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Manifold learning finds an underlying manifold to reduce
dimension.

1

1http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/
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Positive reach is a common regularity assumption for
manifold learning.

2

2http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/
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Positive reach is the minimal regularity assumption in
geometric inference.

I The reach is a key parameter in:
I Manifold learning
I Homology inference
I Volume estimation
I Manifold clustering
I Dimension estimation and reduction
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Estimating the reach of a manifold is studied.

E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, and
L. Wasserman.
Estimating the Reach of a Manifold.
ArXiv e-prints, May 2017.

I The concept of reach is introduced and geometric condition for how
reach is attained is studied.

I Reach estimator is presented with its statistical efficiency.
I The upper and lower bounds on the minimax rate for estimating the

reach is presented.

6 / 35



Introduction

Reach and its Geometry

Reach estimator and its analysis

Minimax Estimates

7 / 35



The medial axis of a set M is the set of points that have at
least two nearest neighbors on the set M .

I

Med(M) = {z ∈ RD : there exists p 6= q ∈ M with
‖p − z‖ = ‖q − z‖ = d(z ,M)}.

Med(M)

M
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The reach of M , denoted by τM , is the minimum distance
from Med(M) to M .

I

τM = inf
x∈Med(M),y∈M

‖x − y‖ .

τM

Med(M)

M
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The reach τM gives the maximum offset size of M on which
the projection is well defined.

I

τM = inf
x∈Med(M),y∈M

‖x − y‖ .

τM

Med(M)

M
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The reach τM gives the maximum radius of a ball that you
can roll over M .

I When M ⊂ RD is a manifold,

τM = inf
q 6=p∈M

‖q − p‖2

2d(q − p,TpM)
.

M

p+ TpM

d (q − p, TpM)
‖q − p‖‖q−p‖2

2d(q−p,TpM)

C

q

p
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The bottleneck is a geometric structure where the manifold
is nearly self-intersecting.
Definition
(Definition 3.1. in [1]) A pair of points (q1, q2) in M is said to be a
bottleneck of M if there exists z0 ∈ Med(M) such that q1, q2 ∈ B(z0, τM)
and ‖q1 − q2‖ = 2τM .

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0
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The reach is attained either from the bottleneck (global
case) or the area of high curvature (local case).
Theorem
(Theorem 3.4 in [1]) At least one of the following two assertions holds:

I (Global Case) M has a bottleneck (q1, q2) ∈ M2.
I (Local case) There exists q0 ∈ M and an arc-length parametrized γ0

such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1
τM

.

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

q0

z0

τM

B(z0, τM )

Med(M)M
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We define the reach estimator τ̂ as the maximum radius of a
ball that you can roll over the point cloud.

I Let X = {x1, . . . , xn} be a finite point cloud, then the reach estimator
τ̂ is a plugin estimator as

τ̂(X) = inf
xi 6=xj∈X

‖xj − xi‖2

2d(xj − xi ,TxiM)
.

M

p+ TpM

d (q − p, TpM)
‖q − p‖‖q−p‖2

2d(q−p,TpM)

C

q

p
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The statistical efficiency of the reach estimator τ̂ is analyzed
through its risk.

I The risk of the estimator τ̂ is the expected loss the estimator.

EP(n) [` (τ̂(X), τM)] .

I X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its support
M.

I The loss function used is `(τ, τ ′) =
∣∣ 1
τ −

1
τ ′

∣∣p, p ≥ 1.
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The reach estimator has the risk of O
(
n−

2p
3d−1

)
.

I The reach estimator has the risk of O
(
n−

p
d

)
for the global case.

I The reach estimator has the risk of O
(
n−

2p
3d−1

)
for the local case.

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

q0

z0

τM

B(z0, τM )

Med(M)M
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The reach estimator has the maximum risk of O
(
n−

p
d

)
for

the global case.
Proposition
(Proposition 4.3 in [1]) Assume that the support M has a bottleneck. Then,

EPn

[∣∣∣∣ 1τM − 1
τ̂(X)

∣∣∣∣p] . n−
p
d .

