
Tutorial on the R package TDA

Jisu Kim
Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, Vincent Rouvreau

Abstract

This tutorial gives an introduction to the R package TDA, which provides some tools for
Topological Data Analysis. The salient topological features of data can be quantified with
persistent homology. The R package TDA provide an R interface for the efficient algorithms
of the C++ libraries GUDHI, Dionysus, and PHAT. Specifically, The R package TDA in-
cludes functions for computing the persistent homology of the Rips complex, alpha complex,
and alpha shape complex, and a function for the persistent homology of sublevel sets (or
superlevel sets) of arbitrary functions evaluated over a grid of points. The R package TDA
also provides a function for computing the confidence band that determines the significance
of the features in the resulting persistence diagrams.

Keywords: Topological Data Analysis, Persistent Homology.

1. Introduction

R(http://cran.r-project.org/) is a programming language for statistical computing and
graphics.

R has several good properties: R has many packages for statistical computing. Also, R is easy
to make (interactive) plots. R is a script language, and it is easy to use. But, R is slow. C or
C++ stands on the opposite end: C or C++ also has many packages(or libraries). But, C or
C++ is difficult to make plots. C or C++ is a compiler language, and is difficult to use. But, C
or C++ is fast. In short, R has short development time but long execution time, and C or C++
has long development time but short execution time.

Several libraries are developed for Topological Data Analysis: for example, GUDHI(https://
project.inria.fr/gudhi/software/), Dionysus(http://www.mrzv.org/software/dionysus/),
and PHAT(https://code.google.com/p/phat/). They are all written in C++, since Topo-
logical Data Analysis is computationally heavy and R is not fast enough.

R package TDA(http://cran.r-project.org/web/packages/TDA/index.html) bridges be-
tween C++ libraries(GUDHI, Dionysus, PHAT) and R. TDA package provides an R interface
for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT. So by using
TDA package, short development time and short execution time can be both achieved.

R package TDA provides tools for Topological Data Analysis. You can compute several different
things with TDA package: you can compute common distance functions and density estimators,
the persistent homology of the Rips filtration, the persistent homology of sublevel sets of a
function over a grid, the confidence band for the persistence diagram, and the cluster density
trees for density clustering.

2. Installation

First, you should download R. R of version at least 3.1.0 is required:

http://cran.r-project.org/
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
http://www.mrzv.org/software/dionysus/
https://code.google.com/p/phat/
http://cran.r-project.org/web/packages/TDA/index.html

2 Tutorial on the R package TDA

http://cran.r-project.org/bin/windows/base/ (for Windows)

http://cran.r-project.org/bin/macosx/ (for (Mac) OS X)

R is part of many Linux distributions, so you should check with your Linux package management
system.

You can use whatever IDE that you would like to use(Rstudio, Eclipse, Emacs, Vim...). R itself
also provides basic GUI or CUI. I personally use Rstudio:

http://www.rstudio.com/products/rstudio/download/

For Windows and Mac, you can install R package TDA as in the following code (or pushing
’Install R packages’ button if you use Rstudio).

##

installing R package TDA

##

if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")

}

Loading required package: TDA

If you are using Linux, you should install R package TDA from the source. To do this, you need
to install two libraries in advance: gmp (https://gmplib.org/) and mpfr (http://www.mpfr.
org/). Installation of these packages may differ by your Linux distributions. Once those libraries
are installed, you need to install four R packages: parallel, FNN, igraph, and scales. parallel is
included when you install R, so you need to install FNN, igraph, and scales by yourself. You
can install them by following code (or pushing ’Install R packages’ button if you use Rstudio).

##

installing required packages

##

if (!require(package = "FNN")) {

install.packages(pkgs = "FNN")

}

Loading required package: FNN

if (!require(package = "igraph")) {

install.packages(pkgs = "igraph")

}

Loading required package: igraph

##

Attaching package: ’igraph’

The following object is masked from ’package:FNN’:

##

knn

The following objects are masked from ’package:stats’:

##

decompose, spectrum

The following object is masked from ’package:base’:

##

union

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://www.rstudio.com/products/rstudio/download/
https://gmplib.org/
http://www.mpfr.org/
http://www.mpfr.org/

Jisu Kim 3

if (!require(package = "scales")) {

install.packages(pkgs = "scales")

}

Loading required package: scales

Then you can install the R package TDA as in Windows or Mac:

##

installing R package TDA

##

if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")

}

Once installation is done, R package TDA should be loaded as in the following code, before
using the package functions.

