
Reproducing Kernel Hilbert Space

김지수 (Jisu KIM)

통계적 기계학습(Statistical Machine Learning), 2025 1학기 (spring)

The lecture note is a minor modification of the lecture notes from Prof Larry Wasserman and Ryan Tibshirani’s
“Statistical Machine Learning”, and Arthur Gretton’s “Reproducing kernel Hilbert spaces in Machine Learning”
(https://www.gatsby.ucl.ac.uk/∼gretton/coursefiles/rkhscourse.html). Also, see Section 5.8 from [1].

1 Review

1.1 Basic Model for Supervised Learning
• Input(입력) / Covariate(설명 변수) : x ∈ Rd, so x = (x1, . . . , xd).

• Output(출력) / Response(반응 변수): y ∈ Y. If y is categorical, then supervised learning is “classification”,
and if y is continuous, then supervised learning is “regression”.

• Model(모형) :
y ≈ f(x).

If we include the error ϵ to the model, then it can be also written as

y = ϕ(f(x), ϵ).

For many cases, we assume additive noise, so

y = f(x) + ϵ.

• Assumption(가정): f belongs to a family of functions M. This is the assumption of a model: a model can be
still used when the corresponding assumption is not satisfied in your data.

• Loss function(손실 함수): ℓ(y, a). A loss function measures the difference between estimated and true values
for an instance of data.

• Training data(학습자료): T = {(yi, xi), i = 1, . . . , n}, where (yi, xi) is a sample from a probability distribution
Pi. For many cases we assume i.i.d., or xi’s are fixed and yi’s are i.i.d..

• Goal(목적): we want to find f that minimizes the expected prediction error,

f0 = argmin
f∈F

E(Y,X)∼P [ℓ(Y, f(X))] .

Here, F can be different from M; F can be smaller then M.

• Prediction model(예측 모형): f0 is unknown, so we estimate f0 by f̂ using data. For many cases we min-
imizes on the empirical prediction error, that is taking the expectation on the empirical distribution Pn =
1
n

∑n
i=1 δ(Yi,Xi).

f̂ = argmin
f∈F

EPn
[ℓ(Y, f(X))] = argmin

f∈F

1

n

n∑
i=1

ℓ(Yi, f(Xi)).

• Prediction(예측): if f̂ is a predicted function, and x is a new input, then we predict unknown y by f̂(x).
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1.2 Linear Regression
From the additive noise model

y = f(x) + ϵ, f ∈ M,

Linear Regression Model (선형회귀모형) is that

M = F =

β0 +
d∑

j=1

βjxj : βj ∈ R

 .

For estimating β, we use least squares: suppose the training data is {(yi, xij) : 1 ≤ i ≤ n, 1 ≤ j ≤ p}. We use square
loss

ℓ(y, a) = (y − a)2,

then the eimpirical loss becomes the residual sum of square (RSS) as

RSS(β) =

n∑
i=1

(yi − f(xi))
2

=

n∑
i=1

yi − β0 −
d∑

j=1

xijβj

2

.

Let β̂ = (β̂0, β̂1, . . . , β̂d) be the nimimizor of RSS, then the predicted function is

f̂(x) = β̂0 +

d∑
j=1

β̂jxj .

1.3 Hölder Spaces and Sobolev Spaces
The class of Lipschitz functions H(1, L) on T ⊂ R is the set of functions g : T → R such that

|g(y)− g(x)| ≤ L|x− y| for all x, y ∈ T.

A differentiable function is Lipschitz if and only if it has bounded derivative. Conversely a Lipschitz function is
differentiable almost everywhere.

Let T ⊂ R, let β be a positive integer, and let L > 0. The Hölder class H(β, L) on T is the set of functions
g : T → R such that g is ℓ = β − 1 times differentiable and satisfies∣∣∣g(ℓ)(y)− g(ℓ)(x)

∣∣∣ ≤ L |x− y| , for all x, y ∈ T.

(There is an extension to real valued β but we will not need that.) If g ∈ H(β, L) and ℓ = β− 1, then we can define
the Taylor approximation of g at x by

g̃(y) = g(y) + (y − x)g′(x) + · · ·+ (y − x)ℓ

ℓ!
g(ℓ)(x)

and then
|g(y)− g̃(y)| ≤ |y − x|β .

The definition for higher dimensions is similar. Let X be a bounded subset of Rd. Let β be a positive integer
and L > 0. Given a vector s = (s1, . . . , sd), define |s| = s1 + · · ·+ sd, s! = s1! · · · sd!, xs = xs11 · · ·xsdd and

Ds =
∂s1+···+sd

∂xs11 · · · ∂xsdd
.

Define the Hölder class Hd(β, L) on X as

Hd(β, L) =

{
g : |Dsg(x)−Dsg(y)| ≤ L ∥x− y∥2 , for all s such that |s| = β − 1, and all x, y

}
. (1)
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For example, if d = 1 and β = 2 this means that

|g′(x)− g′(y)| ≤ L |x− y| , for all x, y.

