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Abstract

This tutorial gives an introduction to the R package TDA, which provides some tools for
Topological Data Analysis. The salient topological features of data can be quantified with
persistent homology. The R package TDA provide an R interface for the efficient algorithms
of the C++ libraries GUDHI, Dionysus, and PHAT. Specifically, The R package TDA in-
cludes functions for computing the persistent homology of the Rips complex, alpha complex,
and alpha shape complex, and a function for the persistent homology of sublevel sets (or
superlevel sets) of arbitrary functions evaluated over a grid of points. The R package TDA
also provides a function for computing the confidence band that determines the significance
of the features in the resulting persistence diagrams.
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1. Introduction

R(http://cran.r-project.org/) is a programming language for statistical computing and
graphics.

R has several good properties: R has many packages for statistical computing. Also, R is easy
to make (interactive) plots. R is a script language, and it is easy to use. But, R is slow. C or
C++ stands on the opposite end: C or C++ also has many packages(or libraries). But, C or
C++ is difficult to make plots. C or C++ is a compiler language, and is difficult to use. But, C
or C++ is fast. In short, R has short development time but long execution time, and C or C++
has long development time but short execution time.

Several libraries are developed for Topological Data Analysis: for example, GUDHI(https://
project.inria.fr/gudhi/software/), Dionysus(http://www.mrzv.org/software/dionysus/),
and PHAT (https://code.google.com/p/phat/). They are all written in C++, since Topo-
logical Data Analysis is computationally heavy and R is not fast enough.

R package TDA (http://cran.r-project.org/web/packages/TDA/index.html) bridges be-
tween C++ libraries(GUDHI, Dionysus, PHAT) and R. TDA package provides an R interface
for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT. So by using
TDA package, short development time and short execution time can be both achieved.

R package TDA provides tools for Topological Data Analysis. You can compute several different
things with TDA package: you can compute common distance functions and density estimators,
the persistent homology of the Rips filtration, the persistent homology of sublevel sets of a
function over a grid, the confidence band for the persistence diagram, and the cluster density
trees for density clustering.

2. Installation

First, you should download R. R of version at least 3.1.0 is required:


http://cran.r-project.org/
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
http://www.mrzv.org/software/dionysus/
https://code.google.com/p/phat/
http://cran.r-project.org/web/packages/TDA/index.html
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http://cran.r-project.org/bin/windows/base/ (for Windows)
http://cran.r-project.org/bin/macosx/ (for (Mac) OS X)

R is part of many Linux distributions, so you should check with your Linux package management
system.

You can use whatever IDE that you would like to use(Rstudio, Eclipse, Emacs, Vim...). R itself
also provides basic GUI or CUI. I personally use Rstudio:

http://www.rstudio.com/products/rstudio/download/

For Windows and Mac, you can install R package TDA as in the following code (or pushing
'Install R packages’ button if you use Rstudio).

if (!require(package = "TDA")) {
install.packages(pkgs = "TDA")
}

## Loading required package: TDA

If you are using Linux, you should install R package TDA from the source. To do this, you need
to install two libraries in advance: gmp (https://gmplib.org/) and mpfr (http://www.mpfr.
org/). Installation of these packages may differ by your Linux distributions. Once those libraries
are installed, you need to install four R packages: parallel, FNN, igraph, and scales. parallel is
included when you install R, so you need to install FNN, igraph, and scales by yourself. You
can install them by following code (or pushing ’Install R packages’ button if you use Rstudio).

if (!'require(package = "FNN")) {
install.packages(pkgs = "FNN")
}

## Loading required package: FNN

if (!require(package = "igraph")) {
install.packages(pkgs = "igraph")
}

## Loading required package: tigraph

##
## Attaching package: ’igraph’

## The following object 1s masked from ’package:FNN’:

##

## knn

## The following objects are masked from ’package:stats’:
##

## decompose, spectrum

## The following object is masked from ’package:base’:
##
## UNLON


http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://www.rstudio.com/products/rstudio/download/
https://gmplib.org/
http://www.mpfr.org/
http://www.mpfr.org/
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if (!require(package = "scales")) {
install.packages(pkgs = "scales")
}

## Loading required package: scales

Then you can install the R package TDA as in Windows or Mac:

HARAR AR AR AR AR AR AR AR AR RR AR AR R R R U RA R AR A RARARARARARARABABARABABARABABHRARARAH
# installing R package TDA
HARAR AR AR AR AR AR AR AR AR RR AR AR RRRR BB R A RARARARARARABARARABARABABARARABHRARAR Y
if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")
}

Once installation is done, R package TDA should be loaded as in the following code, before
using the package functions.

