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Topological structures in the data provide information.
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Homology of finite sample is different from homology of

underlying manifold, hence it cannot be directly used for the

inference.
» When analyzing data, we prefer robust features where features of the

underlying manifold can be inferred from features of finite samples.
» Homology is not robust:
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Confidence band for persistent homology of density function
separates homological signal from homological noise.
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Computing the persistent homology of density function
incurs computing on a grid of points, which is infeasible in
high dimensional space.
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Computing the persistent homology of density function on
data points reduces computational complexity.
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How can we analyze the convergence and compute a
confidence band for the persistent homology of density
function with computation on data points?

» (Shin, Kim, Rinaldo, Wasserman, 20197) : extending work from Fasy
et al. [2014], Bobrowski et al. [2014], Chazal et al. [2011].
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We rely on the kernel density estimator to compute the
persistent homology of density function.

» The kernel density estimator is

A~ 1 : X*X,'
Ph(X):nhdZK< h )
i=1
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To analyze the convergence of the persistent homology of

density function, the uniform convergence of the kernel

density estimator needs to be studied.

» Let pp(x) = Ep[pr(x)], then we need to study the analytic behavior

of

sup |pn(x) = pa(x)]-
x€supp(P)

» (Kim, Shin, Rinaldo, Wasserman, 2019)
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We are also interested in recovering homotopy type of the
underlying manifold from finite samples.

> 77: extending work from Niyogi et al. [2008], Attali et al. [2013]

Underlying circle Finite samples
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Persistent homology of KDE filtration on rips complex and
Related Work

> Persistent homology of KDE filtration on rips complex (Shin, Kim,
Rinaldo, Wasserman, 20197)

» Uniform Convergence Rate of the Kernel Density Estimator Adaptive
to Intrinsic Volume Dimension (Kim, Shin, Rinaldo, Wasserman,
2019)

> 77
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The persistent homology of the KDE filtration on Rips
complexes is consistent.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 20197, Theorem 16)

. su log(1/h
de (PHE by, 1n). PHZ"" P (py,)) = O ( el ||rnoo> :
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Confidence set for the persistent homology of the KDE
filtration.

» We let the confidence set as the ball centered at PHR(py, , r,) and
radius b, i.e.

¢, = {73 . dg (P, PHR(pn,, ) < Ba}.

This is a valid confidence set by the following theorem.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 20197, Theorem 20)

P (PHf“”’(”)(p,,n) e C‘a> >1—a+o(1).
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The uniform convergence rate of the Kernel Density
Estimator is derived adaptive to the intrinsic dimension.

Theorem
(Kim, Shin, Rinaldo, Wasserman, 2019, Corollary 13, Corollary 17)
Suppose I, — 0 and nl, — oo. Then with high probability,

[_ 1 log(1//n)
——— 3 su br(x) — pp(x)] = ;
pf3d—dver ™~ hZ/n,EeX|ph( ) =PI 2 nf2d=dvol

for all large n.
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The homotopy type of a positive reach set can be

reconstructed from the Rips complex.
Theorem
Let X be a subset with its reach Tx > 0, and let X C X be a finite
sample. When r € [dy(X, X'), Crx], then the Rips complex R(X,r) is

homotopic equivalent to X, with C = % ~0.71...

Underlying circle Rips complex
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Thank youl
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Persistent Homology of KDE filtration on Rips complex

21/48



We rely on the kernel density estimator to extract
topological information of the underlying distribution.

» The kernel density estimator is

~ 1 u X—X,'
B() = pa DK <h> '
=1
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We are considering the upper level set of the average kernel
density estimator on the support.

» Let Xi,...,X, ~ P, then the average kernel density estimator is

) =B (] = % [ (255

» We are considering the upper level sets of the average kernel density
estimator

{Dr},~¢, Where Dy := {x € supp(P) : pa(x) > L}.
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We are considering the upper level set of the average kernel
density estimator on the support.

» We are considering the upper level sets of the average KDE
{Dr};~q, Where D := {x € supp(P) : pa(x) > L}.
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We are targeting the persistent homology of the upper level
set of the average kernel density estimator on the support.

» We are considering the upper level sets of the average KDE

{Dr};~q, where Dy := {x € supp(P) : pa(x) > L},

and targeting its persistent homology PHiupp(P)(ph).
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We use the Rips complex to estimate the target persistent

homology.
» For X C R? and r > 0, the Rips complex R(X, r) is defined as

R(X,r) = {[Xi,- - Xi] C X d(Xp, X)) <2r, 1<V # 1<k}

Rips Complex
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We estimate the target level set by considering the Rips
complex generated from the level set of the KDE.