The most common case is β = 2; roughly speaking, this means that the functions have bounded second derivatives.
Again, if g ∈ Hd(β, L) then g(x) is close to its Taylor series approximation:

|g(u)− gx,β(u)| ≤ L ∥u− x∥β2 , (2)

where
gx,β(u) =

∑
|s|<β

(u− x)s

s!
Dsg(x). (3)

In the common case of β = 2, this means that∣∣∣∣∣g(u)− [g(x) + (x− u)⊤∇g(x)]

∣∣∣∣∣ ≤ L ∥x− u∥22 .

We will see that in function estimation, the optimal rate of convergence overH(β, L) under L2 loss is O(n−2β/(2β+d)).
The Sobolev class S1(β, L) on a bounded set X ⊂ R is the set of β times differentiable functions (technically, it

only requires weak derivatives) g : T → R such that∫
X
(g(β)(x))2dx ≤ L2.

Again this extends naturally to Rd. Also, there is an extension to non-integer β.
It is worth noting that if X is bounded, then the Sobolev Sd(β, L) and Holder Hd(β, L) classes are equivalent

in the following sense: given Sd(β, L) for a constant L > 0, there are L0, L1 > 0 such that

Hd(β, L0) ⊆ Sd(β, L) ⊆ Hd(β, L1).

The first containment is easy to show; the second is far more subtle, and is a consequence of the Sobolev embedding
theorem.

2 Introduction
A function space is a set of functions F that has some structure. Often a nonparametric regression function or
classifier is chosen to lie in some function space, where the assumed structure is exploited by algorithms and
theoretical analysis. Here we review some basic facts about function spaces.

As motivation, consider nonparametric regression. We observe (X1, Y1), . . . , (Xn, Yn) and we want to estimate
f0(x) = E(Y |X = x). We cannot simply choose f0 to minimize the training error

∑
i(Yi − f0(Xi))

2 as this will
lead to interpolating the data. One approach is to minimize

∑
i(Yi − f0(Xi))

2 while restricting f0 to be in a well
behaved function space.

3 Hilbert Spaces
Let V be a vector space over R. A norm is a mapping ∥ · ∥ : V → [0,∞) that satisfies

1. ∥x∥ = 0 if and only if x = 0.

2. ∥ax∥ = |a| ∥x∥ for all a ∈ R.

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Some examples of normed vector spaces are:

• (R, | · |).

• Rd: ∥x∥p =
(∑d

i=1 |xi|
p
)1/p

, p ≥ 1.
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– p = 1: Manhattan

– p = 2: Euclidean

– p→ ∞: maximum norm, ∥x∥∞ = maxi |xi|

• C[a, b]: ∥f∥p =
(∫ b

a
|f(x)|p dx

)1/p
, p ≥ 1.

An inner product is a mapping ⟨·, ·⟩ : V × V → R that satisfies, for all x, y, z ∈ V and a, b ∈ R:

1. ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0

2. ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩

3. ⟨x, y⟩ = ⟨y, x⟩

An inner product defines a norm ∥v∥ =
√

⟨v, v⟩.
Some examples of inner product spaces are:

• Rd: ⟨x, y⟩ =
∑d

i=1 xiyi.

• C[a, b]: ⟨f, g⟩ =
∫ b

a
f(x)g(x)dx.

• Rd×d: ⟨A,B⟩ = tr
(
AB⊤).

Two vectors x and y are orthogonal if ⟨x, y⟩ = 0.
Some key relations in inner product space:

• |⟨x, y⟩| ≤ ∥x∥ ∥y∥ (Cauchy-Schwarz inequality)

• 2 ∥x∥2 + 2 ∥y∥2 = ∥x+ y∥2 + ∥x− y∥2 (the parallelogram law)

• 4 ⟨x, y⟩ = ∥x+ y∥2 − ∥x− y∥2 (the polarization identity)

• x ⊥ y =⇒ ∥x∥2 + ∥y∥2 = ∥x+ y∥2 (Pythagorean theorem)

A sequence {xn}∞n=1 of a normed space is said to converge to x if for every ϵ > 0, there exists N ∈ N such that for
all n ≥ N , ∥xn − x∥ < ϵ. (which we also say that ∥xn − x∥ → 0 as n→ ∞) A sequence {xn}∞n=1 of a normed space
is a Cauchy sequence if for every ϵ > 0, there exists N ∈ N such that for all n,m ≥ N , ∥xn − xm∥ < ϵ. (which we
also say that ∥xn − xm∥ → 0 as n,m→ ∞) Convergent ⇒Cauchy, but Cauchy ⇏Convergent.

A space is complete if every Cauchy sequence converges to a limit. A complete, normed space is called a Banach
space. A Hilbert space is a complete, inner product space. Every Hilbert space is a Banach space but the reverse
is not true in general. In a Hilbert space, we write fn → f to mean that ||fn − f || → 0 as n → ∞. Note that
||fn−f || → 0 does NOT imply that fn(x) → f(x). For this to be true, we need the space to be a reproducing kernel
Hilbert space which we discuss later.

