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Abstract

We derive concentration inequalities for the supremum norm of the difference 

between a kernel density estimator (KDE) and its point-wise expectation that 

hold uniformly over the selection of the bandwidth. We first propose the volume 

dimension to measure the intrinsic dimension of the support of a probability 

distribution based on the rates of decay of the probability of vanishing 

Euclidean balls. Our bounds depend on the volume dimension and generalize 

the existing bounds derived in the literature. Analogous bounds are derived for 

the derivative of the KDE, of any order. Our results are generally applicable but 

are especially useful for problems in geometric inference and topological data 

analysis, including level set estimation, density-based clustering, modal 

clustering and mode hunting, ridge estimation and persistent homology.

Volume Dimension

• For a probability distribution 𝑃 on ℝ𝑑, the volume dimension is the 

maximum possible exponent rate dominating the probability volume decay 

on balls, i.e. let 𝔹 𝑥, 𝑟 = 𝑦 ∈ ℝ𝑑: 𝑥 − 𝑦 < 𝑟 , then  

𝑑𝑣𝑜𝑙 ≔ sup 𝜈 ≥ 0: limsup
𝑟→0

sup
𝑥∈𝕏

𝑃 𝔹 𝑥, 𝑟

𝑟𝜈
< ∞ .

• (Proposition 1) When there exists a set 𝐴 satisfying 𝑃 𝐴 ∩ 𝕏 > 0 with 

Hausdorff dimension 𝑑𝐻, then 0 ≤ 𝑑𝑣𝑜𝑙 ≤ 𝑑𝐻 .

• (Proposition 3) Suppose there exists a 𝑑𝑀-dimensional manifold with 

positive reach satisfying 𝑃 𝑀 ∩ 𝕏 > 0 and supp P ⊂ 𝑀 . If 𝑃 has a 

bounded density with respect to the 𝑑𝑀-dimensional Hausdorff measure, then 

𝑑𝑣𝑜𝑙 = 𝑑𝑀.

Uniform Convergence of the Kernel Density Estimator

Uniformity on a ray of bandwidths

• (Corollary 13) Let 𝑃 be a probability distribution on ℝ𝑑 and 𝐾 be a kernel 

function satisfying Assumption 3 and 4. Fix 𝜖 ∈ (0, 𝑑𝑣𝑜𝑙 ). Further, if 𝜖 = 0
or under Assumption 1, 𝜖 can be 0. Suppose 𝑙𝑛 < 1 and 

limsup
n

log 1/𝑙𝑛 + log 2/𝛿

𝑛𝑙𝑛
𝑑𝑣𝑜𝑙−𝜖

< ∞.

Then, with probability 1 − 𝛿, 

sup
ℎ≥𝑙𝑛,𝑥∈𝕏

| ො𝑝ℎ 𝑥 − 𝑝ℎ(𝑥)| ≾
log 1/𝑙𝑛 + log 2/𝛿

𝑛𝑙𝑛
2𝑑−𝑑𝑣𝑜𝑙+𝜖

.

Fixed bandwidth 

• (Corollary 15) For fixed bandwidth, i.e. bounding sup
𝑥∈𝕏

| ො𝑝ℎ𝑛 𝑥 − 𝑝ℎ𝑛(𝑥)|, 

then Assumption 4 can be dropped when 𝕏 is bounded and 𝐾 is Lipschitz 

continuous.

Derivatives of the Kernel Density Estimator

• For 𝑠 ∈ 0 ∪ ℕ 𝑑, let 𝑠 = 𝑠1 +⋯+ 𝑠𝑑 and 𝐷𝑠 ≔
𝜕|𝑠|

𝜕𝑥1
𝑠1⋯𝜕𝑥𝑑

𝑠𝑑
.

• With analogous assumptions on 𝑃 and 𝐷𝑠𝐾 , with probability 1 − 𝛿, 

sup
ℎ≥𝑙𝑛,𝑥∈𝕏

|𝐷𝑠 ො𝑝ℎ 𝑥 − 𝐷𝑠𝑝ℎ(𝑥)| ≾
log 1/𝑙𝑛 + log 2/𝛿

𝑛𝑙𝑛
2𝑑+2|𝑠|−𝑑𝑣𝑜𝑙+𝜖

.

Assumptions

Let 𝑃 be a probability distribution on ℝ𝑑, and 𝑑𝑣𝑜𝑙 be its volume dimension. 

• Assumption 1. We assume that

limsup
𝑟→0

sup
𝑥∈𝕏

𝑃 𝔹 𝑥, 𝑟

𝑟𝑑𝑣𝑜𝑙
< ∞.

• Assumption 2. We assume that

sup
𝑥∈𝕏

liminf
𝑟→0

𝑃 𝔹 𝑥, 𝑟

𝑟𝑑𝑣𝑜𝑙
> ∞.

Let 𝐾:ℝ𝑑 → ℝ be a kernel function with 𝐾 ∞ < ∞. 

• Assumption 3. Fix 𝑘 > 0 with its default to be 𝑘 = 2. Then we assume that 

either 𝑑𝑣𝑜𝑙 = 0 or 

න
0

∞

𝑡𝑑𝑣𝑜𝑙−1 sup
𝑥 ≥𝑡

𝐾 𝑥 𝑘 𝑑𝑡 < ∞.

