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Probability Spaces

A probability space is a triple (Ω,F , P ) where Ω is a set of “outcomes,” F is a set of “events,” and P : F → [0, 1] is
a function that assigns probabilities to events.

Definition. Let Ω be a set. A nonempty collection F of subsets of Ω is called σ-algebra (or field) if
(i) if A ∈ F then Ω\A ∈ F , and

(ii) if A1, A2, · · · ∈ F , then
∞⋃
i=1

Ai ∈ F .

Example. F = {ϕ,Ω} trivial σ−field
F = 2Ω = {A| A ⊂ Ω} : power set =⇒σ−field

Without P , (Ω,F) is called a measurable space, i.e., it is a space on which we can put a measure.

Definition. A measure is a nonnegative countably additive set function; that is, for an σ-algebra F , a function
µ : F → [0,∞] is a measure if

(i) µ(A) ≥ µ(ϕ) = 0 for all A ∈ F , and
(iii) For A1, A2, · · · ∈ F with Ai ∩Aj = ϕ for any i ̸= j,

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Definition. (1) µ(Ω) < ∞ =⇒finite measure
(2) µ(Ω) = 1 =⇒probability measure

(3) ∃a partition A1, A2, · · · with
∞⋃
i=1

Ai = Ω and µ(Ai) < ∞ =⇒ σ−finite measure

Theorem ([1, Theorem 1.1.4]). Let µ be a measure on (Ω,F).
(i) Monotonicity. If A ⊂ B then µ(A) ≤ µ(B).

(ii) Subadditivity. If A ⊂
∞⋃
i=1

Ai then µ(A) ≤
∞∑
i=1

µ(Ai).

(iii) Continuity from below. An ↑ A ( i.e. A1 ⊂ A2 ⊂ · · · and A =
∞⋃
i=1

Ai) then µ(Ai) ↑ µ(A).

(iv) Continuity from above. An ↓ A ( i.e. A1 ⊃ A2 ⊃ · · · and A =
∞⋂
i=1

Ai) with µ(A1) < ∞ then µ(Ai) ↓ µ(A).

Definition. Let A be a class of subsets of Ω. Then σ(A) denotes the smallest σ−algebra that contains A.

For any any A, such σ(A) exists and is unique: [1, Exercise 1.1.1].

Definition. Borel σ−field on Rd, denoted by Rd, is the smallest σ−field containing all open sets.

1



Theorem ([1, Theorem 1.1.2]). There is a unique measure µ on (R,R) with

µ((a, b]) = b− a.

Such measure is called Lebesgue measure.

Example ([1, Example 1.1.3]). Product space
(Ωi,Fi,Pi) : sequence of probability spaces
Let Ω = Ω1 × · · · × Ωn = {(ω1, · · · , ωn)| ωi ∈ Ωi}
F = F1 × · · · × Fn =the σ−field generated by A1 × · · · ×An, where Ai ∈ Fi

P = P1 × · · · × Pn (i.e. P (A1 × · · · ×An) = P1(A1) · · ·Pn(An)

Distribution and Random Variables

Definition. Let (Ω,F) and (S,S) are measurable spaces. A mapping X : Ω → S is a measurable map from (Ω,F)

to (S,S) if

for all B ∈ S, X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ F .

If (S,S) = (Rd,B(Rd)) and d > 1 then X is called a random vector. If d = 1, X is called a random variable.

Example. A trivial but useful example of a random variable is indicator function 1A of a set A ∈ F :

1A(ω) =

1 ω ∈ A,

0 ω /∈ A.

If X is a random variable, then X induces a probability measure on R.

Definition. The probability measure µ on (R,B(R)) defined as µ(A) = P (X ∈ A) for all A ∈ B(R) is called the
distribution of X.

Remark. The distribution can be defined similarly for random vectors.

The distribution of a random variable X is usually described by giving its distribution function.

Definition. The distribution function F (x) of a random variable X is defined as F (x) = P (X ≤ x).

Theorem ([1, Theorem 1.2.1]). Any distribution function F has the following properties:
(i) F is nondecreasing.
(ii) lim

n→∞
F (x) = 1, lim

n→−∞
F (x) = 0.

(iii) F is right continuous. i.e. lim
y↓x

F (y) = F (x).

(iv) P (X < x) = F (x−) = lim
y↑x

F (x).

