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For Windows and Mac, TDA can be easily installed.

if (!require(package = "TDA")) {
install.packages(pkgs = "TDA")

}
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For Linux, you need to install several libraries first, and then
install TDA.

I You need to install libraries gmp and mpfr.
I Then you need to install required R package FNN, igraph, and scales.
I Then you can install R package TDA.

if (!require(package = "FNN")) {
install.packages(pkgs = "FNN")

}
if (!require(package = "igraph")) {

install.packages(pkgs = "igraph")
}
if (!require(package = "scales")) {

install.packages(pkgs = "scales")
}
if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")
}
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R is ideal for educational purpose.

I R is a programming language for statistical computing and graphics.
I Many packages for statistical computing.
I Easy to make (interactive) plots.
I Easy to install and use.
I Platform independent.
I

I ... but slow.
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R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

I website:
https://cran.r-project.org/web/packages/TDA/index.html

I Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément
Maria, David Milman, and Vincent Rouvreau.

I R has short development time, while C/C++ has short execution
time.

I R package TDA provides an R interface for C++ library
GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.
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Number of holes is used to summarize Geometrical features.

I Geometrical objects :
I A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W,

X, Y, Z,
I 가, 字, あ

I Number of holes of different dimensions is considered.

1. β0 =# of connected components

2. β1 =# of loops (holes inside 1-dim sphere)

3. β2 =# of voids (holes inside 2-dim sphere) : if dim ≥ 3
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Example : Objects are classified by homologies.

1. β0 =# of connected components

2. β1 =# of loops

β0 \ β1 0 1 2
C, G, I, J, L, M,

1 N, S, U, V, W, Z, A, R, D, O, P, Q B, あ
E, F, T, Y, H, K, X

2 가, 字
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When analyzing data, we prefer robust features where
features of the underlying manifold can be inferred from
features of finite samples.

Underlying circle
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the
inference.

Underlying circle: β0 = 1, β1 = 1
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.

Circle
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Confidence band for persistent homology separates
homological signal from homological noise.
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Landscape is a functional summary of the persistent
homology.

Persistent Homology
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.
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Confidence band for persistent homology quantifies the
randomness of the landscape.
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R Package TDA provides a function to sample on a circle.
The function circleUnif() generates n sample from the uniform
distribution on the circle in R2 with radius r .

circleSample <- circleUnif(n = 20, r = 1)
plot(circleSample, xlab = "", ylab = "", pch = 20)
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R Package TDA provides distance functions and density
functions over a grid.

Suppose n = 400 points are generated from the unit circle, and grid of
points are generated.

X <- circleUnif(n = 400, r = 1)

lim <- c(-1.7, 1.7)
by <- 0.05
margin <- seq(from = lim[1], to = lim[2], by = by)
Grid <- expand.grid(margin, margin)
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R Package TDA provides DTM function over a grid.

The distance to measure (DTM) dm0 : Rd → [0,∞) is defined as

dm0(y) =

 1
k

∑
xi∈Nk (y)

‖xi − y‖r
1/r

,

where k = dm0× ne and m0 ∈ (0, 1), r ∈ [1,∞) are tuning parameters.
The function dtm() computes the DTM function dm0 on a grid of points.

m0 <- 0.1
DTM <- dtm(X = X, Grid = Grid, m0 = m0)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,

z = matrix(DTM, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "DTM")
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R Package TDA provides DTM function over a grid.
The distance to measure (DTM) dm0 : Rd → [0,∞) is defined as

dm0(y) =

 1
k

∑
xi∈Nk (y)

‖xi − y‖r
1/r

,

where k = dm0× ne and m0 ∈ (0, 1), r ∈ [1,∞) are tuning parameters.
The function dtm() computes the DTM function dm0 on a grid of points.
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R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) p̂h : Rd → [0,∞) is
defined as

p̂h(y) =
1

n(
√
2πh)d

n∑
i=1

exp

(
−‖y − xi‖22

2h2

)
,

where h is a smoothing parameter.
The function kde() computes the KDE function p̂h on a grid of points.