If V is a Hilbert space and L is a closed subspace then for any v ∈ V there is a unique y ∈ L, called the projection
of v onto L, which minimizes ∥v − z∥ over z ∈ L. The set of elements orthogonal to every z ∈ L is denoted by L⊥.
Every v ∈ V can be written uniquely as v = w+ z where z is the projection of v onto L and w ∈ L⊥. In general, if
L and M are subspaces such that every ℓ ∈ L is orthogonal to every m ∈M then we define the orthogonal sum (or
direct sum) as

L⊕M = {ℓ+m : ℓ ∈ L,m ∈M}. (4)

A set of vectors {et, t ∈ T} is orthonormal if ⟨es, et⟩ = 0 when s ̸= t and ∥et∥ = 1 for all t ∈ T . If {et, t ∈
T} are orthonormal, and the only vector orthogonal to each et is the zero vector, then {et, t ∈ T} is called an
orthonormal basis. Every Hilbert space has an orthonormal basis. A Hilbert space is separable if there exists a
countable orthonormal basis.

Theorem. Let V be a separable Hilbert space with countable orthonormal basis {e1, e2, . . .}. Then, for any x ∈ V ,
we have x =

∑∞
j=1 θjej where θj = ⟨x, ej⟩. Furthermore, ∥x∥2 =

∑∞
j=1 θ

2
j , which is known as Parseval’s identity.

The coefficients θj = ⟨x, ej⟩ are called Fourier coefficients.
Some examples of inner product spaces are:

• Rd: ⟨x, y⟩ =
∑d

i=1 xiyi.
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• L2(X ): If ν is a measure on X ⊂ Rd, then the space

L2(X ; ν) =

{
f : X → R : ∥f∥2 =

(∫
X
|f(x)|2 dν(x)

)1/2

<∞

}
is a Hilbert space with inner product

⟨f, g⟩ =
∫
X
f(x)g(x)dν(x).

.

Theorem (Riesz representation theorem). In a Hilbert space X , for every continuous linear functional L : X → R,
there exists a unique y ∈ X such that

Lx = ⟨x, y⟩ .

4 Lp Spaces
Let F be a collection of functions taking [a, b] into R. The Lp norm on F is defined by

∥f∥p =

(∫ b

a

|f(x)|pdx

)1/p

(5)

where 0 < p <∞. For p = ∞ we define
∥f∥∞ = sup

x
|f(x)|. (6)

Sometimes we write ∥f∥2 simply as ∥f∥. The space Lp(a, b) is defined as follows:

Lp(a, b) =

{
f : [a, b] → R : ∥f∥p <∞

}
. (7)

Every Lp is a Banach space. Some useful inequalities are:

Cauchy-Schwartz
(∫
f(x)g(x)dx

)2 ≤
∫
f2(x)dx

∫
g2(x)dx

Minkowski ∥f + g∥p ≤ ∥f∥p + ∥g∥p where p > 1

Hölder ∥fg∥1 ≤ ∥f∥p∥g∥q where (1/p) + (1/q) = 1.
Special Properties of L2. As we mentioned earlier, the space L2(a, b) is a Hilbert space. The inner product

between two functions f and g in L2(a, b) is
∫ b

a
f(x)g(x)dx and the norm of f is ∥f∥2 =

∫ b

a
f2(x) dx. With this

inner product, L2(a, b) is a separable Hilbert space. Thus we can find a countable orthonormal basis ϕ1, ϕ2, . . .; that
is, ∥ϕj∥ = 1 for all j,

∫ b

a
ϕi(x)ϕj(x)dx = 0 for i ̸= j and the only function that is orthogonal to each ϕj is the zero

function. (In fact, there are many such bases.) It follows that if f ∈ L2(a, b) then

f(x) =

∞∑
j=1

θjϕj(x) (8)

where

θj =

∫ b

a

f(x)ϕj(x) dx (9)

are the coefficients. Also, recall Parseval’s identity∫ b

a

f2(x)dx =

∞∑
j=1

θ2j . (10)

The set of functions {
n∑

j=1

ajϕj(x) : a1, . . . , an ∈ R

}
(11)
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is the called the span of {ϕ1, . . . , ϕn}. The projection of f =
∑∞

j=1 θjϕj(x) onto the span of {ϕ1, . . . , ϕn} is fn =∑n
j=1 θjϕj(x). We call fn the n-term linear approximation of f . Let Λn denote all functions of the form g =∑∞
j=1 ajϕj(x) such that at most n of the aj ’s are non-zero. Note that Λn is not a linear space, since if g1, g2 ∈ Λn

it does not follow that g1 + g2 is in Λn. The best approximation to f in Λn is fn =
∑

j∈An
θj ϕj(x) where An are

the n indices corresponding to the n largest |θj |’s. We call fn the n-term nonlinear approximation of f .
The Fourier basis on [0, 1] is defined by setting ϕ1(x) = 1 and