(v) P (X = x) = F (x)− F (x−).

Theorem ([1, Theorem 1.2.2]). If F satisfies (i) (ii) (iii) in [1, Theorem 1.2.1], then it is the distribution function of
some random variable. That is, there exists a triple (Ω,F , P ) and a random variable X such that F (x) = P (X ≤ x).

Theorem. If F satisfies (i) (ii) (iii), then ∃! probability measure µ on (R,B(R)) such that for all a < b,
µ((a, b]) = F (b)− F (a)
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Definition. If X and Y induce the same distribution µ on (R,B(R)), we say X and Y are equal in distribution.
We write

X
d
= Y.

Definition. When the distribution function F (x) = P (X ≤ x) has the form F (x) =
∫ x

−∞ f(y)dy, then we say X

has the density function f .

Remark. f is not unique, but unique up to Lebesque measure 0.

Theorem ([1, Theorem 1.3.2]). If X : (Ω,F) → (S,S) and f : (S,S) → (T, T ) are measurable maps, then f(X) is
measurable.

Theorem. f : (S,S) → (T, T ) and suppose S = σ(open sets), T = σ(open sets). Then, if f is continuous then f

is measurable.

Theorem ([1, Theorem 1.3.3]). If X1, · · · , Xn are random variables and f : (Rn,Rn) → (R,R) is measurable, then
f(X1, · · · , Xn) is a random variable.

Theorem ([1, Theorem 1.3.4]). If X1, · · · , Xn are random variables then X1 + · · ·+Xn is a random variable.

Remark. If X,Y are random variables, then

cX (c is scalar), X ± Y, XY, sin(X), X2, · · · ,

are all random variables.

Theorem ([1, Theorem 1.3.5]). inf
n
Xn, sup

n
Xn, lim sup

n
Xn, lim inf

n
Xn are random variables.

Integration

Let µ be a σ-finite measure on (Ω,F).

Definition. For any predicate Q(ω) defined on Ω, we say Q is true (µ−)almost everywhere (or a.e.) if µ({ω :

Q(ω) is false}) = 0

Step 1.

Definition. φ is a simple function if φ(ω) =
n∑

i=1

ai1Ai with Ai ∈ F

If φ is a simple function and φ ≥ 0, we let∫
φdµ =

n∑
i=1

aiµ(Ai)

Step 2.

Definition. If f is measurable and f ≥ 0 then we let∫
fdµ = sup{

∫
hdµ : 0 ≤ h ≤ f and h simple}

3



Step 3.

Definition. We say measurable f is integrable if
∫
|f |dµ < ∞

let f+(x) := f(x) ∨ 0, f−(x) := (−f)(x) ∨ 0 where a ∨ b = max(a, b)

We define the integral of f by∫
fdµ =

∫
f+dµ−

∫
f−dµ

we can also define
∫
fdµ if

∫
f+dµ = ∞ and

∫
f−dµ < ∞, or

∫
f+dµ < ∞ and

∫
f−dµ = ∞

Theorem. (1.4.7) Suppose f and g are integrable.
(i) If f ≥ 0 a.e. then

∫
fdµ ≥ 0

(ii) ∀a ∈ R,
∫
afdµ = a

∫
fdµ

(iii)
∫
f + gdµ =

∫
fdµ+

∫
gdµ

(iv) If g ≤ f a.e. then
∫
gdµ ≤

∫
fdµ

(v) If g = f a.e. then
∫
gdµ =

∫
fdµ

(vi) |
∫
fdµ| ≤

∫
|f |dµ

Several techniques of integration

• The pushforward measure of a transformation T is T∗µ := µ(T−1(A)). The change of variables formula for
pushforward measures is ∫

Ω

f ◦ Tdµ =

∫
T (Ω)

fdT∗µ.

Now, consider a probability space (Ω,F , P ), and consider a measurable map X : (Ω,F) → (S,S) as a
transformation. Then the distribution measure µX of X is in fact the pushforward measure µX(A) = P (X ∈
A) = P (X−1(A)), and hence the change of variable formula becomes

EP [f(X)] =

∫
Ω

f(X(ω))dP (ω) =

∫
X(Ω)

f(x)dµX(x).

• For Lebesgue measure λ and Riemann integrable function f ,
∫
[a,b]

fdλ is the same as the Riemann integral∫ b

a
f(x)dx.

