Minimax Rate for Dimension Estimator

Jisu Kim (Carnegie Mellon University) Alessandro Rinaldo (Carnegie Mellon University) Larry Wasserman (Carnegie Mellon University)

2015.07.27

Introduction

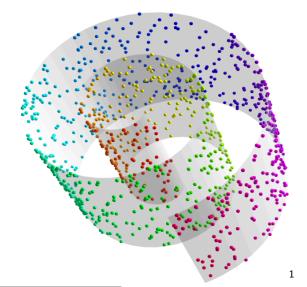
Regularity conditions on Distributions and supporting Manifolds

Upper Bound

Lower Bound

Upper bound and Lower bound for General case

Manifold Learning finds an underlying manifold to reduce dimension.



 $^{^{1} {\}rm http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/}$

Intrinsic dimension of manifold need to be estimated.

- Most manifold learning algorithms require the intrinsic dimension of the manifold as input.
- ▶ Intrinc dimension is rarely known in advance and therefore has to be estimated.

Upper bounds and lower bounds of minimax rate is of interest.

- ▶ Various intrinsic dimension estimators have been proposed, but universal theoretical bound have not been obtained.
- Minimax rate is the risk of an estimator that performs best in the worst case, as a function of sample size.

$$R_n = \inf_{\dim_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}} \left[\ell \left(\hat{\mathsf{dim}}_n(X), \; \dim(P) \right) \right]$$

- ▶ $X = (X_1, \dots, X_n)$ is drawn from a fixed distribution P, where P is contained in set of distributions P.
- estimator $\widehat{\dim}_n$ is any function of data X.

Introduction

Regularity conditions on Distributions and supporting Manifolds

Upper Bound

Lower Bound

Upper bound and Lower bound for General case

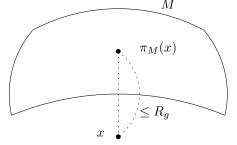
The supporting manifold M is assumed to be bounded.

$$M \subset I := [-K_I, K_I]^m \subset \mathbb{R}^m$$
 with $K_I \in (1, \infty)$

The curvature is assumed to be bounded to avoid an arbitrarily complicated manifold.

Definition

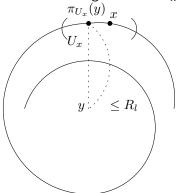
Fix $0 \le \kappa_g < \infty$. A compact d-dimentional topological manifold M is of global curvature $\le \kappa_g$, if for all points x in $R_g \left(:= \frac{1}{\kappa_g} \right)$ -neighborhood of M has unique projection $\pi_M(x)$ to M.



The curvature is assumed to be bounded to avoid an arbitrarily complicated manifold.

Definition

Fix $0 \le \kappa_I \le \kappa_g$. M is of local curvature $\le \kappa_I$, if for all points in $x \in M$, there exists neighborhood $U_x \subset M$ such that U_x is of global curvature $\le \kappa_I$.



Density is bounded away from ∞ with respect to the uniform measure.

- ▶ Distribution P is absolutely continuous to induced Lebesgue measure vol_M , and $\frac{dP}{dvol_M} \leq K_p$ for fixed K_p .
- ► This implies that the distribution on the manifold is of essential dimension *d*.
- ▶ $\mathcal{P}^d_{\kappa_I,\kappa_g,K_p}$ denotes set of distributions P that is supported on bounded d-dimensional manifold of global curvature $\leq \kappa_I$, and whose density is bounded by K_p .

Binary classification and 0-1 loss are considered.

$$R_n = \inf_{\dim_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}} \left[\ell \left(\hat{\mathsf{dim}}_n(X), \; \mathsf{dim}(P) \right) \right]$$

- We assume that the manifolds are of two possible dimensions, d_1 and d_2 , so considered distribution set is $\mathcal{P} = \mathcal{P}^{d_1}_{\kappa_1,\kappa_\sigma,K_0} \cup \mathcal{P}^{d_2}_{\kappa_1,\kappa_\sigma,K_\sigma}$.
- ▶ 0 − 1 loss function is considered, so for all $x, y \in \mathbb{R}$, $\ell(x, y) = I(x \neq y)$.