ϕ2j(x) =
1√
2
cos(2jπx), ϕ2j+1(x) =

1√
2
sin(2jπx), j = 1, 2, . . . (12)

The cosine basis on [0, 1] is defined by

ϕ0(x) = 1, ϕj(x) =
√
2 cos(2πjx), j = 1, 2, . . . . (13)

The Legendre basis on (−1, 1) is defined by

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x), . . . (14)

These polynomials are defined by the relation

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (15)

The Legendre polynomials are orthogonal but not orthonormal, since∫ 1

−1

P 2
n(x)dx =

2

2n+ 1
. (16)

However, we can define modified Legendre polynomialsQn(x) =
√

(2n+ 1)/2 Pn(x) which then form an orthonormal
basis for L2(−1, 1).

The Haar basis on [0,1] consists of functions{
ϕ(x), ψjk(x) : j = 0, 1, . . . , k = 0, 1, . . . , 2j − 1

}
(17)

where
ϕ(x) =

{
1 if 0 ≤ x < 1
0 otherwise,

(18)

ψjk(x) = 2j/2ψ(2jx− k) and

ψ(x) =

{
−1 if 0 ≤ x ≤ 1

2
1 if 1

2 < x ≤ 1.
(19)

This is a doubly indexed set of functions so when f is expanded in this basis we write

f(x) = αϕ(x) +

∞∑
j=1

2j−1∑
k=1

βjkψjk(x) (20)

where α =
∫ 1

0
f(x)ϕ(x) dx and βjk =

∫ 1

0
f(x)ψjk(x) dx. The Haar basis is an example of a wavelet basis.

Let [a, b]d = [a, b]× · · · × [a, b] be the d-dimensional cube and define

L2

(
[a, b]d

)
=

{
f : [a, b]d → R :

∫
[a,b]d

f2(x1, . . . , xd) dx1 . . . dxd <∞

}
. (21)

Suppose that B = {ϕ1, ϕ2, . . .} is an orthonormal basis for L2([a, b]). Then the set of functions

Bd = B ⊗ · · · ⊗ B =

{
ϕi1(x1)ϕi2(x2) · · ·ϕid(xd) : i1, i2, . . . , id ∈ {1, 2, . . . , }

}
, (22)

is called the tensor product of B, and forms an orthonormal basis for L2([a, b]
d).
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5 Sobolev Spaces
Let f be integrable on every bounded interval. Then f is weakly differentiable if there exists a function f ′ that is
integrable on every bounded interval, such that

∫ y

x
f ′(s)ds = f(y) − f(x) whenever x ≤ y. We call f ′ the weak

derivative of f . Let Djf denote the jth weak derivative of f .
The Sobolev space of order m is defined by

Sm,p =
{
f ∈ Lp(0, 1) : ∥Dmf∥ ∈ Lp(0, 1)

}
. (23)

The Sobolev ball of order m and radius c is defined by

Sm,p(c) =
{
f : f ∈ Sm,p, ∥Dmf∥p ≤ c

}
. (24)

For the rest of this section we take p = 2 and write Sm instead of Sm,2

Theorem. The Sobolev space Sm is a Hilbert space under the inner product

⟨f, g⟩ =
m−1∑
k=0

f (k)(0)g(k)(0) +

∫ 1

0

f (k)(x)g(k)(x) dx. (25)

Define

K(x, y) =

m−1∑
k=1

1

k!
xkyk +

∫ x∧y

0

(x− u)m−1(y − u)m−1

(m− 1)!2
du. (26)

Then, for each f ∈ Sm we have
f(y) = ⟨f,K(·, y)⟩ (27)

and
K(x, y) = ⟨K(·, x),K(·, y)⟩. (28)

We say that K is a kernel for the space and that Sm is a reproducing kernel Hilbert space or RKHS.
It follows from Mercer’s theorem (Theorem 6.5) that there is an orthonormal basis {e1, e2, . . . , } for L2(a, b) and

real numbers λ1, λ2, . . . such that

K(x, y) =

∞∑
j=1

λj ej(x) ej(y). (29)

The functions ej are eigenfunctions of K and the λj ’s are the corresponding eigenvalues,∫
K(x, y) ej(y) dy = λjej(x). (30)

Hence, the inner product defined in (25) can be written as

⟨f, g⟩ =
∞∑
j=0

θj βj
λj

(31)

where f(x) =
∑∞

j=0 θjej(x) and g(x) =
∑∞

j=0 βjej(x).
Next we discuss how the functions in a Sobolev space can be parameterized by using another convenient basis.

An ellipsoid is a set of the form

Θ =

{
θ :

∞∑
j=1

a2jθ
2
j ≤ c2

}
(32)

where aj is a sequence of numbers such that aj → ∞ as j → ∞. If Θ is an ellipsoid and if a2j ∼ (πj)2m as j → ∞,
we call Θ a Sobolev ellipsoid and we denote it by Θm(c).