• Assumption 4. Let 𝐾 satisfy 𝐾 2 < ∞. We assume that  

ℱ𝐾,[𝑙𝑛,∞) :≔ 𝐾
𝑥 −⋅

ℎ
: 𝑥 ∈ 𝕏, ℎ ≥ 𝑙𝑛

is a uniformly bounded VC-class with dimension 𝜈, i.e., there exist positive 

numbers 𝐴 and 𝜈 such that, for every 𝜖 ∈ (0, 𝐾 ∞), the covering number 

𝒩 ℱ𝐾, 𝑙𝑛,∞ , 𝐿2 𝑄 , 𝜖 satisfies  

𝒩 ℱ𝐾, 𝑙𝑛,∞ , 𝐿2 𝑄 , 𝜖 ≤
𝐴 𝐾 ∞

𝜖

𝜈

,

where the covering number is the minimal number of open balls of radius 𝜖
with respect to distance 𝐿2 𝑄 whose centers are in ℱ𝐾, 𝑙𝑛,∞ to cover ℱ𝐾, 𝑙𝑛,∞ .

Lower bound for the convergence of the KDE

• (Proposition 16) Let 𝑃 be a probability distribution on ℝ𝑑 satisfying 

Assumption 2 with positive volume dimension. Let 𝐾 be a kernel function 

satisfying Assumption 3 with 𝑘 = 1 andlim
𝑡→0

inf
𝑥 ≤𝑡

𝐾 𝑥 > 0 . Suppose 

lim
n
𝑛ℎ𝑛

𝑑𝑣𝑜𝑙 = ∞. Then, with probability 1 − 𝛿, 

sup
𝑥∈𝕏

| ො𝑝ℎ𝑛 𝑥 − 𝑝ℎ𝑛(𝑥)| ≿
1

𝑛ℎ𝑛
2𝑑−𝑑𝑣𝑜𝑙

.

• (Corollary 17) The same lower bound holds for a ray of bandwidths as well.

• By combining the upper and lower bounds together, with high probability,

1

𝑛ℎ𝑛
2𝑑−𝑑𝑣𝑜𝑙

≼ sup
𝑥∈𝕏

| ො𝑝ℎ𝑛 𝑥 − 𝑝ℎ𝑛(𝑥)| ≾
log 1/ℎ𝑛

𝑛ℎ𝑛
2𝑑−𝑑𝑣𝑜𝑙

.

Uniform Convergence Rate of Kernel Density Estimator

• For 𝑋1, ⋯ , 𝑋𝑛~𝑃, a given kernel function 𝐾, and bandwidth ℎ > 0, the 

kernel density estimator (KDE) ො𝑝ℎ: ℝ
𝑑 → ℝ is 

ො𝑝ℎ 𝑥 =
1

𝑛ℎ𝑑
෍

𝑖=1

𝑛

𝐾
𝑥 − 𝑋𝑖
ℎ

.

• The average kernel density estimator 𝑝ℎ: ℝ
𝑑 → ℝ is 

𝑝ℎ 𝑥 = 𝔼𝑃 ො𝑝ℎ 𝑥 =
1

ℎ𝑑
𝔼𝑃 𝐾

𝑥 − 𝑋

ℎ
.

• Fix a subset 𝕏 ⊂ ℝ𝑑 , then we need uniform control of the kernel density 

estimator over 𝕏, sup
,𝑥∈𝕏

| ො𝑝ℎ 𝑥 − 𝑝ℎ(𝑥)|, for density-based clustering, modal 

clustering and mode hunting, mean-shift clustering, ridge estimation and 

inference for density level sets, cluster density trees, and persistence 

diagrams.

• The goal of this work is to get the concentration inequalities for the kernel 

density estimator in the supremum norm that hold uniformly over the 

selection of the bandwidth, i.e., the concentration inequalities for 

sup
ℎ≥𝑙𝑛,𝑥∈𝕏

| ො𝑝ℎ 𝑥 − 𝑝ℎ(𝑥)| .

Example

Let 𝑃 be a probability distribution on ℝ𝑑 with density 𝑝 with respect to 𝑑-dimensional Lebesgue measure. Fix 𝛽 < 𝑑, and suppose  𝑝:ℝ𝑑 → ℝ is defined as

𝑝 𝑥 =
𝑑 − 𝛽 Γ d/2

2𝜋𝑑/2
𝑥 −𝛽𝐼( 𝑥 ≤ 1).

Then, the volume dimension is 𝑑𝑣𝑜𝑙 = 𝑑 − 𝛽.And Assumption 1,2,3 are satisfied, so with high probability,

1/𝑛ℎ𝑛
𝑑+𝛽

≼ sup
𝑥∈𝕏

| ො𝑝ℎ𝑛 𝑥 − 𝑝ℎ𝑛(𝑥)| ≾ log 1/ℎ𝑛 /𝑛ℎ𝑛
𝑑+𝛽

.

Hence although it has Lebesgue density, its 𝐿∞ convergence rate of the KDE 1/𝑛ℎ𝑛
𝑑+𝛽

(up to log 1/ℎ𝑛 term) is different from 1/𝑛ℎ𝑛
𝑑, which is the usual rate for 

probability distributions with bounded Lebesgue density.