Introduction

Regularity conditions on Distributions and supporting Manifolds

Upper Bound

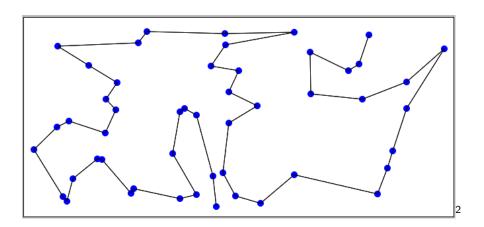
Lower Bound

Upper bound and Lower bound for General case

The maximum risk of any chosen estimator provides an upper bound on the minimax rate.

$$\begin{split} R_n &= \inf_{\mathsf{d} \hat{\mathsf{im}}_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}} \left[\ell \left(\mathsf{d} \hat{\mathsf{im}}_n(X), \mathsf{dim}(P) \right) \right] \\ &\leq \sup_{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}} \left[\ell \left(\mathsf{d} \hat{\mathsf{im}}_n(X), \mathsf{dim}(P) \right) \right] \\ &\quad \text{the maximum risk of any chosen estimator} \end{split}$$

TSP(Travelling Salesman Problem) path finds shortest path that visits each points exactly once.



 $^{^2 {\}sf http://www.heatonresearch.com/fun/tsp/anneal}$

Our estimator estimates dimension to be d_2 if d_1 -squared length of TSP generated by the data is long.

▶ When intrinsic dimesion is higher, length of TSP path is likely to be longer.

$$\widehat{\dim}_{n}(X) = d_{1} \iff$$

$$\exists \sigma \in S_{n} \text{ s.t } \sum_{i=1}^{n-1} \|X_{\sigma(i+1)} - X_{\sigma(i)}\|_{\mathbb{R}^{m}}^{d_{1}} \leq C_{K_{I},d_{1},m}^{1} \left(1 + \kappa_{g}^{m-d_{1}}\right),$$

where $C^1_{K_l,d_1,m}$ is some constant that depends only on K_l , d_1 , and m.

Our estimator has maximum risk of $O\left(n^{-\left(\frac{d_2}{d_1}-1\right)n}\right)$.

- Our estimator makes error with probability at most $O\left(n^{-\left(\frac{d_2}{d_1}-1\right)n}\right)$ if intrinsic dimension is d_2 .
- ▶ Our estimator is always correct when the intrinsic dimension is d_1 .

Our estimator makes error with probability at most $O\left(n^{-\left(\frac{d_2}{d_1}-1\right)n}\right)$ if intrinsic dimension is d_2 .

▶ Based on the following lemma:

Lemma

Let
$$X_1, \dots, X_n \sim P \in \mathcal{P}^{d_2}_{\kappa_1, \kappa_2, K_2}$$
, then

$$P^{(n)}\left[\sum_{i=1}^{n-1} \|X_{i+1} - X_i\|^{d_1} \le L\right]$$

$$\le \frac{\left(C_{K_I,K_\rho,d_1,d_2,m}^2\right)^{n-1} L^{\frac{d_2}{d_1}(n-1)} \left(1 + \kappa_g^{(m-d_2)(n-1)}\right)}{(n-1)^{\left(\frac{d_2}{d_1}-1\right)(n-1)}(n-1)!}$$

where $C_{K_I,K_p,d_1,d_2,m}^2$ depends only on K_I, K_p, d_1, d_2, m .