Theorem. Let {ϕj , j = 0, 1, . . .} be the Fourier basis:

ϕ1(x) = 1, ϕ2j(x) =
1√
2
cos(2jπx), ϕ2j+1(x) =

1√
2
sin(2jπx), j = 1, 2, . . . (33)
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Then,

Sm(c) =

{
f : f =

∞∑
j=1

θjϕj ,

∞∑
j=1

a2jθ
2
j ≤ c2

}
(34)

where aj = (πj)m for j even and aj = (π(j−1))m for j odd. Thus, a Sobolev space corresponds to a Sobolev ellipsoid
with aj ∼ (πj)2m.

Note that (34) allows us to define the Sobolev space Sm for fractional values of m as well as integer values. A
multivariate version of Sobolev spaces can be defined as follows. Let α = (α1, . . . , αd) be non-negative integers and
define |α| = α1 + · · ·+ αd. Given x = (x1, . . . , xd) ∈ Rd write xα = xα1

1 · · ·xαd

d and

Dα =
∂|α|

∂xα1
1 · · · ∂xαd

d

. (35)

Then the Sobolev space is defined by

Sm,p =

{
f ∈ Lp

(
[a, b]d

)
: Dαf ∈ Lp([a, b]

d) for all |α| ≤ m

}
. (36)

We will see that in function estimation, the optimal rate of convergence over Sβ,2 under L2 loss is O(n−2β/(2β+d)).

6 Mercer Kernels and Reproducing Kernel Hilbert Spaces
Intuitively, a reproducing kernel Hilbert space (RKHS) is a class of smooth functions defined by an object called a
Mercer kernel. Here are the details.

6.1 Motivating Example: Nonparametric Regression
We observe (X1, Y1), . . . , (Xn, Yn) and we want to estimate f0(x) = E(Y |X = x). The approach we used earlier was
based on smoothing kernels:

f̂(x) =

∑n
i=1K

(
x−Xi

h

)
Yi∑n

i=1K
(
x−Xi

h

) .

Another approach is regularization: choose f to minimize∑
i

(Yi − f(Xi))
2 + λJ(f)

for some penalty J . This is equivalent to: choose f ∈ M to minimize
∑

i(Yi − f(Xi))
2 where M = {f : J(f) ≤ L}

for some L > 0.
We would like to construct M so that it contains smooth functions. We shall see that a good choice is to use a

RKHS.

6.2 Evaluation Functional
Definition 1. Let H be a Hilbert space of functions f : X → R where X ̸= ∅. For each x ∈ X , the (Dirac)
evaluation functional δx : H → R is defined as δxf = f(x).

Evaluation functional is always linear: for f, g ∈ H and α, β ∈ R, δx(αf+βg) = (αf+βg)(x) = αf(x)+βg(x) =
αδx(f) + βδy(f).

However in general, the evaluation functional is not continuous. This means we can have fn → f but δxfn
does not converge to δxf . For example, let f(x) = 0 and fn(x) =

√
nI(x < 1/n2). Then ||fn − f || = 1/

√
n → 0.

But δ0fn =
√
n which does not converge to δ0f = 0. Intuitively, this is because Hilbert spaces can contain very

unsmooth functions.
We define RKHS be the Hilbert spaces where the evaluation functional is continous. Intuitively, this means that

the functions in the space are well-behaved.

Definition 2. A Hilbert space H of functions f : X → R where X ̸= ∅ is said to be a Reproducing Kernel Hilbert
Space (RKHS) if δx is continuous for any x ∈ X .

If two function f, g are close in the norm, then f(x) and g(x) are also close.

Theorem. If limn→∞ ∥fn − f∥ = 0, then limn→∞ fn(x) = f(x), for all x ∈ X .
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6.3 Reproducing Kernel
Definition 3. Let H be a Hilbert space of functions f : X → R where X ̸= ∅. A function K : X ×X → R is called
a reproducing kernel of H if it satisfies

1. For all x ∈ X , Kx = K(·, x) ∈ H.

2. For all x ∈ X and f ∈ H, ⟨f,Kx⟩ = f(x) (reproducing property).

This implies that Kx is the representer of the evaluation functional: think of Riesz representation theorem.
In particular, for any x, y ∈ X ,

K(x, y) = ⟨Ky,Kx⟩ = ⟨Kx,Ky⟩ = K(y, x).

Theorem. If it exists, reproducing kernel is unique.

Definition 4. A Hilbert space H of functions f : X → R where X ̸= ∅ is RKHS if it has a reproducing kernel.

In fact it is not difficult to see that two definitions of RKHS are equivalent: If the evaluational functionals are
continuous, then for each x ∈ X we can find Kx ∈ H with δx(f) = f(x) = ⟨f,Kx⟩ for all f ∈ H. Conversely, suppose
that fn → f . Then

δxfn = ⟨fn,Kx⟩ → ⟨f,Kx⟩ = f(x) = δxf

so the evaluation functional is continuous.

