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Topological structures in the data provide information.

1

1http://www.mpa-garching.mpg.de/galform/virgo/millennium/poster_half.jpg
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the
inference.

I When analyzing data, we prefer robust features where features of the
underlying manifold can be inferred from features of finite samples.

I Homology is not robust:
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Confidence band for persistent homology of density function
separates homological signal from homological noise.
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Computing the persistent homology of density function
incurs computing on a grid of points, which is infeasible in
high dimensional space.

8 / 48



Computing the persistent homology of density function on
data points reduces computational complexity.
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How can we analyze the convergence and compute a
confidence band for the persistent homology of density
function with computation on data points?

I (Shin, Kim, Rinaldo, Wasserman, 2019?) : extending work from Fasy
et al. [2014], Bobrowski et al. [2014], Chazal et al. [2011].
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We rely on the kernel density estimator to compute the
persistent homology of density function.

I The kernel density estimator is

p̂h(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
.
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To analyze the convergence of the persistent homology of
density function, the uniform convergence of the kernel
density estimator needs to be studied.

I Let ph(x) = EP [p̂h(x)], then we need to study the analytic behavior
of

sup
x∈supp(P)

|p̂h(x)− ph(x)| .

I (Kim, Shin, Rinaldo, Wasserman, 2019)
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We are also interested in recovering homotopy type of the
underlying manifold from finite samples.

I ??: extending work from Niyogi et al. [2008], Attali et al. [2013]
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Persistent homology of KDE filtration on rips complex and
Related Work

I Persistent homology of KDE filtration on rips complex (Shin, Kim,
Rinaldo, Wasserman, 2019?)

I Uniform Convergence Rate of the Kernel Density Estimator Adaptive
to Intrinsic Volume Dimension (Kim, Shin, Rinaldo, Wasserman,
2019)

I ??
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The persistent homology of the KDE filtration on Rips
complexes is consistent.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 2019?, Theorem 16)

dB
(
PHR
∗ (p̂hn , rn),PH

supp(P)
∗ (phn)

)
= OP

(√
log(1/hn)

nhdn
+ ‖rn‖∞

)
.
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Confidence set for the persistent homology of the KDE
filtration.

I We let the confidence set as the ball centered at PHR
∗ (p̂hn , rn) and

radius b̂α, i.e.

Ĉα =
{
P :, dB

(
P,PHR

∗ (p̂hn , rn)
)
≤ b̂α

}
.

This is a valid confidence set by the following theorem.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 2019?, Theorem 20)

P
(
PH

supp(P)
∗ (phn) ∈ Ĉα

)
≥ 1− α + o(1).
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The uniform convergence rate of the Kernel Density
Estimator is derived adaptive to the intrinsic dimension.

Theorem
(Kim, Shin, Rinaldo, Wasserman, 2019, Corollary 13, Corollary 17)
Suppose ln → 0 and nln →∞. Then with high probability,√

1
nl2d−dvol

n

- sup
h≥ln,x∈X

|p̂h(x)− ph(x)| -

√
log(1/ln)

nl2d−dvol
n

,

for all large n.
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The homotopy type of a positive reach set can be
reconstructed from the Rips complex.

Theorem
Let X be a subset with its reach τX > 0, and let X ⊂ X be a finite
sample. When r ∈ [dH(X,X ), CτX], then the Rips complex R(X , r) is
homotopic equivalent to X, with C = 1√

2
≈ 0.71...
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Thank you!
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We rely on the kernel density estimator to extract
topological information of the underlying distribution.

I The kernel density estimator is

p̂h(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
.
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We are considering the upper level set of the average kernel
density estimator on the support.

I Let X1, . . . ,Xn ∼ P, then the average kernel density estimator is

ph(x) = E [p̂h(x)] =
1
hd

E
[
K

(
x − X

h

)]
.

I We are considering the upper level sets of the average kernel density
estimator

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} .

23 / 48



We are considering the upper level set of the average kernel
density estimator on the support.

I We are considering the upper level sets of the average KDE

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} .
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We are targeting the persistent homology of the upper level
set of the average kernel density estimator on the support.

I We are considering the upper level sets of the average KDE

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} ,

and targeting its persistent homology PH
supp(P)
∗ (ph).
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We use the Rips complex to estimate the target persistent
homology.