▶ Based on following lemma:

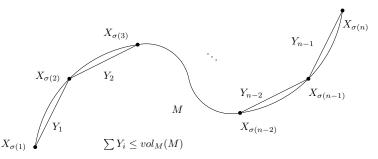
Lemma

Let M be a d_1 -dimensional manifold with global curvature $\leq \kappa_g$ and local curvature $\leq \kappa_I$, and $X_1, \cdots, X_n \in M$. Then there exists $C^3_{K_I, d_1, m}$ which depends only on m, d_1 and K_I , and there exists $\sigma \in S_n$ such that

$$\sum_{i=1}^{n-1} \|X_{\sigma(i+1)} - X_{\sigma(i)}\|_{\mathbb{R}^m}^{d_1} \leq C_{K_I,d_1,m}^3 \left(1 + \kappa_g^{m-d_1}\right).$$

$$\sum_{i=1}^{n-1} \|X_{\sigma(i+1)} - X_{\sigma(i)}\|_{\mathbb{R}^m}^{d_1} \leq C_{K_I,d_1,m}^3 \left(1 + \kappa_g^{m-d_1}\right).$$

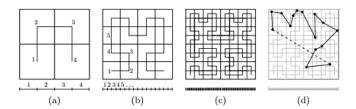
▶ When $d_1 = 1$ so that the manifold is a curve, length of TSP path is bounded by length of curve $vol_M(M)$.



▶ Global curvature $\leq \kappa_g$ implies $vol_M(M)$ is bounded.

$$\sum_{i=1}^{n-1} \|X_{\sigma(i+1)} - X_{\sigma(i)}\|_{\mathbb{R}^m}^{d_1} \leq C_{K_I,d_1,m}^3 \left(1 + \kappa_g^{m-d_1}\right).$$

▶ When $d_1 > 1$, Several conditions implied by regularity conditions combined with Hölder continuity of d_1 -dimensional space-filling curve is used.



$$\sum_{i=1}^{n-1} \|X_{\sigma(i+1)} - X_{\sigma(i)}\|_{\mathbb{R}^m}^{d_1} \leq C_{K_I,d_1,m}^3 \left(1 + \kappa_g^{m-d_1}\right).$$

▶ When $d_1 > 1$, Several conditions implied by regularity conditions combined with Hölder continuity of d_1 -dimensional space-filling curve is used.

Lemma

(Space-filling curve) There exists surjective map $\psi_d: \mathbb{R} \to \mathbb{R}^d$ which is Hölder continuous of order 1/d, i.e.

$$0 \le \forall s, t \le 1, \ \|\psi_d(s) - \psi_d(t)\|_{\mathbb{R}^d} \le 2\sqrt{d+3}|s-t|^{1/d}.$$

Mimimax rate is upper bounded by $O\left(n^{-\left(\frac{d_2}{d_1}-1\right)n}\right)$.

Proposition

Let $1 < d_1 < d_2 < m$. Then

$$\inf_{\widehat{\dim}_{n}P\in\mathcal{P}_{\kappa_{I},\kappa_{g},K_{p},K_{v}}^{d_{1}}\cup\mathcal{P}_{\kappa_{I},\kappa_{g},K_{p},K_{v}}^{d_{2}}}\mathbb{E}_{P^{(n)}}\left[I\left(\widehat{\dim}_{n},\dim(P)\right)\right] \\
\leq \left(C_{K_{I},K_{p},d_{1},d_{2},m}^{4}\right)^{n}\left(1+\kappa_{g}^{\left(\frac{d_{2}}{d_{1}}m+m-2d_{2}\right)n}\right)n^{-\left(\frac{d_{2}}{d_{1}}-1\right)n}.$$

for some $C^4_{K_1,K_p,d_1,d_2,m}$ that depends only on K_1,K_p,d_1,d_2,m .

Introduction

Regularity conditions on Distributions and supporting Manifolds

Upper Bound

Lower Bound

Upper bound and Lower bound for General case

A subset $T \subset [-K_I, K_I]^n$ and set of distributions $\mathcal{P}_1^{d_1}$, $\mathcal{P}_2^{d_2}$ are found so that, whenever $X = (X_1, \dots, X_n) \in T$, we cannot distinguish two models.

