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Abstract Volume Dimension

We derive concentration inequalities for the supremum norm of the difference
between a kernel density estimator (KDE) and its point-wise expectation that
hold uniformly over the selection of the bandwidth. We first propose the volume

Uniform Convergence of the Kernel Density Estimator

Uniformity on a ray of bandwidths

» (Corollary 13) Let P be a probability distribution on R% and K be a kernel
function satisfying Assumption 3 and 4. Fix € € (0,d,,; ). Further, if e = 0
or under Assumption 1, e can be 0. Suppose [,, < 1 and
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For a probability distribution P on R¢, the volume dimension is the
maximum possible exponent rate dominating the probability volume decay
on balls, i.e. let B(x,7) = {y € R%: ||x — y|| < r}, then

. P(B(x,1))
dy,o; = sSup v = 0:limsup sup < 0o .
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(Proposition 1) When there exists a set A satisfying P(4 N X) > 0 with
Hausdorff dimension d, then 0 < d,,; < dy .

(Proposition 3) Suppose there exists a d,;-dimensional manifold with
positive reach satisfying P(M N X) > 0 and supp(P) c M . If P has a
bounded density with respect to the d,,-dimensional Hausdorff measure, then

dimension to measure the intrinsic dimension of the support of a probability (
distribution based on the rates of decay of the probability of vanishing
Euclidean balls. Our bounds depend on the volume dimension and generalize
the existing bounds derived in the literature. Analogous bounds are derived for

the derivative of the KDE, of any order. Our results are generally applicable but
are especially useful for problems in geometric inference and topological data
analysis, including level set estimation, density-based clustering, modal
clustering and mode hunting, ridge estimation and persistent homology.
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dyo; = dy. Fixed bandwidth
* (Corollary 15) For fixed bandwidth, i.e. bounding sup |py,_(x) — pp_ (x)],
XEX
then Assumption 4 can be dropped when X is bounded and K is Lipschitz
: : : : continuous.
Uniform Convergence Rate of Kernel Density Estimator Assumptions Derivatives of the Kernel Density Estimator
* For Xy,---, X,,~P, agiven kernel function K, and bandwidth h > 0, the Let P be a probability distribution on R%, and d,,,; be its volume dimension. « Fors € ({0}UuN)4, let|s| =s; + -+ s4and DS := p fls(; 57"
. . A d . . . xls -dXg
kernel density estimator (KDE) py,: IRn - RIS Assumption 1. We assume that . With analogous assumptions on P and DK , with probability 1 — &,
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* The average kernel density estimator p;: R* = R Is p (IB (x r)) \
A ooNq L x—X liminf —2 > oo,
pn(x) = Ep[pp(x)] = a Lp [K( P )] SR T rdvar >

Let K: R? = R be a kernel function with ||K ||, < oo.

» Fix asubset X ¢ R%, then we need uniform control of the kernel density _ _ A
* Assumption 3. Fix k > 0 with its default to be k = 2. Then we assume that

estimator over X, sup |py(x) — py(x)], for density-based clustering, modal
,XEX

clustering and mode hunting, mean-shift clustering, ridge estimation and
Inference for density level sets, cluster density trees, and persistence
diagrams.

The goal of this work Is to get the concentration inequalities for the kernel
density estimator in the supremum norm that hold uniformly over the
selection of the bandwidth, 1.e., the concentration inequalities for

sup |pr(x) — pp(x)].
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Uniform bound on KDE
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« Assumption 4. Let K satisfy ||K]||, < co. We assume that
x —

Ficfneo) = {K (7)1 x € X h 2 1

IS a uniformly bounded VC-class with dimension v, I.e., there exist positive
numbers A and v such that, for every € € (0, ||K||»), the covering number

N (T K,[1,,,00)s L2 (0Q), E) satisfies
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where the covering number is the minimal number of open balls of radius €
with respect to distance L, (Q) whose centers are in Fg ;) t0 cover Fi ;).

Example

Lower bound for the convergence of the KDE

» (Proposition 16) Let P be a probability distribution on R¢ satisfying
Assumption 2 with positive volume dimension. Let K be a kernel function
satisfying Assumption 3 with k = 1 andlim inf K(x) > 0. Suppose
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* (Corollary 17) The same lower bound holds for a ray of bandwidths as well.

* By combining the upper and lower bounds together, with high probability,
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Let P be a probability distribution on R¢ with density p with respect to d-dimensional Lebesgue measure. Fix § < d, and suppose p: R¢ — R is defined as
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Then, the volume dimension is d,,,; = d — . And Assumption 1,2,3 are satisfied, so with high probability,
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Hence although it has Lebesgue density, its L., convergence rate of the KDE \/ 1 /nhf’ﬁ (up to log(1/h,,) term) is different from+/1/nhZ, which is the usual rate for
probability distributions with bounded Lebesgue density.