» For X, = {Xi,..., Xy}, we estimate the target level set by the level
sets of the KDE on Rips complexes,

{R (Xf_”’u r) }L>O, where X% = (X, € X, pu(X)) = L} .

level =0.25
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We estimate the target persistent homology by the
persistent homology of the KDE filtration on Rips

complexes.
» We estimate the target persistent homology by the persistent
homology of the level sets of the KDE on Rips complexes,

{R (xth, r)}L | where XP% = (X; € X, : pu(Xi) > L}.
; >0 ;
and denote the persistent homology as PHR (py, r).
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We estimate the target level set by Rips complexes from the
KDE level sets.

» We approximate the target level set
{Dr};~q, wWhere Dy := {x € supp(P) : pa(x) > L},
by the level sets of the KDE on Rips complexes,

{R(x2, r)}L>O, where X% = (X, € X, : pp(X) = L} .
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We estimate the target persistent homology by the
persistent homology of the KDE filtration on Rips

complexes.
» We estimate the target persistent homology

PHiupp(P)(ph),
by the persistent homology of the KDE filtration on Rips complexes,

PHR(pp, r).
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The persistent homology of the KDE filtration on Rips
complexes is stable.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 20197, Proposition 15) When
supp(P) C U; B(X;, r), then

da (PHE (Br,. ), PH""" P (py,)) < sup 11, (x) = P, ()] +O (ralloc) -

xesupp(P)
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The persistent homology of the KDE filtration on Rips
complexes is consistent.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 20197, Theorem 16)

. su log(1/h
de (PHE by, 1n). PHZ"" P (py,)) = O ( el ||rnoo> :
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Confidence set

> An asymptotic 1 — a confidence set C, is a random set of persistent
homologies satisfying

P(PH:"P*P)(p, ) € €,) > 1 — a+ o(1).
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Confidence set for the persistent homology of the KDE
filtration.

» We let the confidence set as the ball centered at PHR(py, , r,) and
radius b, i.e.

¢, = {73 . dg (P, PHR(pn,, ) < Ba}.

This is a valid confidence set by the following theorem.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 20197, Theorem 20)

P (PHf“”’(”)(p,,n) e C‘a> >1—a+o(1).
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Uniform Convergence Rate of the Kernel Density Estimator Adaptive to
Intrinsic Volume Dimension
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The consistency of the persistent homology of the KDE
filtration on Rips complexes is derived from the uniform
convergence of the kernel density estimator.

» We would like to study the analytic behavior of the uniform
convergence of the kernel density estimator, i.e.,

sup  [Pn,(x) = P, (X)]-
x€supp(P)
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Kernel Density Estimator

» For Xi,...,X, ~ P, a given kernel function K, and a bandwidth
h > 0, the Kernel Density Estimator (KDE) p, : RY — R is

A~ 1 : X—X,'
Ph(X)_nhdZK< h )
i=1

KDE
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Average Kernel Density Estimator

» The Average Kernel Density Estimator (KDE) p, : R? — R is

pr(x) = Ep [pn(x)] = hfld]EP {K (X;X)] :

Average KDE
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We get the uniform convergence rate on Kernel Density

Estimator. _ _
» Fix a subset X C R?, we need uniform control of the Kernel Density

Estimator over X, sup,cx |Pn,(x) — pn,(x)|, for various purposes.

» We get the concentration inequalities for the Kernel Density
Estimator in the supremum norm that hold uniformly over the
selection of the bandwidth, i.e.,

sup |Pn(x) — pa(x)|-
h>1,,xEX

Uniform bound on KDE
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The volume dimension characterizes the intrinsic dimension
of the distribution related to the convergence rate of the
Kernel Density Estimator.

» For a probability distribution P on R9, the volume dimension is

P(B
dyol := sup {u >0: limsupsup M < oo} ,
r—0 xeX rv

where B(x,r) = {y € R?: ||x —y| < r}.
» In other words, the volume dimension is the maximum possible
exponent rate dominating the probability volume decay on balls.
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The uniform convergence rate of the Kernel Density
Estimator is derived in terms of the volume dimension.