•
∫
fdδx = f(x), where δx is the Dirac-delta measure, i.e., δx(A) = I(x ∈ A).

• For a random variable X ≥ 0,

EP [X] =

∫
Ω

X(ω)dP (ω) =

∫
Ω

∫
[0,X(ω)]

dtdP (ω)

=

∫
{(ω,t)∈Ω×[0,∞):0≤t≤X(ω)}

dt× dP (ω)

=

∫ ∞

0

∫
{ω∈Ω:X(ω)≥t}

dP (ω)dt

=

∫ ∞

0

P (X ≥ t)dt.

Independence

Definition. Let (Ω,F , P ) be probability space. Two events A,B ∈ F are independent if
P (A ∩B) = P (A)× P (B)

Two random variables X and Y are independent if
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∀C,D ∈ R, P (X ∈ C, Y ∈ D) = P (X ∈ C)P (Y ∈ D)

Two σ-fields F1 and F2(⊂ F) are independent if
∀A ∈ F1, ∀B ∈ F2, A and B are independent.

Remark. An infinite collection of objects (σ−fields, random variables, or sets) is said to be independent if every
finite subcollection is.

Definition. σ−fields F1, · · · ,Fn are independent if

P (
n⋂

i=1

Ai) =
n∏

i=1

P (Ai), ∀Ai ∈ Fi

random variables X1, · · · , Xn are independent if

P (
n⋂

i=1

{Xi ∈ Bi}) =
n∏

i=1

P (Xi ∈ Bi), ∀Bi ∈ R

Sets A1, · · · , An are independent if
P (
⋂
i∈I

Ai) =
∏
i∈I

P (Ai) for all I ⊂ {1, · · · , n}

Remark. the definition of independent events is not enough to assume pairwise independent, which is P (Ai∩Aj) =

P (Ai)P (Aj), i ̸= j. It is clear that indenendent events are pairwise independent, but converse is not true.

Example. Let X1, X2, X3be independent random variables with P (Xi = 0) = P (Xi = 1) = 1
2

Let A1 = {X2 = X3}, A2 = {X3 = X1} and A3 = {X1 = X2}. These events are pairwise independent but not
independent.

Theorem ([1, Theorem 1.3.5]). Suppose X and Y are independent, and f, g : R → R are measurable functions with
f, g ≥ 0 or E |f(X)| ,E |g(X)| < ∞, then

EP [f(X)g(Y )] = EP [f(X)]EP [g(Y )].

Conditional Expectation

Definition. Let (Ω,F0, P ) be a given probability space, a σ-field F ⊂ F0, and a random variable X ∈ F0

E(X|F) (conditional expectation of X given F) is a random variable Y such that
(i) Y ∈ F
(ii) ∀A ∈ F ,

∫
A
XdP =

∫
A
Y dP

Any Y satisfying (i) and (ii) is said to be a version of E(X|F)

Lemma ([1, Lemma 5.1.1]). If Y satisfies (i) and (ii), then it is integrable.

Remark. Uniqueness.
Suppose there are two random variables Y and Y ′ satisfying (i) and (ii) of the definition of the conditional

expectation. Then Y = Y ′ a.s.

Remark. Existence
E(X|F) exists.

5.1.1. Examples

Example. (5.1.1) If X ∈ F , E(X|F) = X

Example. (5.1.2) If X ⊥ F , E(X|F) = E(X)
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Example. (5.1.3) Let Ω1,Ω2, · · · be a countable partition of Ω into disjoint sets and let F = σ(Ω1,Ω2, · · · )
Then E(X|F)(ω) =

∞∑
k=1

ckI(ω ∈ Ωk)

where ck =


∫
Ωk

XdP

P (Ωk)
if P (Ωk) > 0

arbitrary if P (Ωk) = 0

Definition. P (A|F) = E(1A|F)

P (A|B) = P (A ∩B)/P (B)

Remark. P (A|σ(B)) =

P (A|B) if ω ∈ B

P (A|Bc) if ω ∈ Bc

Definition. Conditional expectation given random variable
E(X|Y ) = E(X|σ(Y ))

Definition. Conditional expectation given Y = y, i.e. E(X|Y = y)

Consider E(X|Y ), which is σ(Y )-measurable
Then there exists a measurable function h : R → R s.t. E(X|Y ) = h(Y ) (Exercise 1.3.8)
We can define
E(X|Y = y) = h(y)