6.4 Positive Semidefinite function
Definition 5. A symmetric function K : X ×X → R is called positive (semi)definite if for all n ≥ 1, (a1, . . . , an) ∈
Rn, (x1, . . . , xn) ∈ Xn,

n∑
i,j=1

aiajK(xi, xj) = a⊤Ka ≥ 0.

The functionK is strictly positive definite if for mutually distinct xi, the equality holds only when a1 = · · · = an = 0.

Then we can see that every inner product is positive semidefinite, and every reproducing kernel is positive
semidefinite.

Given a positive semidefinite function K, let Kx(·) be the function obtained by fixing the second coordinate.
That is, Kx(y) = K(y, x). For the Gaussian kernel, Kx is a Normal, centered at x. We can create functions by
taking liner combinations of the kernel:

f(x) =

k∑
j=1

αjKxj (x).

Let H0 denote all such functions:

H0 =

{
f :

k∑
j=1

αjKxj
(x)

}
.

Given two such functions f(x) =
∑k

j=1 αjKxj
(x) and g(x) =

∑m
j=1 βjKyj

(x) we define an inner product

⟨f, g⟩ = ⟨f, g⟩K =
∑
i

∑
j

αiβjK(xi, yj).

In general, f (and g) might be representable in more than one way. You can check that ⟨f, g⟩K is independent of
how f (or g) is represented. The inner product defines a norm:

||f ||K =
√

⟨f, f⟩ =
√∑

j

∑
k

αjαkK(xj , xk) =
√
αTKα

Definition 6. The completion of H0 with respect to || · ||K is denoted by HK and is called the RKHS generated
by K.
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To verify that this is a well-defined Hilbert space, you should check that the following properties hold:

⟨f, g⟩ = ⟨g, f⟩
⟨cf + dg, h⟩ = c⟨f, h⟩+ d⟨g, h⟩
⟨f, f⟩ = 0 iff f = 0.

The last one is not obvious so let us verify it here. It is easy to see that f = 0 impies that ⟨f, f⟩ = 0. Now we must
show that ⟨f, f⟩ = 0 implies that f(x) = 0. So suppose that ⟨f, f⟩ = 0. Pick any x. Then

0 ≤ f2(x) = ⟨f,Kx⟩2 = ⟨f,Kx⟩ ⟨f,Kx⟩
≤ ||f ||2 ||Kx||2 = ⟨f, f⟩2 ||Kx||2 = 0

where we used Cauchy-Schwartz. So 0 ≤ f2(x) ≤ 0 which means that f(x) = 0.

6.5 Mercer Kernels
A RKHS can be also defined by a Mercer kernel. A Mercer kernel K(x, y) is a continuous function of two variables
that is symmetric and positive semidefinite. This means that, K(x, y) = K(y, x), and for any function f ,∫ ∫

K(x, y)f(x)f(y)dx dy ≥ 0.

(This is like the definition of a positive semidefinite matrix: xTAx ≥ 0 for each x.)
The function

K(x, y) =

m−1∑
k=1

1

k!
xkyk +

∫ x∧y

0

(x− u)m−1(y − u)m−1

(m− 1)!2
du (37)

introduced in the Section 5 on Sobolev spaces is an example of a Mercer kernel. The most commonly used kernel is
the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .

Theorem (Mercer’s theorem). Let X be compact, and µ be a measure on X with µ(X ) < ∞ and supp(µ) = X .
Suppose that K : X × X → R is continuous, symmetric, and satisfies supx,yK(x, y) <∞. Define

TKf(x) =

∫
X
K(x, y) f(y) dµ(y) (38)

suppose that Tk : L2(X ) → L2(X ) is positive semidefinite; thus,∫
X

∫
X
K(x, y) f(x) f(y) dµ(x) dµ(y) ≥ 0 (39)

for any f ∈ L2(X ). Then there exists a countable eigenvalues and eigenfunctions λi,Ψi, i.e.,∫
X
K(x, y)Ψi(y) dµ(y) = λiΨi(x). (40)

where {Ψi} is an orthonormal basis, and if λi > 0 then Ψi is continuous. Further,
∑

i λi < ∞, supx Ψi(x) < ∞,
and

K(x, y) =

∞∑
i=1

λiΨi(x)Ψj(y), (41)

where the convergence is uniform in x, y.