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,

z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "KDE")
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R Package TDA provides KDE function over a grid.
The Gaussian Kernel Density Estimator (KDE) p̂h : Rd → [0,∞) is
defined as

p̂h(y) =
1

n(
√
2πh)d

n∑
i=1

exp

(
−‖y − xi‖22

2h2

)
,

where h is a smoothing parameter.
The function kde() computes the KDE function p̂h on a grid of points.
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R Package TDA computes Persistent Homology over a grid.

I The function gridDiag() computes the persistence diagram of
sublevel (and superlevel) sets of the input function.
I gridDiag() evaluates the real valued input function over a grid.
I gridDiag() constructs a filtration of simplices using the values of the

input function.
I gridDiag() computes the persistent homology of the filtration.

I The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Persistent Homology over a grid.

DiagGrid <- gridDiag(X = X, FUN = kde, lim = c(lim, lim), by = by,
sublevel = FALSE, library = "Dionysus", location = TRUE,
printProgress = FALSE, h = h)

par(mfrow = c(1,3))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
one <- which(DiagGrid[["diagram"]][, 1] == 1)
for (i in seq(along = one)) {

for (j in seq_len(dim(DiagGrid[["cycleLocation"]][[one[i]]])[1])) {
lines(DiagGrid[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1,

col = i + 1)
}

}
persp(x = margin, y = margin,

z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
main = "KDE")

plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
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R Package TDA computes Persistent Homology over a grid.
I The function gridDiag() computes the persistent homology of

sublevel (and superlevel) sets of the input function.
I gridDiag() evaluates the real valued input function over a grid.
I gridDiag() constructs a filtration of simplices using the values of the

input function.
I gridDiag() computes the persistent homology of the filtration.

I The user can choose to compute persistent homology using either
GUDHI, Dionysus, or PHAT.

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Sample X KDE KDE Diagram

 

 

● ●

●●
●

●

●●

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Death
B

ir
th

44 / 67



R Package TDA computes Rips Persistent Homology.
I Rips complex consists of simplices whose pairwise distances of

vertices are at most ε apart, i.e.

R(X , ε) =
{

[Xn1 , . . . ,Xnr ] : d(Xni ,Xnj ) ≤ ε
}
.
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I Rips filtration is formed by Rips complices with gradually increasing
ε.
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R Package TDA computes Rips Persistent Homology.

I The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.
I ripsDiag() constructs the Rips filtration using the data points.
I ripsDiag() computes the persistent homology of the Rips filtration.

I The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.

DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,
library = c("GUDHI", "Dionysus"), location = TRUE)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagRips[["diagram"]], main = "Rips Diagram")
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R Package TDA computes Rips Persistent Homology.

I The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.
I ripsDiag() constructs the Rips filtration using the data points.
I ripsDiag() computes the persistent homology of the Rips filtration.

I The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Landscape.

I Let Λp be created by tenting each point p = (x , y) =
(
b+d

2 , d−b2

)
representing a birth-death pair (b, d) in the persistence diagram D.

I The persistence landscape of D is the collection of functions

λk(t) = k max
p

Λp(t), t ∈ [0,T ], k ∈ N,

where k max is the kth largest value in the set.
I The function landscape() evaluates the landscape function λk(t).

tseq <- seq(0, 0.2, length = 1000)
Land <- landscape(DiagGrid[["diagram"]], dimension = 1, KK = 1, tseq = tseq)

par(mfrow = c(1,2))
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",

ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
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R Package TDA computes Landscape.
I Let Λp be created by tenting each point p = (x , y) =

(
b+d

2 , d−b2

)
representing a birth-death pair (b, d) in the persistence diagram D.