Definition. P (A|Y = y) = E(IA|Y = y)

Example. (5.1.4) (X,Y ) ∼ pdf f(x, y) (w.r.t. Lebesque measure)
Then E(g(X)|Y ) =

∫
g(x)f(x,Y )dx∫

f(x,Y )dx

provided f(x, y) > 0 ∀(x, y)

Example. (5.1.5) Suppose X ⊥ Y . Let φ be a function wit E|φ(X,Y )| < ∞ and let g(x) = E(φ(x, Y )). Then
E(φ(X,Y )|X) = g(X)

Example. Convolution formula
X ⊥ Y

Let φz(x, y) = I(x+ y ≤ z)

Then g(x) = E(φz(x, Y )) = P (Y ≤ z − x)

Hence P (X + Y ≤ z|X) = FY (z −X)

which implies
P (X + Y ≤ z) = E(P (X + Y ≤ z|X))

= E(FY (z −X))

=
∫∞
−∞ FY (z − x)dFX(x) = FX ∗ FY

Properties

Theorem. (5.1.2) (a) Linearlity.
E(aX + Y |F) = aE(X|F) + E(Y |F)

(b) Monotonicity.
If X ≤ Y , then E(X|F) ≤ E(Y |F)

(c) Monotone convergence theorem.
If Xn ≥ 0 and Xn ↑ X with E|X| < ∞, then E(Xn|F) ↑ E(X|F)
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Theorem. (5.1.3) Jensen Inequality
If φ is convex and E|X| < ∞ and E|φ(X)| < ∞, then
φ(E(X|F)) ≤ E(φ(X)|F)

Theorem. (5.1.4) Conditional expectation is a contraction in Lp, p ≥ 1

i.e., E(|E(X|F)|p) ≤ E|X|p for p ≥ 1

Theorem. (5.1.5) If F ⊂ G and E(X|G) ∈ F , then E(X|F) = E(X|G)

Theorem. (5.1.6) If F1 ⊂ F2, then
(i) E(E(X|F1)|F2) = E(X|F1)

(ii) E(E(X|F2)|F1) = E(X|F1)

Theorem. (5.1.7) If X ∈ F and E|X| < ∞, then
E(XY |F) = XE(Y |F)

Theorem. (5.1.8) Suppose EX2 < ∞
then E(X|F) is a random variable Y ∈ F that minimizes E(X − Y )2 among all random variables∈ F

Weak laws of large numbers

Various modes of convergence

{Xn} and X are random variables defined on (Ω,F , P )

Definition. Xn → X almost surely (a.s.) ( with probability 1(w.p. 1), almost everywhere(a.e.) ) if P{ω : Xn(ω) →
X(ω)} = 1

Equivalent definition : ∀ϵ, lim
m→∞

P{ω : |Xn(ω)−X(ω)| ≤ ϵ ∀n ≥ m} = 1

or ∀ϵ, lim
m→∞

P{ω : |Xn(ω)−X(ω)| > ϵ ∀n ≥ m} = 0

Definition. Xn → X in probability (in pr, p−→) if lim
n→∞

P{|Xn −X| > ϵ} = 0

Theorem. Xn → X a.s. =⇒ Xn
p−→ X

Remark. Xn
p−→ X ⇏Xn → X a.s.

Definition. Xn → X in Lp, 0 < p < ∞
if lim

n→∞
E(|Xn −X|p) = 0 provided E|Xn|p < ∞, E|X|p < ∞.

Theorem. Xn → X in Lp =⇒ Xn
p−→ X

Theorem. (Chebyshev inequality)
P (|X| ≥ ϵ) ≤ E|X|p

ϵp

Remark. Xn
p−→ X ⇏ Xn → X in Lp

Example. Ω = [0, 1], F = B[0, 1], P = Unif [0, 1]

X(ω) = 0, Xn(ω) = nI(0 ≤ ω ≤ 1
n )

Then P{|Xn(ω)−X(ω)| > ϵ} = P{0 ≤ ω ≤ 1
n} = 1

n → 0

But E|Xn −X| = E|Xn| = 1
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Theorem. Xn
p−→ X and there exists a random variables Z s.t.

|Xn| ≤ Z and E|Z|p < ∞
Then Xn → X in Lp.

