (i) and (ii) of the definition of the conditional

expectation. Then Y =Y a.s.

Remark. Existence
E(X|F) exists.

5.1.1. Examples
Example. (5.1.1) If X € F, E(X|F) =

Example. (5.1.2) If X | F, E(X|F) = E(X)



Example. (5.1.3) Let Q1,€9, - be a countable partition of  into disjoint sets and let F = o(21,Q0,- )

Then E(X|F)(w) = Y cpl(w € Q)
k=1
Jo, XdP .

arbitrary if P(Qr) =0

where ¢, =
Definition. P(A|F) = E(14|F)
P(A|B)=P(ANB)/P(B)

P(A|B) ifweB
P(A|B®) ifwe B°

Remark. P(Alo(B)) =

Definition. Conditional expectation given random variable
E(X]Y) = E(X[o(Y))

Definition. Conditional expectation given Y =y, i.e. E(X|Y =y)
Consider E(X|Y), which is o(Y')-measurable
Then there exists a measurable function b : R — R s.t. E(X|Y) = h(Y) (Exercise 1.3.8)
We can define
E(X|Y =y) =h(y)

Definition. P(A]Y =y) = E(14|Y =y)

Example. (5.1.4) (X,Y) ~ pdf f(z,y) (w.r.t. Lebesque measure)
x) f(x,Y)dz
Then E(g(X)|Y) = L4QIGrde
provided f(z,y) > 0 ¥(x,y)

Example. (5.1.5) Suppose X L Y. Let ¢ be a function wit E|o(X,Y)| < oo and let g(z) = E(¢(x,Y)). Then
E(p(X,Y)|X) = g(X)

Example. Convolution formula
X1lY
Let o, (z,y) =I(z+y <z
Then g(x) = E(¢.(2,Y))=P(Y < z—x)
Hence P(X +Y < z|X) = Fy(z — X)
which implies
P(X+Y <2)=EPX+Y <zX))
= E(Fy(z — X))
= ffooo Fy(z —x)dFx(z) = Fx * Fy

Properties

Theorem. (5.1.2) (a) Linearlity.
E(aX +Y|F) =aE(X|F)+ E(Y|F)
(b) Monotonicity.
If X <Y, then E(X|F) < E(Y|F)
(¢) Monotone convergence theorem.
If X, > 0 and X, + X with E|X| < 0o, then E(X,|F) 1 E(X|F)



Theorem. (5.1.3) Jensen Inequality
If ¢ is convex and E|X| < oo and E|p(X)| < oo, then
p(E(X]F)) < E(e(X)|F)

Theorem. (5.1.4) Conditional expectation is a contraction in LP, p > 1
i.e., BE(|[E(X|F)P) < E|XI|P forp>1

Theorem. (5.1.5) If F C G and E(X|G) € F, then E(X|F) = E(X|G)

Theorem. (5.1.6) If F1 C Fa, then
(1) E(E(X|F1)|F2) = E(X|F1)
(i) E(E(X|F2)|F1) = E(X|F1)

Theorem. (5.1.7) If X € F and E|X| < oo, then
E(XY|F) = XE(Y|F)

Theorem. (5.1.8) Suppose EX? < oo
then E(X|F) is a random variable Y € F that minimizes E(X —Y)? among all random variablese F

Weak laws of large numbers

Various modes of convergence

{X,} and X are random variables defined on (9, F, P)

Definition. X,, — X almost surely (a.s.) ( with probability 1(w.p. 1), almost everywhere(a.e.) ) if P{w: X, (w) —
Xw)}=1

Equivalent definition : Ve, lim P{w: |[X,(w) — X(w)|<eVn>m} =1
m—r o0
or Ve, li_I>n Plw: | Xp(w) —X(w)|>eV¥n>m} =0

Definition. X,, — X in probability (in pr, =) if lim P{|X, — X|> e} =0
n—oo
Theorem. X, — X a.s. = X,, = X

Remark. X, Ly x +X, - X a.s.