The positive semidefinite requirement for Mercer kernels is generally difficult to verify. But the following basic
results show how one can build up kernels in pieces.
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If K1 : X × X → R and K2 : X × X → R are Mercer kernels then so are the following:

K(x, y) = K1(x, y) +K2(x, y) (42)

K(x, y) = cK1(x, y) +K2(x, y) for c ∈ R+ (43)

K(x, y) = K1(x, y) + c for c ∈ R+ (44)

K(x, y) = K1(x, y)K2(x, y) (45)

K(x, y) = f(x) f(y) for f : X −→ R (46)

K(x, y) = (K1(x, y) + c)d for θ1 ∈ R+ and d ∈ N (47)

K(x, y) = exp
(
K1(x, y)/σ

2
)

for σ ∈ R (48)

K(x, y) = exp
(
−(K1(x, x)− 2K1(x, y) +K1(y, y))/2σ

2
)

(49)

K(x, y) = K1(x, y)/
√
K1(x, x)K1(y, y) (50)

6.6 Spectral Representation
Let K : X × X → R be a Mercer kernel with the conditions from Mercer’s theorem satisfied. Note that

K(x, y) =

∞∑
i=1

λiΨi(x)Ψj(y)

=

〈 ∞∑
i=1

√
λiΨi(x),

∞∑
i=1

√
λiΨi(y)

〉
ℓ2(N)

.

Hence we can define the feature map Φ by

Φ(x) = (
√
λ1Ψ1(x),

√
λ2Ψ2(x), . . .).

We can expand f either in terms of K or in terms of the basis Ψ1,Ψ2, . . .:

f(x) =
∑
i

αiK(xi, x) =

∞∑
j=1

βjΨj(x).

Furthermore, if f(x) =
∑

j ajΨj(x) and g(x) =
∑

j bjΨj(x), then

⟨f, g⟩K =

∞∑
j=1

ajbj
λj

.

Roughly speaking, when ||f ||K is small, then f is smooth.
This is since

Kx(·) = K(·, x) =
∞∑
i=1

λiΨi(x)Ψi(·),

and hence from ⟨f,Kx⟩ = f(x), and if we additionally impose that ⟨Ψi,Ψj⟩K = 0, then

Ψj(x) = ⟨Ψj ,Kx⟩K =

〈
Ψj ,

∞∑
i=1

λiΨi(x)Ψi(·)

〉
ℓ2(N)

= λjΨj(x) ⟨Ψj ,Ψj⟩ ,

and hence ⟨Ψj ,Ψj⟩K should be 1/λj .
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6.7 Examples
Example 7. Let H be all functions f on R such that the support of the Fourier transform of f is contained in
[−a, a]. Then

K(x, y) =
sin(a(y − x))

a(y − x)

and
⟨f, g⟩ =

∫
fg.

Example 8. Let H be all functions f on (0, 1) such that∫ 1

0

(f2(x) + (f ′(x))2)x2dx <∞.

Then
K(x, y) = (xy)−1

(
e−xsinh(y)I(0 < x ≤ y) + e−ysinh(x)I(0 < y ≤ x)

)
and

||f ||2 =

∫ 1

0

(f2(x) + (f ′(x))2)x2dx.

Example 9. The Sobolev space of order m is (roughly speaking) the set of functions f such that
∫
(f (m))2 < ∞.

For m = 1 and X = [0, 1] the kernel is

K(x, y) =

{
1 + xy + xy2

2 − y3

6 0 ≤ y ≤ x ≤ 1

1 + xy + yx2

2 − x3

6 0 ≤ x ≤ y ≤ 1

and

||f ||2K = f2(0) + f ′(0)2 +

∫ 1

0

(f ′′(x))2dx.

6.8 Representer Theorem
Let ℓ be a loss function depending on (X1, Y1), . . . , (Xn, Yn) and on f(X1), . . . , f(Xn). Let f̂ minimize

ℓ+ g(||f ||2K)

where g is any monotone increasing function. Then f̂ has the form

f̂(x) =

n∑
i=1

αiK(xi, x)

for some α1, . . . , αn.

6.9 RKHS Regression
Define f̂ to minimize

R =
∑
i

(Yi − f(Xi))
2 + λ||f ||2K .

By the representer theorem, f̂(x) =
∑n

i=1 αiK(xi, x). Plug this into R and we get

R = ||Y −Kα||2 + λαTKα

where Kjk = K(Xj , Xk) is the Gram matrix. The minimizer over α is

α̂ = (K+ λI)−1Y

and m̂(x) =
∑

j α̂jK(Xi, x). The fitted values are

Ŷ = Kα̂ = K(K+ λI)−1Y = LY.

So this is a linear smoother.
We can use cross-validation to choose λ. Compare this with smoothing kernel regression.
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6.10 Logistic Regression
Let

f0(x) = P(Y = 1|X = x) =
ef(x)

1 + ef(x)
.

We can estimate f0 by minimizing
−loglikelihood + λ||f ||2K .

Then f̂ =
∑

j K(xj , x) and α may be found by numerical optimization. In this case, smoothing kernels are much
easier.

6.11 Support Vector Machines
Suppose Yi ∈ {−1,+1}. The linear SVM minimizes the penalized hinge loss:

J =
∑
i

[1− Yi(β0 + βTXi)]+ +
λ

2
||β||22.