Remark. If E|X| < ∞, then
lim
n→∞

∫
An

|X|dP → 0 whenever P (An) → 0

2..2.1. L2 weak law

Theorem ([1, Theorem 2.2.3]). Let X1, X2, · · · be uncorrelated random variables with EXi = µ and V ar(Xi) ≤
C < ∞

Let Sn =
n∑

i=1

Xi. Then
Sn

n → µ in L2 and so in pr.

Theorem ([1, Theorem 2.2.9]). Weak law of large numbers
Let X1, X2, · · · be i.i.d. random variables with E|Xi| < ∞.
Let Sn = X1 + · · ·+Xnand let µ = EX1.
Then Sn

n → µ in pr.

Weak Convergence

Definition. A sequence of distribution function Fn converges weakly to a limit F (Fn ⇒ F, Fn
w−→ F )

if Fn(y) → F (y) ∀y that are continuity points of F .

Definition. A sequence of random variables {Xn} converges weakly or converges in distribution to a limit X

(Xn ⇒ X, Xn
w−→ X, Xn

d−→ X)
If the distribution function Fn of Xn converges weakly to the distribution of X.

Example ([1, Example 3.2.1]). Let X1, X2, · · · be iid with P (X1 = 1) = P (X1 = −1) = 1
2 .

Let Sn = X1 + · · ·+Xn.
Then Fn(y) = P (Sn/

√
n ≤ y) →

∫ y

−∞
1√
2π

e−
x2

2 dx ∀y
That is, Fn ⇒ N(0, 1)

Example ([1, Example 3.2.3]). Let X ∼ F and Xn = X + 1
n

Then Fn(x) = P (Xn ≤ x) = F (x− 1
n ) → F (x−)

Hence Fn(x) → F (x) only when F (x) = F (x−)

(i.e. x is a continuity point of F )
so Xn → X

Example ([1, Example 3.2.4]). Xp ∼ Geo(p) (i.e. P (Xp ≥ m) = (1− p)m−1)
Then P (Xp > x

p ) = (1− p)
x
p → e−x as p → 0

Central Limit Theorem

Theorem ([1, Theorem 3.4.1]). Let X1, X2, · · · be iid with EXi = µ and V ar(Xi) = σ2 > 0.
If Sn = X1 + · · ·+Xn, then
(Sn − nµ)/(

√
nσ)

d−→ N(0, 1)
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Theorem ([1, Theorem 3.4.9]). Berry-Essen theorem
Let X1, X2, · · · be i.i.d. with EXi = 0, EX2

i = σ2 and E|X1|3 = ρ < ∞
Let Fn(x) be the distribution function of (X1 + · · ·+Xn)/(σ

√
n) and Φ(x) be the standard normal distribution.

Then sup
x
|Fn(x)− Φ(x)| ≤ 3ρ/(σ3

√
n)

Stochastic Order Notation

The classical order notation should be familiar to you already.

1. We say that a sequence an = o(1) if an → 0 as n → ∞. Similarly, an = o(bn) if an/bn = o(1).

2. We say that a sequence an = O(1) if the sequence is eventually bounded, i.e. for all n large, |an| ≤ C for some
constant C ≥ 0. Similarly, an = O(bn) if an/bn = O(1).

3. If an = O(bn) and bn = O(an) then we use either an = Θ(bn) or an ≍ bn.

When we are dealing with random variables we use stochastic order notation.

1. We say that Xn = oP (1) if for every ϵ > 0, as n → ∞

P (|Xn| ≥ ϵ) → 0,

i.e. Xn converges to zero in probability.

2. We say that Xn = OP (1) if for every ϵ > 0 there is a finite C(ϵ) > 0 such that, for all n large enough:

P (|Xn| ≥ C(ϵ)) ≤ ϵ.

The typical use case: suppose we have X1, . . . , Xn which are i.i.d. and have finite variance, and we define:

µ̂ =
1

n

n∑
i=1

Xi.

1. µ̂− µ = oP (1) (Weak Law of Large Number)

2. µ̂− µ = OP (1/
√
n) (Central Limit Theorem)

As with the classical order notation, we can do some simple “calculus” with stochastic order notation and observe
that for instance: oP (1) +OP (1) = OP (1), oP (1)OP (1) = oP (1) and so on.
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