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Introduction
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Manifold learning finds an underlying manifold to reduce
dimension.

1http://www.skybluetrades.net/blog/posts/ZOl1/10/30/machine—|earning/ 3/35



Positive reach is a common regularity assumption for
manifold learning.

2h':!:p://www.skybluetrades.ne|:/b|og/posts/2011/10/30/ma<:hine—learning/ 4/35



Positive reach is the minimal regularity assumption in
geometric inference.

» The reach is a key parameter in:
Manifold learning

Homology inference

Volume estimation

Manifold clustering

Dimension estimation and reduction
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Estimating the reach of a manifold is studied.

[§] E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, and
L. Wasserman.

Estimating the Reach of a Manifold.
ArXiv e-prints, May 2017.

» The concept of reach is introduced and geometric condition for how
reach is attained is studied.
» Reach estimator is presented with its statistical efficiency.

» The upper and lower bounds on the minimax rate for estimating the
reach is presented.
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Reach and its Geometry
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The medial axis of a set M is the set of points that have at

least two nearest neighbors on the set M.

Med(M) = {z € RP : there exists p # q € M with
lp =zl = llg — z|| = d(z, M)}.
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The reach of M, denoted by 7y, is the minimum distance
from Med(M) to M.

= inf x—yl-
™ x€Med(M),yeM H yH
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The reach Ty gives the maximum offset size of M on which
the projection is well defined.

™ = inf IIx =yl -
x€EMed(M),yeM
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The reach 7y gives the maximum radius of a ball that you
can roll over M.
» When M c RP is a manifold,

2
= inf lq — p

a#peM 2d(q — p, ToM)’
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The reach 7y gives the maximum radius of a ball that you

can roll over M.

» When M C RP is a manifold,

2
g — pl

v = inf

 a#pem 2d(q — p, T,M)’
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The bottleneck is a geometric structure where the manifold
is nearly self-intersecting.

Definition

(Definition 3.1. in [1]) A pair of points (g1, g2) in M is said to be a
bottleneck of M if there exists zg € Med(M) such that qi1, g2 € B(z0, Tm)
and qu — q2|| = 27‘M.
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The reach is attained either from the bottleneck (global

case) or the area of high curvature (local case).
Theorem

(Theorem 3.4 in [1]) At least one of the following two assertions holds:
> (Global Case) M has a bottleneck (q1, q2) € M?.

» (Local case) There exists gy € M and an arc-length parametrized ~q
such that 70(0) = qo and |7g(0)l| = 7~

TM'

VB(ZO- Tar)
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Reach estimator and its analysis
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The reach 7y gives the maximum radius of a ball that you
can roll over M.
» When M c RP is a manifold,

2
= inf lq — p

a#peM 2d(q — p, ToM)’
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We define the reach estimator 7 as the maximum radius of a
ball that you can roll over the point cloud.

» Let X = {x1,...,x,} be a finite point cloud, then the reach estimator
7 is a plugin estimator as

P— 2
%)= inf_ Pl

X,'#XJ'EX 2d(XJ — Xj, TX,'M) '

la—pl® i S
Qd(q(ip{}TpM) | Hq _12“/ .
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The statistical efficiency of the reach estimator 7 is analyzed
through its risk.

» The risk of the estimator 7 is the expected loss the estimator.
Epwm [£(7(X), Tm)]-

» X={Xi,...,X,} is drawn from a fixed distribution P with its support
M.

» The loss function used is £(7,7") = | i

1
-
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The risk of the reach estimator 7 is analyzed.

» The risk of the estimator 7 is the expected loss the estimator
p]
» X ={Xi,...,X,} is drawn from a fixed distribution P with its support

M.
> The loss function used is £(7,7") = |

i B 1
™ T(X)

E pi) [

1-Lfp>1
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The reach estimator has the risk of O (n‘?»jfl).

» The reach estimator has the risk of O <n_§> for the global case.

. . __2p
» The reach estimator has the risk of O (n 3d—1> for the local case.
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The reach estimator has the maximum risk of O (n_g) for
the global case.