I For X ⊂ Rd and r > 0, the Rips complex R(X , r) is defined as

R(X , r) =
{

[Xi1 , . . . ,Xik ] ⊂ X : d(Xij ,Xil ) < 2r , 1 ≤ ∀j 6= l ≤ k
}
.
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We estimate the target level set by considering the Rips
complex generated from the level set of the KDE.

I For Xn = {X1, . . . ,Xn}, we estimate the target level set by the level
sets of the KDE on Rips complexes,{

R
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L := {Xi ∈ Xn : p̂h(Xi ) ≥ L} .

27 / 48



We estimate the target persistent homology by the
persistent homology of the KDE filtration on Rips
complexes.

I We estimate the target persistent homology by the persistent
homology of the level sets of the KDE on Rips complexes,{

R
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L = {Xi ∈ Xn : p̂h(Xi ) ≥ L} .

and denote the persistent homology as PHR
∗ (p̂h, r).
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We estimate the target level set by Rips complexes from the
KDE level sets.

I We approximate the target level set

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} ,

by the level sets of the KDE on Rips complexes,{
R
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L = {Xi ∈ Xn : p̂h(Xi ) ≥ L} .

29 / 48



We estimate the target persistent homology by the
persistent homology of the KDE filtration on Rips
complexes.

I We estimate the target persistent homology

PH
supp(P)
∗ (ph),

by the persistent homology of the KDE filtration on Rips complexes,

PHR
∗ (p̂h, r).
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The persistent homology of the KDE filtration on Rips
complexes is stable.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 2019?, Proposition 15) When
supp(P) ⊂

⋃
i B(Xi , r), then

dB
(
PHR
∗ (p̂hn , rn),PH

supp(P)
∗ (phn)

)
≤ sup

x∈supp(P)

|p̂hn(x)− phn(x)|+O (‖rn‖∞) .
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The persistent homology of the KDE filtration on Rips
complexes is consistent.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 2019?, Theorem 16)

dB
(
PHR
∗ (p̂hn , rn),PH

supp(P)
∗ (phn)

)
= OP

(√
log(1/hn)

nhdn
+ ‖rn‖∞

)
.
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Confidence set

I An asymptotic 1− α confidence set Ĉα is a random set of persistent
homologies satisfying

P(PH
supp(P)
∗ (phn) ∈ Ĉα) ≥ 1− α + o(1).
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Confidence set for the persistent homology of the KDE
filtration.

I We let the confidence set as the ball centered at PHR
∗ (p̂hn , rn) and

radius b̂α, i.e.

Ĉα =
{
P :, dB

(
P,PHR

∗ (p̂hn , rn)
)
≤ b̂α

}
.

This is a valid confidence set by the following theorem.

Theorem
(Shin, Kim, Rinaldo, Wasserman, 2019?, Theorem 20)

P
(
PH

supp(P)
∗ (phn) ∈ Ĉα

)
≥ 1− α + o(1).
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The consistency of the persistent homology of the KDE
filtration on Rips complexes is derived from the uniform
convergence of the kernel density estimator.

I We would like to study the analytic behavior of the uniform
convergence of the kernel density estimator, i.e.,

sup
x∈supp(P)

|p̂hn(x)− phn(x)| .

36 / 48



Kernel Density Estimator
I For X1, . . . ,Xn ∼ P, a given kernel function K , and a bandwidth

h > 0, the Kernel Density Estimator (KDE) p̂h : Rd → R is

p̂h(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
.
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Average Kernel Density Estimator

I The Average Kernel Density Estimator (KDE) ph : Rd → R is

ph(x) = EP [p̂h(x)] =
1
hd

EP

[
K

(
x − X

h

)]
.
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We get the uniform convergence rate on Kernel Density
Estimator.

I Fix a subset X ⊂ Rd , we need uniform control of the Kernel Density
Estimator over X, supx∈X |p̂hn(x)− phn(x)|, for various purposes.

I We get the concentration inequalities for the Kernel Density
Estimator in the supremum norm that hold uniformly over the
selection of the bandwidth, i.e.,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| .
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The volume dimension characterizes the intrinsic dimension
of the distribution related to the convergence rate of the
Kernel Density Estimator.