# loading R package TDA
b
library(package = "TDA")

3. Sample on manifolds, Distance Functions, and Density Estimators

3.1. Uniform Sample on manifolds

A set of n points X = {z1,...,z,} C R? has been sampled from some distribution P.

e n sample from the uniform distribution on the circle in R? with radius r.

HAHBHRHRHRHRH R AR U RHRABHRHRABABRARABABRARABABHRA B AR AR AR AR AR AR AR AR AR AR RRRRARAH
# uniform sample on the circle

HAHBH AR AR RHRHRHRHRHRHBHRHRABHBHRABABARABABHRABABAR AR AR AR AR AR AR AR AR RRRRRRHH
circleSample <- circleUnif(n = 20, r = 1)

plot(circleSample, xlab = "", ylab = "", pch = 20)
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3.2. Distance Functions and Density Estimators

We compute distance functions and density estimators over a grid of points. Suppose a set of
points X = {x1,...,2,} C R? has been sampled from some distribution P. The following code
generates a sample of 400 points from the unit circle and constructs a grid of points over which
we will evaluate the functions.

X <- circleUnif(n = 400, r = 1)

lim <- c(-1.7, 1.7)

by <- 0.05

margin <- seq(from = 1im[1], to = 1lim[2], by = by)
Grid <- expand.grid(margin, margin)

e Given a probability measure P, the distance to measure (DTM) is defined for each y € R?

i o) = (= [ csiwyad)
(v ]

m0

where Gy (t) = P(|| X —y|| <t), and m0 € (0,1) and r € [1,00) are tuning parameters. As
m0 increases, DTM function becomes smoother, so m0 can be understood as a smoothing
parameter. r affects less but also changes DTM function as well. The default value of r
is 2. The DTM can be seen as a smoothed version of the distance function. See (Chazal,
Cohen-Steiner, and Mérigot 2011, Definition 3.2) and (Chazal, Massart, and Michel 2015,
Equation (2)) for a formal definition of the "distance to measure” function.

Given X = {z1,...,2,}, the empirical version of the DTM is
1/r
A 1
dmo() = {7 > lwi—ul"]

z; €Nk (y)



Jisu Kim 5

where k = [m0 *n| and Ng(y) is the set containing the k nearest neighbors of y among
LlyeeosTp.

For more details, see (Chazal et al. 2011) and (Chazal et al. 2015).
The DTM is computed for each point of the Grid with the following code:

e e e e et
# distance to measure
HUERR AR RARARR AR ARG AR AR RAR AR R A AR RH AR AR RRR R AR RARRH AU R AR RRRRARRARRARRHARH
m0 <- 0.1
DTM <- dtm(X = X, Grid = Grid, mO0 = mO)
par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(DTM, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, 1ltheta = 50, shade = 0.5,
main = "DTM")

Sample X DTM
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e The Gaussian Kernel Density Estimator (KDE), for each y € R?, is defined as

pn(y) = \/ﬁh ZeXP (_||y_337,||2)

where h is a smoothing parameter.

e e
# kernel density estimator
e

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
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z = matrix(KDE, nrow = length(margin), ncol = length(margin)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "KDE")

Sample X KDE
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4. Persistent Homology

4.1. Persistent Homology Over a Grid

gridDiag function computes the persistent homology of sublevel (and superlevel) sets of the
functions. The function gridDiag evaluates a given real valued function over a triangulated grid
(in arbitrary dimension), constructs a filtration of simplices using the values of the function, and
computes the persistent homology of the filtration. The user can choose to compute persistence
diagrams using either the C++ library GUDHI (library = "GUDHI"), Dionysus (library =
"Dionysus"), or PHAT (library = "PHAT") .

The following code computes the persistent homology of the superlevel sets
(sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point
cloud stored in the matrix X from the previous example. The other inputs are the features of
the grid over which the kde is evaluated (1im and by), and a logical variable that indicates
whether a progress bar should be printed (printProgress).

DiagGrid <- gridDiag(X = X, FUN = kde, lim = cbind(lim, 1lim), by = by,
sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)

The function plot plots persistence diagram for objects of the class "diagram".
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e S A
# plotting persistence diagram
RARRARHARHARHABHRRH AR ARBARH AR U AR R AR A AR ARB AR R AR U AR R AR A RBARBARHARURBHARHRBHH
par (mfrow = c(1,3))
plot(X, main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
main = "KDE")
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
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4.2. Rips Persistent Homology

The  Vietoris-Rips complex R(X,e) consists of simplices with  vertices

n

X = {r1,...,2,} C R? and diameter at most . In other words, a simplex o is included
in the complex if each pair of vertices in ¢ is at most € apart. The sequence of Rips complexes

obtained by gradually increasing the radius € creates a filtration.