The dual is to maximize ∑
i

αi −
1

2

∑
i,j

αiαjYiYj⟨Xi, Xj⟩

subject to 0 ≤ αi ≤ C.
The RKHS version is to minimize

J =
∑
i

[1− Yif(Xi)]+ +
λ

2
||f ||2K .

The dual is the same except that ⟨Xi, Xj⟩ is replaced with K(Xi, Xj). This is called the kernel trick.

6.12 The Kernel Trick
This is a fairly general trick. In many algorithms you can replace ⟨xi, xj⟩ with K(xi, xj) and get a nonlinear version
of the algorithm. This is equivalent to replacing x with Φ(x) and replacing ⟨xi, xj⟩ with ⟨Φ(xi),Φ(xj)⟩. However,
K(xi, xj) = ⟨Φ(xi),Φ(xj)⟩ and K(xi, xj) is much easier to compute.

In summary, by replacing ⟨xi, xj⟩ with K(xi, xj) we turn a linear procedure into a nonlinear procedure without
adding much computation.

6.13 Hidden Tuning Parameters
There are hidden tuning parameters in the RKHS. Consider the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .

For nonparametric regression we minimize
∑

i(Yi −m(Xi))
2 subject to ||m||K ≤ L. We control the bias variance

tradeoff by doing cross-validation over L. But what about σ?
This parameter seems to get mostly ignored. Suppose we have a uniform distribution on a circle. The eigen-

functions of K(x, y) are the sines and cosines. The eigenvalues λk die off like (1/σ)2k. So σ affects the bias-variance
tradeoff since it weights things towards lower order Fourier functions. In principle we can compensate for this by
varying L. But clearly there is some intercation between L and σ. The practical effect is not well understood.

Now consider the polynomial kernel K(x, y) = (1 + ⟨x, y⟩)d. This kernel has the same eigenfunctions but the
eignvalues decay at a polynomial rate depending on d. So there is an interaction between L, d and, the choice of
kernel itself.
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6.14 Example: Two Sample Test
Gretton, Borgwardt, Rasch, Scholkopf and Smola (GBRSS 2008) show how to use kernels for two sample testing.
Suppose that

X1, . . . , Xm ∼ P Y1, . . . , Yn ∼ Q.

We want to test the null hypothesis H0 : P = Q.
Let F = {f : ||f ||K ≤ 1}. Define

M = sup
f∈F

∣∣∣∣∣EP [f(X)]− EQ[f(X)]

∣∣∣∣∣.
Under weak regulaarty conditions on K, it can be shown that M = 0 if and only if P = Q. Thus we can test H0 by
estimating M .

Define

M̂ = sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(Xi)−
1

n

m∑
i=1

f(Yi)

∣∣∣∣∣ .
Some calcculations show that

M̂2 =
1

m2

∑
j,k

K(Xj , Xk)−
2

mn

∑
j,k

K(Xj , Yk) +
1

n2

∑
j,k

K(Yj , Yk).

We reject H0 if M̂ > t. We can determine t exactly using a permutation test.
Using McDiarmmid’s inequality and a Rademacher bound, GBRSS shows that

P

(
|M̂ −M | > 2

(√
C

m
+

√
C

n

)
+ ϵ

)
≤ exp

(
− ϵ2mn

C(m+ n)

)
.

There is a connection with smoothing kernels. Let

f̂X(u) =
1

m

n∑
i=1

κ(Xi − u)

and similarly for f̂Y . Then ∫
|f̂X(u)− f̂Y (u)|2du = M̂2

where M̂ is based on the kernel K(x, y) =
∫
κ(x− z)κ(y − z)dz. So they are really the same!

In practice, one would use the Gaussian kernel Kσ(x, y) = e−
||x−y||2

σ2 . Call the resuling statistic M̂σ. For hypoth-
esis testing, there is no need to choose a bandwidth σ. Just define

M̂ = sup
σ
M̂σ.

Again, the critical value can be obtained using permutation methods. This is needed since the distribution of
M̂ under H0 is very complex and involved unknown quantities. (See Rosenbaum (2005, Biometrika) for a cool,
two-sample test with an exact, known, distribution free null distribution.)

References
[1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning. Springer Series

in Statistics. Springer, New York, second edition, 2009. Data mining, inference, and prediction.

14


	Review
	Basic Model for Supervised Learning
	Linear Regression
	Hölder Spaces and Sobolev Spaces

	Introduction
	Hilbert Spaces
	Lp Spaces
	Sobolev Spaces
	Mercer Kernels and Reproducing Kernel Hilbert Spaces
	Motivating Example: Nonparametric Regression
	Evaluation Functional
	Reproducing Kernel
	Positive Semidefinite function
	Mercer Kernels
	Spectral Representation
	Examples
	Representer Theorem
	RKHS Regression
	Logistic Regression
	Support Vector Machines
	The Kernel Trick
	Hidden Tuning Parameters
	Example: Two Sample Test