Theorem

(Kim, Shin, Rinaldo, Wasserman, 2019, Corollary 13, Corollary 17) Let P
be a probability distribution on RY satisfying weak assumptions and K be
a kernel function satisfying weak assumptions. Suppose I, — 0 and

nl, — oo. Then with high probability,

1 Iog(l//,,)
=< su pr(x) — pr(x)| =3 ,
\/ nf3d=dver hzln,fexmh( ) =PI 3 nf2d—dvol

for all large n.
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Homotopy Reconstruction of a positive reach set using Rips Complex
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Cech complex is constructed by finding nonempty
intersections of balls.

> For X,X C R? and r > 0, the intrinsic Cech complex Cechx (X, r)
is defined as

k
éechX(X,r): [X;l,...,X,‘k]CXZ m]Bx(X,j,r)#@ s
j=1

where Bx(x,r) = {y € X: |ly — x|| < r} is the intrinsic ball of
radius r centered at x.

> The ambient Cech complex Cechx(X,r) is when X = R¢.

43/as



The reach of X, denoted by reach(X), is the minimum
distance from the medial axis to the set.

» The Medial Axis is the set of points that have at least two nearest
neighbors, i.e.

Med(X) = {z € R? : there exists p # q € X with
lp =zl = llg = zll = d(z,X)}.

» The reach is the minimum distance from the medial axis to the set,
i.e.

h(X) = inf —yl.
reach(X) xEMeJi?X),yGXHX vl
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The homotopy type of a positive reach set is reconstructed
from the intrinsic Cech complex.

Theorem

Let X C RY be a subset with reach 7x > 0 and X C X be a finite
sample. When r € [dH(X, X)), ﬂTX], then the intrinsic Cech complex
5echX(X, r) is homotopic equivalent to X.

» The condition on r is optimal.

45 /a8



The homotopy type of a positive reach set can be
reconstructed from the ambient Cech complex.

Theorem

Let X C RY be a subset with reach 7x > 0 and X C X be a finite

sample. When r € [dn(X, X), Cx|, then the ambient Cech complex
Cechgm (X, r) is homotopic equivalent to X.

> Previous result: C =3 — /8 ~ 0.17 in Niyogi et al. [2008]
» Our (tentative) result: C = 1/v/2 ~ 0.71
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The homotopy type of a positive reach set can be

reconstructed from the Rips complex.

Theorem

Let X C RY be a subset with its reach 7x > 0, and let X C X be a finite
sample. When r € [dy(X, X'), Crx]|, then the Rips complex R(X,r) is
homotopic equivalent to X.

> Previous result: C = 2Y2Y2-V2 0 034 in Attali et al. [2013]
2+V2

» Our (tentative) result: C = 1/v/2 ~ 0.71

Underlying circle Rips complex
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Thank youl
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Stability and Statistical Inference for Persistent Homology
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

dg(D1, D7) = i')yf sup [|x — (x)|loos

x€Dy

where « ranges over all bijections from D; to D;.
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Bottleneck distance gives a metric on the space of persistent

homology.
Definition
Let Dy, Dy be multiset of points. Bottleneck distance is defined as

dp(D1, D>) = inf sup ||x — v(x)|lcc,
2l xeDy

where « ranges over all bijections from D; to D;.
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Confidence band for the persistent homology is a random

quantity containing the persistent homology with high
probability.
Let M be a compact manifold, and X = {Xy,---, X,,} be n samples. Let
fi and fx be corresponding functions whose persistent homology is of

interest. Given the significance level « € (0,1), (1 — «) confidence band
¢n = ¢n(X) is a random variable satisfying

P (dg(Dgm(fm), Dgm(fx)) < c,) >1—a.
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Confidence band for the persistent homology is a random

quantity containing the persistent homology with high
probability.
Let M be a compact manifold, and X = {Xy,---, X,,} be n samples. Let
fi and fx be corresponding functions whose persistent homology is of

interest. Given the significance level « € (0,1), (1 — «) confidence band
¢n = ¢n(X) is a random variable satisfying

P (dg(Dgm(fm), Dgm(fx)) < c,) >1—a.
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {xq,..., Xy}, compute the kernel density
estimator py,.
2. Draw X* = {x7,...,x¥} from X = {x1,...,x,} (with replacement),

and compute 6* = /n||p;(x) — pn(x)||oc, where pj; is the density
estimator computed using X*.

*

3. Repeat the previous step B times to obtain 07,...,0%
4. Compute g, = inf {q : %2}3:1 107 > q) < a}

5. The (1 — «) confidence band for E[pp] is [ﬁh - %, Pn + %} )
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