I The persistence landscape of D is the collection of functions

λk(t) = k max
p

Λp(t), t ∈ [0,T ], k ∈ N,

where k max is the kth largest value in the set.
I The function landscape() evaluates the landscape function λk(t).
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Installation

R Package TDA: Statistical Tools for Topological Data Analysis

Homology and Persistent Homology

Sample on manifolds, Distance Functions, and Density Estimators

Persistent Homology and Landscape

Statistical Inference on Persistence Homology and Landscape
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

‖x − γ(x)‖∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

‖x − γ(x)‖∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem
[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f , g : X→ R be two
continuous functions. Let Dgm(f ) and Dgm(g) be corresponding
persistence diagrams. Then

dB(Dgm(f ), Dgm(g)) ≤ ‖f − g‖∞.
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Confidence set for the persistent homology is a random set
containing the persistent homology with high probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1− α) confidence set
{D ∈ Dgm : dB(Dgm(fX ),D) ≤ cn} is a random set satisfying

P (Dgm(fM) ∈ {D ∈ Dgm : dB(Dgm(fX ),D) ≤ cn}) ≥ 1− α.
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1− α) confidence band
cn = cn(X ) is a random variable satisfying

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ 1− α.
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Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1− α implies

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ P (||fM − fX ||∞ ≤ cn) ≥ 1− α,

so the confidence band of corresponding functions fM can be used for
confidene band of persistent homologies Dgm(fM).
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1, . . . , xn}, compute the kernel density
estimator p̂h.

2. Draw X ∗ = {x∗1 , . . . , x∗n } from X = {x1, . . . , xn} (with replacement),
and compute θ∗ =

√
n||p̂∗h(x)− p̂h(x)||∞, where p̂∗h is the density

estimator computed using X ∗.
3. Repeat the previous step B times to obtain θ∗1 , . . . , θ

∗
B

4. Compute qα = inf
{
q : 1

B

∑B
j=1 I (θ

∗
j ≥ q) ≤ α

}
5. The (1− α) confidence band for E[p̂h] is

[
p̂h − qα√

n
, p̂h + qα√

n

]
.
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R Package TDA computes the bootstrap confidence band
for a function.

The function bootstrapBand() computes (1− α) bootstrap confidence
band for E[p̂h].

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 20,
parallel = FALSE, alpha = 0.1, h = h)

print(bandKDE[["width"]])

## 90%
## 0.05576625
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R Package TDA computes the bootstrap confidence band
for the persistent homology.

The (1− α) bootstrap confidence band for E[p̂h] is used as the
confidence band for the persistent homology.

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagGrid[["diagram"]], band = 2 * bandKDE[["width"]],

main = "KDE Diagram")
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∞-landscape distance gives a metric on the space of
landscapes.

Definition
[Bubenik, 2012] Let D1, D2 be multiset of points, and λ1 , λ2 be
corresponding landscapes. ∞-landscape distance is defined as

Λ∞(D1,D2) = ‖λ1 − λ2‖∞.
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∞-landscape distance can be controlled by the
corresponding distance on functions: Stability Theorem.

Theorem
Let f , g : X→ R be two functions, and let Dgm(f ) and Dgm(g) be
corresponding persistent homologies. Then

Λ∞(Dgm(f ), Dgm(g)) ≤ ‖f − g‖∞.

61 / 67



Confidence band for the landscape can be computed using
the bootstrap algorithm.

I Let λM and λX be landscapes of the manifold M and samples X .
From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1− α implies

P (λX (t)− cn ≤ λM(t) ≤ λX (t) + cn ∀t) ≥ P (||fM − fX || ≤ cn) ≥ 1−α,

so the confidence band of corresponding functions fM can be used
for confidene band of the landscape λM .
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Confidence band for the landscape can be computed using
the bootstrap algorithm.

I Confidence band for the landscape can be also computed using
multiplier bootstrap; see [Chazal, Fasy, Lecci, Rinaldo, and
Wasserman, 2014].
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R Package TDA computes the bootstrap confidence band
for the landscape.

The (1− α) bootstrap confidence band for E[p̂h] is used as the
confidence band for the landscape.

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",

ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")
axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],

rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,
border = NA)

lines(tseq, Land)
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R Package TDA computes the bootstrap confidence band
for the landscape.

The (1− α) bootstrap confidence band for E[p̂h] is used as the
confidence band for the landscape.
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