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We are interested in estimating the topology of the target
space X ⊂ Rd based on samples X that lies in it or in its
proximity.

I Estimating the topology from samples occurs in: cosmology, time
series data, machine learning, etc.

Underlying circle
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Two topological spaces are homotopy equivalent if they can
be continuously deformed into one another.

I We estimate topology up to homotopy equivalence.
I A space X is contractible if X is homotopy equivalent to a point.

'
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We estimate the homotopy of the target space X ⊂ Rd

based on samples X that lies in it or in its proximity.

Underlying circle 20 samples
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We use the Vietoris-Rips complex to estimate the target
space.

I For X ⊂ Rd and r > 0, the Vietoris-Rips complex Rips(X , r) is
defined as

Rips(X , r) = {{x1, . . . , xk} ⊂ X : d(xi , xj) < 2r , for all 1 ≤ i , j ≤ k} .
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We estimate the homotopy of the target space X ⊂ Rd

using the Vietoris-Rips complex on samples X that lies in it
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We estimate the homotopy of the target space X ⊂ Rd

using the Vietoris-Rips complex on samples X that lies in it
or in its proximity.
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The homotopy of the Vietoris-Rips complex on samples X
can be very different from the homotopy of the target space
X ⊂ Rd .

I If r is too small, then Rips(X , r) is a set of disconnected points

I If r is too large, then Rips(X , r) is homotopy equivalent to a point.

Underlying circle

6'
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The reach of X, denoted by τX, is the minimum distance
from the medial axis to the set.

I The medial axis is the set of points that have at least two nearest
neighbors, i.e.

Med(X) = {x ∈ Rd : there exists q1 6= q2 ∈ X with
‖q1 − x‖ = ‖q2 − x‖ = d(x ,X)}.

I The reach is the minimum distance from the medial axis to the set,
i.e.

τX = inf
q∈X

d(q,Med(X)) = inf
q∈X,x∈Med(X)

‖q − x‖ .

X
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We derive conditions under which the homotopy of the
target space X ⊂ Rd is correctly reconstructed using the
Vietoris-Rips complex on samples X .

I Kim et al. [2020]: extending Niyogi et al. [2008], Attali et al. [2013]

Theorem
Let X ⊂ Rd be a subset with its reach τ > 0, and let X ⊂ Rd be a
closed discrete set of points. If dH (X,X )

τ ≤ C where dH(X,X ) is the
Hausdorff distance, then with appropriate choice of r , the Vietoris-Rips
complex Rips(X , r) is homotopy equivalent to X, with C ≈ 0.07856 · · · .

Underlying circle
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We aproximate the target space by the union of balls
centered at data points.

I Let r > 0 be a pre-specified radius, then we approximate the target
space X by the union of restricted balls centered at data points⋃

x∈X
BX(x , r),

where BX(x , r) = {y ∈ X : ‖y − x‖ < r} is the restricted ball of
radius r centered at x .

Union of balls
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Čech complex is constructed by finding nonempty
intersections of balls.

I For X,X ⊂ Rd and r > 0, the restricted Čech complex Č echX(X , r)
is defined as

Č echX(X , r) =

{
{x1, . . . , xk} ⊂ X :

k⋂
j=1

BX(xj , r) 6= ∅
}
,

where BX(x , r) = {y ∈ X : ‖y − x‖ < r} is the restricted ball of
radius r centered at x .

I The ambient Čech complex Č echRd (X , r) is when X = Rd .

Cech complex
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is defined as
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is defined as
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The union of balls and the restricted Čech complex are
homotopy equivalent if any non-empty intersection of
restricted balls is contractible.

Theorem (Nerve Theorem)
If any nonempty intersection of finitely many sets in {BX(x , rx) : x ∈ X}
is contractible, then the union of balls

⋃
x∈XBX(x , r) and the restricted

Čech complex Č echX(X , r) are homotopy equivalent.

Union of balls

'

Restricted Cech complex
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For a positive reach set, any non-empty intersection of
restricted balls is contractible.

Theorem (Kim et al. [2020, Theorem 9])
Let X ⊂ Rd be a subset with its reach τ > 0, X ⊂ Rd be a set of points,
and r > 0. Then, if r ≤

√
τ2 + (τ − dX(x))2 for all x ∈ X , then⋂

x∈I BX(x , r) for I ⊂ X is contractible.
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The homotopy of a positive reach set is reconstructed from
the restricted Čech complex.

Corollary (Kim et al. [2020, Corollary 10])
Let X ⊂ Rd be a subset with its reach τ > 0, X ⊂ Rd be a set of points,
and r > 0. Then, if r ≤

√
τ2 + (τ − dX(x))2 for all x ∈ X , then⋃

x∈X BX(x , r) is homotopy equivalent to the restricted Čech complex
Č echX(X , r). In addition, if X ⊂

⋃
x∈X BX(x , r), then X is homotopy

equivalent to Č echX(X , r).