- ▶ The lower bound measures how hard it is to tell whether the data come from a d_1 or d_2 -dimensional manifold.
- ▶ T, $\mathcal{P}_1^{d_1}$ and $\mathcal{P}_2^{d_2}$ are linked to the lower bound by using Le Cam's lemma.

Le Cam's lemma provides lower bounds based on the minimum of two densities $q_1 \wedge q_2$, where q_1 , q_2 are in convex hull of $\mathcal{P}_1^{d_1}$ and convex hull of $\mathcal{P}_2^{d_2}$, respectively.

Lemma

Let \mathcal{P} be a set of probability measures on (Ω, \mathcal{F}) , and $\mathcal{P}_1, \mathcal{P}_2 \subset \mathcal{P}$ be such that for all $P \in \mathcal{P}_i$, $\theta(P) = \theta_i$ for i = 1, 2, and $X : \Omega \to I^n$ is observations. Let $Q_1 \in conv(\mathcal{P}_1)$ and $Q_2 \in conv(\mathcal{P}_2)$, where $conv(\mathcal{P}_i)$ is convex hull of \mathcal{P}_i . Assume that induced measure of X on (Ω, Q_1) and (Ω, Q_2) has density q_1 and q_2 respectively with respect to $(I^n, \mathcal{B}(I^n), \nu)$, so that

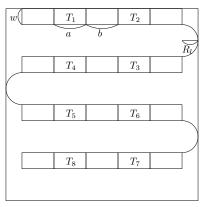
$$Q_1(X \in B) = \int_B q_1(x) d\nu(x)$$
 and $Q_2(X \in B) = \int_B q_2(x) d\nu(x)$.

Then

$$\inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P[d(\hat{\theta}, \theta(P))] \geq \frac{d(\theta_1, \theta_2)}{4} \int [q_1(x) \wedge q_2(x)] d\nu(x).$$

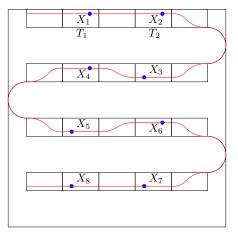
T is constructed so that for any $x=(x_1,\cdots,x_n)\in T$, there exists a d_1 -dimensional manifold that satisfies regularity conditions and passes through x_1,\cdots,x_n .

▶ T_i 's are cylinder sets in $[-K_I, K_I]^{d_2}$, and then T is constructed as $T = S_n \prod_{i=1}^n T_i$, where the permutation group S_n acts on $\prod_{i=1}^n T_i$ as a coordinate change.



T is constructed so that for any $x=(x_1,\cdots,x_n)\in T$, there exists a d_1 -dimensional manifold that satisfies regularity conditions and passes through x_1,\cdots,x_n .

▶ Given $x_1, \dots, x_n \in \mathcal{T}$ (blue points), manifold of global curvature $\leq \kappa_g$ and local curvature $\leq \kappa_I$ (red line) passes through x_1, \dots, x_n .



 $\mathcal{P}_1^{d_1}$ is constructed as set of distributions that are supported on manifolds that passes through x_1, \dots, x_n for $x = (x_1, \dots, x_n) \in \mathcal{T}$, and $\mathcal{P}_2^{d_2}$ is a singleton set consisting of the uniform distirbution on $[-K_I, K_I]^{d_2}$.

If $X \in \mathcal{T}$, it is hard to determine whether X is sampled from distribution P in either $\mathcal{P}_1^{d_1}$ or $\mathcal{P}_2^{d_2}$.