I For a probability distribution P on Rd , the volume dimension is

dvol := sup

{
ν ≥ 0 : lim sup

r→0
sup
x∈X

P(B(x , r))

rν
<∞

}
,

where B(x , r) = {y ∈ Rd : ‖x − y‖ < r}.
I In other words, the volume dimension is the maximum possible

exponent rate dominating the probability volume decay on balls.
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The uniform convergence rate of the Kernel Density
Estimator is derived in terms of the volume dimension.

Theorem
(Kim, Shin, Rinaldo, Wasserman, 2019, Corollary 13, Corollary 17) Let P
be a probability distribution on Rd satisfying weak assumptions and K be
a kernel function satisfying weak assumptions. Suppose ln → 0 and
nln →∞. Then with high probability,√

1
nl2d−dvol

n

- sup
h≥ln,x∈X

|p̂h(x)− ph(x)| -

√
log(1/ln)

nl2d−dvol
n

,

for all large n.
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Cech complex is constructed by finding nonempty
intersections of balls.

I For X ,X ⊂ Rd and r > 0, the intrinsic Cech complex C̆ echX(X , r)
is defined as

C̆ echX(X , r) =

[Xi1 , . . . ,Xik ] ⊂ X :
k⋂

j=1

BX(Xij , r) 6= ∅

 ,

where BX(x , r) = {y ∈ X : ‖y − x‖ < r} is the intrinsic ball of
radius r centered at x .

I The ambient Cech complex C̆ echX(X , r) is when X = Rd .

43 / 48



The reach of X, denoted by reach(X), is the minimum
distance from the medial axis to the set.

s
I The Medial Axis is the set of points that have at least two nearest

neighbors, i.e.

Med(X) = {z ∈ Rd : there exists p 6= q ∈ X with
‖p − z‖ = ‖q − z‖ = d(z ,X)}.

I The reach is the minimum distance from the medial axis to the set,
i.e.

reach(X) = inf
x∈Med(X),y∈X

‖x − y‖ .

τX

Med(X)

X
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The homotopy type of a positive reach set is reconstructed
from the intrinsic Cech complex.

Theorem
Let X ⊂ Rd be a subset with reach τX > 0 and X ⊂ X be a finite
sample. When r ∈

[
dH(X,X ),

√
2τX
]
, then the intrinsic Cech complex

C̆ echX(X , r) is homotopic equivalent to X.
I The condition on r is optimal.
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The homotopy type of a positive reach set can be
reconstructed from the ambient Cech complex.

Theorem
Let X ⊂ Rd be a subset with reach τX > 0 and X ⊂ X be a finite
sample. When r ∈ [dH(X,X ), CτX], then the ambient Cech complex
C̆ echRm(X , r) is homotopic equivalent to X.

I Previous result: C = 3−
√
8 ≈ 0.17 in Niyogi et al. [2008]

I Our (tentative) result: C = 1/
√
2 ≈ 0.71

46 / 48



The homotopy type of a positive reach set can be
reconstructed from the Rips complex.

Theorem
Let X ⊂ Rd be a subset with its reach τX > 0, and let X ⊂ X be a finite
sample. When r ∈ [dH(X,X ), CτX], then the Rips complex R(X , r) is
homotopic equivalent to X.

I Previous result: C = 2
√

2−
√

2−
√

2
2+
√

2
≈ 0.034 in Attali et al. [2013]

I Our (tentative) result: C = 1/
√
2 ≈ 0.71
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

‖x − γ(x)‖∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

‖x − γ(x)‖∞,

where γ ranges over all bijections from D1 to D2.
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1− α) confidence band
cn = cn(X ) is a random variable satisfying

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ 1− α.
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1− α) confidence band
cn = cn(X ) is a random variable satisfying

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ 1− α.
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1, . . . , xn}, compute the kernel density
estimator p̂h.

2. Draw X ∗ = {x∗1 , . . . , x∗n } from X = {x1, . . . , xn} (with replacement),
and compute θ∗ =

√
n||p̂∗h(x)− p̂h(x)||∞, where p̂∗h is the density

estimator computed using X ∗.
3. Repeat the previous step B times to obtain θ∗1 , . . . , θ

∗
B

4. Compute qα = inf
{
q : 1

B

∑B
j=1 I (θ

∗
j ≥ q) ≤ α

}
5. The (1− α) confidence band for E[p̂h] is

[
p̂h − qα√

n
, p̂h + qα√

n

]
.

6 / 8
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