Underlying circle

'

Restricted Cech complex

17 / 29



Introduction

The nerve theorem for Euclidean sets of positive reach

Homotopy Equivalence on positive µ-reach

Homotopy Reconstruction via Cech complex and Vietoris-Rips complex

18 / 29



The generalized gradient of the distance function
I For x ∈ Rd\X,

let ΓX(x) be the set of points in X closest to x ,
ΘX(x) be the center of the unique smallest ball enclosing ΓX(x), and
let dX(x) = d(x ,X) be the distance from x to X. The generalized
gradient of the distance function, denoted by ∇X(x), is defined as

∇X(x) =
x −ΘX(x)

dX(x)
.

ΓX(x)

X

x

∇X(x) = x−ΘX(x)
dX(x)
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The µ-reach of X, denoted by τµX, is the minimum distance
from the µ-medial axis to the set.

I The µ-medial axis is the set of points defined as

Medµ(X) = {x ∈ Rd\X : ‖∇X(x)‖ < µ}.

I The µ-reach is the minimum distance from the µ-medial axis to the
set, i.e.

τµX = inf
q∈X

d(q,Medµ(X)) = inf
q∈X,x∈Medµ(X)

‖q − x‖ .

X
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For a positive µ-reach set, it and its offset are homotopy
equivalent.

I For a set X ⊂ Rd and r > 0, its r -offset Xr is
Xr := {x ∈ Rd : d(x ,X) < r}.

Theorem (Kim et al. [2020, Theorem 12])
Let X ⊂ Rd be a subset with positive µ-reach τµ > 0. For r ≤ τµ, X and
Xr are homotopy equivalent.

0.5−offset of square

'

Square

21 / 29



For a positive µ-reach set, it and its offset are homotopy
equivalent.

I For a set X ⊂ Rd and r > 0, its r -offset Xr is
Xr := {x ∈ Rd : d(x ,X) < r}.

Theorem (Kim et al. [2020, Theorem 12])
Let X ⊂ Rd be a subset with positive µ-reach τµ > 0. For r ≤ τµ, X and
Xr are homotopy equivalent.

0.5−offset of square

'

Square

21 / 29



For a positive µ-reach set, its double offset is homotopy
equivalent to the set and has positive reach.

I For s, t > 0 with t ≤ s, Xs,t := (((Xs){)t){ is the double offset of X.

Corollary (Kim et al. [2020, Corollary 15])
Let X ⊂ Rd be a subset with positive µ-reach τµ > 0. For s, t > 0 with
t ≤ s, let Xs,t := (((Xs){)t){ be the double offset of X. If s < τµ and
t < µs, then Xs,t and X are homotopy equivalent, and τXs,t ≥ t.

Xs

X

(((Xs){)t){
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The homotopy of a positive reach set is reconstructed from
the ambient Čech complex.

Theorem
Let X ⊂ Rd be a subset with reach τ > 0 and X ⊂ Rd be a closed
discrete set of points. Let r > 0, ε := maxx∈X {dX(x)}, and δ > 0 be
satisfying

X ⊂
⋃
x∈X

BR(x , δ) and r ≤ τ − ε.

Then with sufficiently small δ, the ambient Čech complex Č echRd (X , r)
is homotopy equivalent to X.

Underlying circle

'

Ambient Cech complex
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The homotopy of a positive reach set is reconstructed from
the Vietoris-Rips complex.

Theorem
Let X ⊂ Rd be a subset with reach τ > 0 and X ⊂ Rd be a closed
discrete set of points. Let r > 0, ε := maxx∈X {dX(x)}, and δ > 0 be
satisfying

X ⊂
⋃
x∈X

BR(x , δ) and r ≤
√

d + 1
2d

(τ − ε).

Then with sufficiently small δ, the Vietoris-Rips complex Rips(X , r) is
homotopy equivalent to X.

Underlying circle
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Vietoris−Rips complex
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The homotopy of a positive µ-reach set is reconstructed
from the ambient Čech complex and the Vietoris-Rips
complex.

Corollary
Let X ⊂ Rd be a subset with µ-reach τµ > 0 and X ⊂ Rd be a closed
discrete set of points. Let r > 0. For s ≥ t ≥ 0 with t

µ < s < τµ, let
Y := (((Xs){)t){ be a double offset of X. Let ε := maxx∈X {dY(x)} and
δ > 0 be satisfying

Y ⊂
⋃
x∈X

BR(x , δ).