- ▶ There exists $Q_1 \in conv(\mathcal{P}_1^{d_1})$ and $Q_2 \in conv(\mathcal{P}_2^{d_2})$ such that $q_1(x) \geq Cq_2(x)$ for every $x \in T$ with C < 1.
- ▶ Then $q_1(x) \land q_2(x) \ge Cq_2(x)$ if $x \in T$, so $C \int_T q_2(x) dx$ can serve as lower bound of minimax rate.
- Based on following claim:

Claim

Let $T = S_n \prod_{i=1}^n T_i$. Then for all $x \in \operatorname{int} T$, there exists $r_x > 0$ such that for all $r < r_x$,

$$Q_1\left(\prod_{i=1}^n B_{\|\|_{\mathbb{R}^{d_2},\infty}}(x_i,r)\right) \geq \frac{2^{(1-d_1)n}}{\kappa_I^{(d_2-d_1)n} \mathcal{K}_I^{(d_2-d_1)n}}Q_2\left(\prod_{i=1}^n B_{\|\|_{\mathbb{R}^{d_2},\infty}}(x_i,r)\right).$$

Mimimax rate is lower bounded by $\Omega\left(n^{-2(d_2-d_1)n}\right)$.

▶ Lower bound below is now combination of Le Cam's lemma, constructions of T, $\mathcal{P}_1^{d_1}$, $\mathcal{P}_2^{d_2}$, and claim.

Proposition

Suppose $R_I < K_I$, then

$$\begin{split} &\inf_{\hat{\text{dim}}_{P} \in \mathcal{P}_{\kappa_{I},\kappa_{g},K_{\rho},K_{\nu}}^{d_{1}}} \sup_{\cup \mathcal{P}_{\kappa_{I},\kappa_{g},K_{\rho},K_{\nu}}^{d_{2}}} \mathbb{E}_{P^{(n)}}[I(\hat{\text{dim}}_{n},\text{dim}(P))] \\ &\geq \left(C_{d_{1},d_{2},K_{I}}^{5}\right)^{n} \kappa_{I}^{-(d_{2}-d_{1})n} \min \left\{\kappa_{I}^{2(d_{2}-d_{1})+1} n^{-2},1\right\}^{(d_{2}-d_{1})n}, \end{split}$$

for some constant $C^5_{d_1,d_2,K_l}$ that depends only on d_1 , d_2 , and K_l .

Introduction

Regularity conditions on Distributions and supporting Manifolds

Upper Bound

Lower Bound

Upper bound and Lower bound for General case

Multinary classification and 0-1 loss are considered.

$$R_n = \inf_{\dim_n} \sup_{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}} \left[\ell \left(\hat{\mathsf{dim}}_n(X), \; \dim(P) \right) \right]$$

- Now the manifolds are of any dimensions between 1 and m, so considered distribution set is $\mathcal{P} = \bigcup_{d=1}^{m} \mathcal{P}_{\kappa_{l},\kappa_{g},K_{p}}^{d}$.
- ▶ 0 − 1 loss function is considered, so for all $x, y \in \mathbb{R}$, $\ell(x, y) = I(x = y)$.

Mimimax rate is upper bounded by $O\left(n^{-\frac{1}{m-1}n}\right)$, and lower bounded by $\Omega\left(n^{-2n}\right)$.

Proposition

Suppose $R_l < K_l$, then

$$\begin{split} & \left(C_{K_{I}}^{7}\right)^{n} \kappa_{I}^{-n} \min \left\{\kappa_{I}^{3} n^{-2}, 1\right\}^{n} \\ & \leq \inf_{\dim_{n} P \in \mathcal{P}} \mathbb{E}_{P^{(n)}} \left[I\left(\hat{\dim}_{n}, \dim(P)\right)\right] \\ & \leq \left(C_{K_{I}, K_{P}, m}^{6}\right)^{n} \left(1 + \kappa_{g}^{(m^{2} - m)n}\right) n^{-\frac{1}{m-1}n}. \end{split}$$

for some $C^6_{K_I,K_p,m}$ that depends only on K_I,K_p,m , and for some $C^7_{K_I}$ that depends only on K_I .

Thank you!