Proposition
(Proposition 4.3 in [1]) Assume that the support M has a bottleneck. Then,

1
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2
The reach estimator has the maximum risk of O (n‘?»dfl)

for the local case.

Proposition

(Proposition 4.7 in [1]) Suppose there exists gg € M and a geodesic g with
70(0) = qo and | (0)|| = ;- Then,

1 1
™ 7(X)

E'Dn |:

Muz(M)

; 2%

TM:

904 22/35



Minimax Estimates
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The statistical difficulty of the reach estimation problem is

analyzed by the minimax rate.

» Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of sample size.

Ry = inf sup Epn [¢ (77(X), Tam)] .
Tn PeP

» X={Xy,...,X,} is drawn from a fixed distribution P with its support

M, where P is contained in set of distributions P.
» An estimator 7, is any function of data X.
> The loss function used is {(,7') = |2 — %

p

Pop>1.
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The statistical difficulty of the reach estimation problem is
analyzed by the minimax rate.

» Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of sample size.
p]

» X ={Xi,..., Xy} is drawn from a fixed distribution P with its support
M, where P is contained in set of distributions P.

» An estimator 7, is any function of data X.

> The loss function used is {(,7') = |2 — %

T/

1 1
™ Tn(X)

R, = inf sup Epn [
Tn PeP

Pop>1.
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The maximum risk of our estimator provides an upper
bound on the minimax rate.

R " 4 { 1 1 p]
= inf su n | |— — =
T P€7p> P ™  Tn(X)
1 1 1P
c gt 3]
PcP ™ T(X)

the maximum risk of our estimator
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Minimax rate is upper bounded by O (n_3551).

Theorem
(Theorem 5.1 in [1])

1 1

™  Th

inf sup Epn [
n PP
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Le Cam’s lemma provides a lower bound based on the reach
difference and the statistical difference of two distributions.

» Total variance distance between two distributions is defined as

TV(P,P')= sup ‘P(A) - P’(A)} .

AcB(RP)
Lemma
(Lemma 5.2 in [1]) Let P, P’ € P with respective supports M and M. Then
1 1/ 1 1P
inf Sup EPn |: —_— = :| 2 - (1 _ ‘,‘\/(,)7 P/))2n
Tn PeP ™ Tn ™ TM!
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Two distributions P, P’ are found so that their reaches differ
but they are statistically difficult to distinguish.

»
1 1) 1 1P
Tn PEP ™ Tn ™ T

» The lower bound measures how hard it is to tell whether the data is
from distributions with different reaches.

» P and P’ are found so that
(1— TV(P,P"))*" is small.

P .
L i‘ is large while
™ TM/
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P is a distribution supported on a sphere while P’ is a
distribution supported on a bumped sphere.

M’
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Mimimax rate is lower bounded by Q2 (n_g).

Proposition
(Proposition 5.6 in [1])

) 1 1(P
inf sup Epn [A ] Zn‘g.
Th PEP ™ Tn
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Thank you!
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Geometric assumptions are imposed to avoid an arbitrary
complicated manifold.

» We let Mg’t_) , denote the set of compact d-dimensional submanifolds

mins

M c RP without boundary such that

» the reach Ty of M is lower bounded by Tmin, i-€. Tp > Tmin-
» every arc-length parametrized geodesic v on M has 3" derivative
bounded by L, i.e. ||[v"(0)| < L.
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Statistics assumptions are imposed to avoid an arbitrary
complicated distribution.

» We let Qd b LE denote the set of distributions @ having support

M e Md 5" 1 and with a density f = dvo, satisfying f > fin > 0 on
M.
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We assume tangent spaces are observed with the data.

» Data takes the form (X1, Tx, M), ..., (Xn, Tx,M), where Xi,..., X,
are i.i.d. from a distribution Q € Qiﬁ Lfi -

» We let the corresponding distribution of (X, TxM) be P, and let
9,0 _ be the set of distributions P.

7—miml—vfmi
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