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0
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The reach estimator has the maximum risk of O
(
n−

2p
3d−1

)
for the local case.
Proposition
(Proposition 4.7 in [1]) Suppose there exists q0 ∈ M and a geodesic γ0 with
γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
. Then,

EPn

[∣∣∣∣ 1τM − 1
τ̂(X)

∣∣∣∣p] . n−
2p

3d−1 .

q0

z0

τM

B(z0, τM )

Med(M)M
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The statistical difficulty of the reach estimation problem is
analyzed by the minimax rate.

I Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of sample size.

I

Rn = inf
τ̂n

sup
P∈P

EPn [` (τ̂n(X), τM)] .

I X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its support
M, where P is contained in set of distributions P.

I An estimator τ̂n is any function of data X.
I The loss function used is `(τ, τ ′) =

∣∣ 1
τ −

1
τ ′

∣∣p, p ≥ 1.
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The maximum risk of our estimator provides an upper
bound on the minimax rate.

Rn = inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣ 1τM − 1
τ̂n(X)

∣∣∣∣p]
≤ sup

P∈P
EPn

[∣∣∣∣ 1τM − 1
τ̂(X)

∣∣∣∣p]︸ ︷︷ ︸
the maximum risk of our estimator
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Minimax rate is upper bounded by O
(
n−

2p
3d−1

)
.

Theorem
(Theorem 5.1 in [1])

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣ 1τM − 1
τ̂n

∣∣∣∣p] . n−
2p

3d−1 .
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Le Cam’s lemma provides a lower bound based on the reach
difference and the statistical difference of two distributions.

I Total variance distance between two distributions is defined as

TV (P,P ′) = sup
A∈B(RD)

∣∣P(A)− P ′(A)
∣∣ .

Lemma
(Lemma 5.2 in [1]) Let P,P ′ ∈ P with respective supports M and M ′. Then

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣ 1τM − 1
τ̂n

∣∣∣∣p] & ∣∣∣∣ 1τM − 1
τM′

∣∣∣∣p (1− TV (P,P ′)
)2n

.
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Two distributions P , P ′ are found so that their reaches differ
but they are statistically difficult to distinguish.

I

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣ 1τM − 1
τ̂n

∣∣∣∣p] & ∣∣∣∣ 1τM − 1
τM′

∣∣∣∣p (1− TV (P,P ′)
)2n

.

I The lower bound measures how hard it is to tell whether the data is
from distributions with different reaches.

I P and P ′ are found so that
∣∣∣ 1
τM
− 1

τM′

∣∣∣p is large while

(1− TV (P,P ′))2n is small.
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P is a distribution supported on a sphere while P ′ is a
distribution supported on a bumped sphere.

M ′

M
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Mimimax rate is lower bounded by Ω
(
n−

p
d

)
.

Proposition
(Proposition 5.6 in [1])

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣ 1τM − 1
τ̂n

∣∣∣∣p] & n−
p
d .
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Thank you!
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Geometric assumptions are imposed to avoid an arbitrary
complicated manifold.

I We letMd ,D
τmin,L

denote the set of compact d-dimensional submanifolds
M ⊂ RD without boundary such that

I the reach τM of M is lower bounded by τmin, i.e. τM ≥ τmin.
I every arc-length parametrized geodesic γ on M has 3rd derivative

bounded by L, i.e. ‖γ′′′(0)‖ ≤ L.
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Statistics assumptions are imposed to avoid an arbitrary
complicated distribution.

I We let Qd ,D
τmin,L,fmin

denote the set of distributions Q having support

M ∈Md ,D
τmin,L

and with a density f = dQ
dvolM

satisfying f ≥ fmin > 0 on
M.
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We assume tangent spaces are observed with the data.

I Data takes the form (X1,TX1M), . . . , (Xn,TXnM), where X1, . . . ,Xn

are i.i.d. from a distribution Q ∈ Qd ,D
τmin,L,fmin

.
I We let the corresponding distribution of (X ,TXM) be P , and let
Pd ,D
τmin,L,fmin

be the set of distributions P .
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