Definition. X,, = X in L,, 0 <p < o0
if lim E(]X,, — X|P) = 0 provided E|X, |’ < 00, E|X P < 0.
n—oo

Theorem. X,, -+ X in L, = X, L x

Theorem. (Chebyshev inequality)
P(IX]>¢) < B5E

Remark. X, 25 X # X,, » X in L,

Example. Q =10,1], F = B[0,1], P = Unif[0,1]
X(w)=0, Xp(w)=nl(0<w< %)
Then P{|X,(w) - X()| > ¢} = Pl0<w< 1} =L 50
But E|X, — X| = E|X,| =1



Theorem. X,, —— X and there exists a random variables Z s.t.
| Xn| < Z and E|ZP < o0
Then X, — X in Ly.

Remark. If E|X| < oo, then
lim [, |X|dP — 0 whenever P(A,) —0
n—soo © 4in

2..2.1. L, weak law

Theorem ([1, Theorem 2.2.3]). Let X1, Xs,--- be uncorrelated random variables with EX; = p and Var(X;) <
C <o

Let S, = > X;. Then

i=1

% — p in Ly and so in pr.
Theorem ([1, Theorem 2.2.9]). Weak law of large numbers

Let X1, X, -+ be i.i.d. random variables with F|X;| < oo.

Let S, = X1+ -+ X,and let p = EX;.

Then STL" — W in pr.

Weak Convergence

Definition. A sequence of distribution function F, converges weakly to a limit F (F,, = F, F,, — F)
if F,(y) — F(y) Vy that are continuity points of F.

Definition. A sequence of random variables {X,,} converges weakly or converges in distribution to a limit X
(X, = X, X, 5 X, X, -5 X)
If the distribution function F,, of X,, converges weakly to the distribution of X.

Example ([1, Example 3.2.1]). Let X3, X5, -+ beiid with P(X; =1) = P(X; = -1) =
Let S,, = X1 + -+ X,,.
Then F,(y) = P(Sp/vn<y)— [Y_ \/%e_édx Yy
That is, F,, = N(0,1)

1
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Example ([1, Example 3.2.3]). Let X ~ F and X,, = X + %
Then F,(z) = P(X, <z)=F(z — 1) - F(z-)
Hence F,(z) — F(z) only when F(z) = F(z—)
(i.e. x is a continuity point of F')

so X, > X

Example ([1, Example 3.2.4]). X, ~ Geo(p) (i.e. P(X, >m)=(1—p)™ 1)
Then P(X, > %) = (1 —p)r e Tasp—0

Central Limit Theorem

Theorem (|1, Theorem 3.4.1]). Let X1, Xo,--- be iid with EX; = p and Var(X;) = 02 > 0.
IfS,=X1+---+ X, then
(Sn = )/ (Vo) = N(0,1)



Theorem (|1, Theorem 3.4.9]). Berry-Essen theorem
Let X1, Xa,-++ be i.i.d. with EX; =0, EX? = 0% and E|X1]®> = p <
Let F,,(z) be the distribution function of (X1 + -+ Xp)/(0v/n) and ®(x) be the standard normal distribution.
Then sup| Fu(z) — ®(x)| < 3p/(0% /)

Stochastic Order Notation

The classical order notation should be familiar to you already.
1. We say that a sequence a,, = o(1) if a,, = 0 as n — oo. Similarly, a,, = o(b,,) if a, /b, = o(1).

2. We say that a sequence a,, = O(1) if the sequence is eventually bounded, i.e. for all n large, |a,| < C for some
constant C' > 0. Similarly, a,, = O(by,) if a, /b, = O(1).

3. If a,, = O(by,) and b,, = O(a,,) then we use either a, = O(b,) or a, < b,.
When we are dealing with random variables we use stochastic order notation.
1. We say that X,, = op(1) if for every e > 0, as n — oo
P(| X, >¢€) — 0,
i.e. X, converges to zero in probability.

2. We say that X,, = Op(1) if for every € > 0 there is a finite C'(€) > 0 such that, for all n large enough:

P(|X,| > C(e)) <.

The typical use case: suppose we have X, ..., X,, which are i.i.d. and have finite variance, and we define:
1 n
= Zl X;.
1=

1. i — p = op(1) (Weak Law of Large Number)

2. i —pu=0p(1/y/n) (Central Limit Theorem)
As with the classical order notation, we can do some simple “calculus” with stochastic order notation and observe
that for instance: op(1) + Op(1) = Op(1), op(1)Op(1) = 0op(1) and so on.
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