##

loading R package TDA

##

library(package = "TDA")

3. Sample on manifolds, Distance Functions, and Density Estimators

3.1. Uniform Sample on manifolds

A set of n points X = {x1, . . . , xn} ⊂ Rd has been sampled from some distribution P .

• n sample from the uniform distribution on the circle in R2 with radius r.

##

uniform sample on the circle

##

circleSample <- circleUnif(n = 20, r = 1)

plot(circleSample, xlab = "", ylab = "", pch = 20)

4 Tutorial on the R package TDA

−1.0 0.0 0.5 1.0
−

1.
0

0.
0

1.
0

3.2. Distance Functions, and Density Estimators

We compute distance functions and density estimators over a grid of points. Suppose a set of
points X = {x1, . . . , xn} ⊂ Rd has been sampled from some distribution P . The following code
generates a sample of 400 points from the unit circle and constructs a grid of points over which
we will evaluate the functions.

##

uniform sample on the circle, and grid of points

##

X <- circleUnif(n = 400, r = 1)

lim <- c(-1.7, 1.7)

by <- 0.05

margin <- seq(from = lim[1], to = lim[2], by = by)

Grid <- expand.grid(margin, margin)

• The distance function is defined for each y ∈ Rd as ∆(y) = infx∈X ‖x− y‖2.

##

distance function

##

distance <- distFct(X = X, Grid = Grid)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

persp(x = margin, y = margin,

z = matrix(distance, nrow = length(margin), ncol = length(margin)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "Distance Function")

Jisu Kim 5

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X Distance Function

• The Gaussian Kernel Density Estimator (KDE), for each y ∈ Rd, is defined as

p̂h(y) =
1

n(
√

2πh)d

n∑
i=1

exp

(
−‖y − xi‖22

2h2

)
.

where h is a smoothing parameter.

##

kernel density estimator

##

h <- 0.3

KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

persp(x = margin, y = margin,

z = matrix(KDE, nrow = length(margin), ncol = length(margin)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "KDE")

6 Tutorial on the R package TDA

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X KDE

4. Persistent Homology

4.1. Persistent Homology Over a Grid

gridDiag function computes the persistent homology of sublevel (and superlevel) sets of the
functions. The function gridDiag evaluates a given real valued function over a triangulated grid
(in arbitrary dimension), constructs a filtration of simplices using the values of the function, and
computes the persistent homology of the filtration. The user can choose to compute persistence
diagrams using either the C++ library GUDHI (library = "GUDHI"), Dionysus (library =

"Dionysus"), or PHAT (library = "PHAT") .

The following code computes the persistent homology of the superlevel sets
(sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point
cloud stored in the matrix X from the previous example. The other inputs are the features of
the grid over which the kde is evaluated (lim and by), and a logical variable that indicates
whether a progress bar should be printed (printProgress).

##

persistent homology of a function over a grid

##

DiagGrid <- gridDiag(X = X, FUN = kde, lim = cbind(lim, lim), by = by,

sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)

The function plot plots persistence diagram for objects of the class "diagram".

##

plotting persistence diagram

##

par(mfrow = c(1,3))

plot(X, main = "Sample X", pch = 20)

persp(x = margin, y = margin,

z = matrix(KDE, nrow = length(margin), ncol = length(margin)),

Jisu Kim 7

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,

main = "KDE")

plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Sample X

x1

x2

KDE KDE Diagram

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Death

B
ir

th

4.2. Rips Persistent Homology

The Vietoris-Rips complex R(X, ε) consists of simplices with vertices in
X = {x1, . . . , xn} ⊂ Rd and diameter at most ε. In other words, a simplex σ is included
in the complex if each pair of vertices in σ is at most ε apart. The sequence of Rips complexes
obtained by gradually increasing the radius ε creates a filtration.

The ripsDiag function computes the persistence diagram of the Rips filtration built on top of
a point cloud. The user can choose to compute the Rips filtration using either the C++ library
GUDHI or Dionysus. Then for computing the persistence diagram from the Rips filtration, the
user can use either the C++ library GUDHI, Dionysus, or PHAT.

The following code computes the persistent homology of the Rips filtratio using the point cloud
stored in the matrix X from the previous example, and the plot the data and the diagram.

DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,

library = c("GUDHI", "Dionysus"), location = TRUE)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

plot(x = DiagRips[["diagram"]], main = "Rips Diagram")

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
0.

5
1.

0

Sample X Rips Diagram

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

Birth

D
ea

th

8 Tutorial on the R package TDA

4.3. Persistent Homology from filtration

Rather than computing persistence diagrams from built-in function, it is also possible to com-
pute persistence diagrams from a user-defined filtration. A filtration consists of simplicial com-
plex and the filtration values on each simplex. The functions ripsDiag has their counterparts for
computing corresponding filtrations instead of persistence diagrams: namely, ripsFiltration
corresponds to the Rips filtration built on top of a point cloud.

After specifying the limit of the Rips filtration and the max dimension of the homological
features, the following code compute the Rips filtration using the point cloud X.

FltRips <- ripsFiltration(X = X, maxdimension = 1, maxscale = 0.5,

library = "GUDHI")

One way of defining a user-defined filtration is to build a filtration from a simplicial complex and
function values on the vertices. The function funFiltration takes function values (FUNvalues)
and simplicial complex (cmplx) as input, and build a filtration, where a filtration value on a
simplex is defined as the maximum of function values on the vertices of the simplex.

In the following example, the function funFiltration construct a filtration from a Rips complex
and the kernel density estimates on data points.

h <- 0.3

KDEx <- kde(X = X, Grid = X, h = h)

FltFun <- funFiltration(FUNvalues = KDEx, cmplx = FltRips[["cmplx"]],

sublevel = FALSE)

Once the filtration is computed, the function filtrationDiag computes the persistence diagram
from the filtration. The user can choose to compute the persistence diagram using either the
C++ library GUDHI or Dionysus.

DiagFltFun <- filtrationDiag(filtration = FltFun, maxdimension = 1,

library = "Dionysus", location = TRUE, printProgress = FALSE)

par(mfrow = c(1,3))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

plot(x = DiagGrid[["diagram"]], main = "KDE Diagram over grid")

plot(x = DiagFltFun[["diagram"]], diagLim = c(0, 0.27),

main = "KDE Diagram over Rips filtration")

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Sample X KDE Diagram over grid

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Death

B
ir

th

KDE Diagram over Rips filtration

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Death

B
ir

th

Jisu Kim 9

5. Statistical Inference on Persistent Homology

(1 − α) confidence band can be computed for a function using the bootstrap algorithm, which
we briefly describe using the kernel density estimator:

1. Given a sample X = {x1, . . . , xn}, compute the kernel density estimator p̂h;

2. Draw X∗ = {x∗1, . . . , x∗n} from X = {x1, . . . , xn} (with replacement), and compute θ∗ =√
n‖p̂∗h(x)− p̂h(x)‖∞, where p̂∗h is the density estimator computed using X∗;

3. Repeat the previous step B times to obtain θ∗1, . . . , θ
∗
B;

4. Compute qα = inf
{
q : 1

B

∑B
j=1 I(θ∗j ≥ q) ≤ α

}
;

5. The (1− α) confidence band for E[p̂h] is
[
p̂h − qα√

n
, p̂h + qα√

n

]
.

bootstrapBand computes (1 − α) bootstrap confidence band, with the option of parallelizing
the algorithm (parallel=TRUE). The following code computes a 90% confidence band for E[p̂h].

##

bootstrap confidence band for kde function

##

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,

parallel = FALSE, alpha = 0.1, h = h)

print(bandKDE[["width"]])

90%

0.06387487

Then such confidence band for E[p̂h] can be used as the confidence band for the persistent
homology.

##

bootstrap confidence band for persistent homology over a grid

##

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

plot(x = DiagGrid[["diagram"]], band = 2 * bandKDE[["width"]],

main = "KDE Diagram")

10 Tutorial on the R package TDA

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0
Sample X KDE Diagram

0.00 0.10 0.20

0.
00

0.
15

Death

B
ir

th
Affiliation:

Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/

mailto:name@address
http://link/to/webpage/

	Introduction
	Installation
	Sample on manifolds, Distance Functions, and Density Estimators
	Uniform Sample on manifolds
	Distance Functions, and Density Estimators

	Persistent Homology
	Persistent Homology Over a Grid
	Rips Persistent Homology
	Persistent Homology from filtration

	Statistical Inference on Persistent Homology