Then with appropriate condition on r and sufficiently small δ, the
ambient Čech complex Č echRd (X , r) and the Vietoris-Rips complex
Rips(X , r) are homotopy equivalent to X.

26 / 29



The homotopy of a positive reach set can be reconstructed
from the Vietoris-Rips complex.

Corollary
Let X ⊂ Rd be a subset with its reach τ > 0, and let X ⊂ Rd be a
closed discrete set of points. If dH (X,X )

τ ≤ C where dH(X,X ) is the
Hausdorff distance, then with appropriate choice of r , the Vietoris-Rips
complex Rips(X , r) is homotopy equivalent to X, with C ≈ 0.07856 · · · .
I Previous result: C ≈ 0.03412 in Attali et al. [2013]
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Two topological spaces are homotopy equivalent if they can
be continuously deformed into one another.

I Two functions f , g : X → Y are homotopic if there exists a
continuous funciton H : X × [0, 1]→ Y such that H(x , 0) = f (x)
and H(x , 1) = g(x) for all x ∈ X . We write f ' g .

I Two spaces X ,Y are homotopy equivalent if there exists continuous
f : X → Y and g : Y → X such that g ◦ f ' idX and f ◦ g ' idY .
We write X ' Y .

'
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The topology of the Vietoris-Rips complex on samples X
can be very different from the topology of the target space
X ⊂ Rd .

I From Adamaszek and Adams [2017], if
√

3
2 < r < 1, then

Rips(X , r) ' S2l+1 for some l ≥ 1, or

Rips(X , r) ' ∨cS2l for some l ≥ 0 and c ≥ 0.

Underlying circle
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Hausdorff distance measures the distance between two
subsets.

I For two subsets X ,Y ⊂ Rd , the Hausdorff distance between X and
Y is defined as dH(X ,Y ) := inf{r > 0 : X ⊂ Y r and Y ⊂ X r},
where X r = {x ∈ Rd : d(x ,X ) < r} is the r -offset of X .
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The reach condition on radius r ≤
√

τ 2 + (τ − dX(x))2 is
tight.

Example
Let X = S1 ⊂ R2, fix ε > 0, x1 = (1− ε, 0), x2 = (−1 + ε, 0),
X = {x1, x2}. Then if r >

√
1 + (1− ε)2, then

BX(x1, r)
⋃

BX(x2, r) ' X, but Č echX(X , r) ' 0.

√
1 + (1− ε)2

X

x1 x2

BX(x1, r) BX(x2, r)

0

1

r r1− ε
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For a subset with nonvanishing generalized gradient, its
offsets are homotopy equivalent.

I For a set X ⊂ Rd and r > 0, its r -offset Xr is
Xr := {x ∈ Rd : d(x ,X) < r}.

Lemma (Isotopy Lemma)
Let X ⊂ Rd be a subset, and for r , s > 0 with s ≤ r , let Xs ,Xr be two
offsets of X. Suppose ∇X(x) 6= 0 for all x ∈ Xr\Xs . Then Xr and Xs are
homeomorphic, and hence homotopy equivalent.

0.5−offset of square

'

0.3−offset of square

8 / 10



For a subset with nonvanishing generalized gradient, its
offsets are homotopy equivalent.

I For a set X ⊂ Rd and r > 0, its r -offset Xr is
Xr := {x ∈ Rd : d(x ,X) < r}.

Lemma (Isotopy Lemma)
Let X ⊂ Rd be a subset, and for r , s > 0 with s ≤ r , let Xs ,Xr be two
offsets of X. Suppose ∇X(x) 6= 0 for all x ∈ Xr\Xs . Then Xr and Xs are
homeomorphic, and hence homotopy equivalent.

0.5−offset of square

'

0.3−offset of square

8 / 10



For a positive µ-reach set, its offset deformation retracts to
itself.

Theorem (Kim et al. [2020, Theorem 12])
Let X ⊂ Rd be a subset with positive µ-reach τµ > 0. For r ≤ τµ, the
r -offset Xr deformation retracts to X. In particular, X and Xr are
homotopy equivalent.

0.5−offset of square

'

Square
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The positive µ-reach condition r ≤ τµ is critical.
Example
Let X be a topologist’s sine circle, i.e., X = X0 ∪ X1 ∪ X2,
X0 = {(x , sin 1

x ) : x ∈ (0, 1]}, X1 = {0} × [−1, 1], and X2 is a curve
joining (0, 1) and (1, 0). Then, τµX = 0 for any µ ∈ (0, 1], but ∇X is
nonzero for all x ∈ R2\X. Now, for sufficiently small r > 0,

H1(X) = 0, but H1(Xr ) = Z,

so Xr cannot deformation retract to X.
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