The ripsDiag function computes the persistence diagram of the Rips filtration built on top

of

a point cloud. The user can choose to compute the Rips filtration using either the C++ library
GUDHI or Dionysus. Then for computing the persistence diagram from the Rips filtration, the

user can use either the C++ library GUDHI, Dionysus, or PHAT.

The following code computes the persistent homology of the Rips filtration using the point cloud

stored in the matrix X from the previous example, and the plot the data and the diagram.

AR AR R R R R R R R R R AR AR AR AR AR AR AR AR AR R RRRRRRAAAAAA A
# rips persistence diagram
e e R e G
DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,

library = c("GUDHI", "Dionysus"), location = TRUE)

e
# plotting persistence diagram
o
par (mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)

plot(x = DiagRips[["diagram"]], main = "Rips Diagram")
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4.3. Landscapes

The Persistence landscape is a real-valued function that further summarizes the information con-
tained in a persistence diagram. It has been introduced and studied in Bubenik (2012), Chazal,
Fasy, Lecci, Rinaldo, and Wasserman (2014b), and Chazal, Fasy, Lecci, Michel, Rinaldo, and
Wasserman (2014a). The persistence landscape is a collection of continuous, piecewise linear
functions A: ZT x R — R that summarizes a persistence diagram. To define the landscape, con-
sider the set of functions created by tenting each each point p = (z,y) = (M d=b

5 5 ) representing
a birth-death pair (b, d) in the persistence diagram D as follows:

t—x+y telr—y,a] t—b tel[b ]
Aty =Sa+y—t te(ma+y =qd—t te (5 d (1)
0 otherwise 0 otherwise.

We obtain an arrangement of piecewise linear curves by overlaying the graphs of the func-
tions {A,},; see Figure 1 (left). The persistence landscape of D is a summary of this arrange-
ment. Formally, the persistence landscape of D is the collection of functions

A(k,t) = kmax A,(t), te[0,T],keN, (2)
P
where kmax is the kth largest value in the set; in particular, Imax is the usual maximum func-
tion. see Figure 1 (right).

The landscape function can be evaluated over a one-dimensional grid of points tseq using the
function landscape. In the following code, we use the persistence diagram of KDE to construct
the corresponding landscape for one-dimensional features (dimension = 1). The option (KK
= 1) specifies that we are interested in the 1st landscape function. The functions landscape
return real valued vectors, which can be simply plotted with plot(tseq, Land, type = "1").

tseq <- seq(0, 0.2, length = 1000)
Land <- landscape(DiagGrid[["diagram"]], dimension = 1, KK = 1, tseq = tseq)
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Figure 1: Left: we use the rotated axes to represent a persistence diagram D. A feature
(b,d) € D is represented by the pohﬁ;(ggg,dgg) (pink). In words, the z-coordinate is the
average parameter value over which the feature exists, and the y-coordinate is the half-life of
the feature. Right: the blue curve is the landscape A(1,-).

par (mfrow = c(1,2))
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
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5. Statistical Inference on Persistent Homology
(1 — ) confidence band can be computed for a function using the bootstrap algorithm, which
we briefly describe using the kernel density estimator:
1. Given a sample X = {z1,...,z,}, compute the kernel density estimator pp;

2. Draw X* = {z7,...,2}} from X = {z1,...,2,} (with replacement), and compute §* =
V1|pi(x) — Pr(x)||eo, where Py is the density estimator computed using X*;
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3. Repeat the previous step B times to obtain 07, ..., 0%;
4. Compute g, = inf {q : % Ele I(H;-‘ >q) < oz} :

5. The (1 — «) confidence band for E[pp] is [ﬁh - \q/—‘% , Dn + %] .

bootstrapBand computes (1 — «) bootstrap confidence band, with the option of parallelizing
the algorithm (parallel=TRUE). The following code computes a 90% confidence band for E[py].

e i
# bootstrap confidence band for kde function
e e L s
bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,

parallel = FALSE, alpha = 0.1, h = h)
print (bandKDE[["width"]])

#it 90%
## 0.06626814

Then such confidence band for E[py] can be used as the confidence band for the persistent
homology.

e e e e R e T e
# bootstrap confidence band for persistent homology over a grid
e e Rt e
par (mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagGrid[["diagram"]], band = 2 * bandKDE[["width"]],
main = "KDE Diagram")
Sample X KDE Diagram
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And the same confidence band for E[p;] can be used as the confidence band for the landscape
function as well.

e e e e e e e S e e e e i
# bootstrap confidence band for landscape
B
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par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")
axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],

rev(Land + bandKDE[["width"]1])), col = "pink", lwd = 1.5,
border = NA)
lines(tseq, Land)
Sample X 200 samples
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