Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex

Jisu Kim¹, Jaehyeok Shin², Frédéric Chazal¹, Alessandro Rinaldo², Larry Wasserman²

1 Innía Inria

²**CMU** Carnegie Mellon University

The 36th International Symposium on Computational Geometry (SoCG 2020) 2020-06-25

Paper

- Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, Larry Wasserman, Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex
- DOI: https://doi.org/10.4230/LIPIcs.SoCG.2020.54
- arXiv: https://arxiv.org/abs/1903.06955
- HAL: https://hal.archives-ouvertes.fr/hal-02425686

Jisu Kim

Jaehyeok Shin

Frédéric Chazal

Alessandro Rinaldo

Larry Wasserman

Introduction

The nerve theorem for Euclidean sets of positive reach

Homotopy Equivalence on positive μ -reach

Homotopy Reconstruction via Cech complex and Vietoris-Rips complex

We are interested in estimating the topology of the target space $\mathbb{X} \subset \mathbb{R}^d$ based on samples \mathcal{X} that lies in it or in its proximity.

Estimating the topology from samples occurs in: cosmology, time series data, machine learning, etc.

Underlying circle

We are interested in estimating the topology of the target space $\mathbb{X} \subset \mathbb{R}^d$ based on samples \mathcal{X} that lies in it or in its proximity.

Estimating the topology from samples occurs in: cosmology, time series data, machine learning, etc.

Two topological spaces are homotopy equivalent if they can be continuously deformed into one another.

- ► We estimate topology up to homotopy equivalence.
- ► A space X is contractible if X is homotopy equivalent to a point.

We estimate the homotopy of the target space $\mathbb{X} \subset \mathbb{R}^d$ based on samples \mathcal{X} that lies in it or in its proximity.

We use the Vietoris-Rips complex to estimate the target space.

For X ⊂ ℝ^d and r > 0, the Vietoris-Rips complex Rips(X, r) is defined as

 $\operatorname{Rips}(\mathcal{X},r) = \left\{ \left\{ x_1, \ldots, x_k \right\} \subset \mathcal{X} : \ d(x_i, x_j) < 2r, \text{ for all } 1 \leq i,j \leq k \right\}.$

Vietoris–Rips complex

We use the Vietoris-Rips complex to estimate the target space.

For X ⊂ ℝ^d and r > 0, the Vietoris-Rips complex Rips(X, r) is defined as

 $\operatorname{Rips}(\mathcal{X},r) = \left\{ \left\{ x_1, \ldots, x_k \right\} \subset \mathcal{X} : \ d(x_i, x_j) < 2r, \text{ for all } 1 \leq i,j \leq k \right\}.$

Vietoris-Rips complex

We use the Vietoris-Rips complex to estimate the target space.

For X ⊂ ℝ^d and r > 0, the Vietoris-Rips complex Rips(X, r) is defined as

 $\operatorname{Rips}(\mathcal{X},r) = \left\{ \left\{ x_1, \ldots, x_k \right\} \subset \mathcal{X} : \ d(x_i, x_j) < 2r, \text{ for all } 1 \leq i,j \leq k \right\}.$

Vietoris-Rips complex

We estimate the homotopy of the target space $\mathbb{X} \subset \mathbb{R}^d$ using the Vietoris-Rips complex on samples \mathcal{X} that lies in it or in its proximity.

We estimate the homotopy of the target space $\mathbb{X} \subset \mathbb{R}^d$ using the Vietoris-Rips complex on samples \mathcal{X} that lies in it or in its proximity.

The homotopy of the Vietoris-Rips complex on samples \mathcal{X} can be very different from the homotopy of the target space $\mathbb{X} \subset \mathbb{R}^d$.

• If r is too small, then $\operatorname{Rips}(\mathcal{X}, r)$ is a set of disconnected points

The homotopy of the Vietoris-Rips complex on samples \mathcal{X} can be very different from the homotopy of the target space $\mathbb{X} \subset \mathbb{R}^d$.

▶ If r is too large, then Rips(X, r) is homotopy equivalent to a point.

Underlying circle

Rips complex, r large

Ź

The homotopy of the Vietoris-Rips complex on samples \mathcal{X} can be very different from the homotopy of the target space $\mathbb{X} \subset \mathbb{R}^d$.

- ▶ If r is too small, then Rips(X, r) is a set of disconnected points
- ▶ If r is too large, then Rips(X, r) is homotopy equivalent to a point.

The reach of X, denoted by τ_X , is the minimum distance from the medial axis to the set.

The reach of X, denoted by τ_X , is the minimum distance from the medial axis to the set.

The medial axis is the set of points that have at least two nearest neighbors, i.e.

$$Med(\mathbb{X}) = \{x \in \mathbb{R}^d : ext{ there exists } q_1
eq q_2 \in \mathbb{X} ext{ with} \ \|q_1 - x\| = \|q_2 - x\| = d(x, \mathbb{X})\}.$$

The reach of X, denoted by τ_X , is the minimum distance from the medial axis to the set.

The medial axis is the set of points that have at least two nearest neighbors, i.e.

$$Med(\mathbb{X}) = \{x \in \mathbb{R}^d : ext{ there exists } q_1 \neq q_2 \in \mathbb{X} ext{ with} \ \|q_1 - x\| = \|q_2 - x\| = d(x, \mathbb{X})\}.$$

The reach is the minimum distance from the medial axis to the set, i.e.

$$au_{\mathbb{X}} = \inf_{q \in \mathbb{X}} d(q, Med(\mathbb{X})) = \inf_{q \in \mathbb{X}, x \in Med(\mathbb{X})} \|q - x\|.$$

We derive conditions under which the homotopy of the target space $\mathbb{X} \subset \mathbb{R}^d$ is correctly reconstructed using the Vietoris-Rips complex on samples \mathcal{X} .

Kim et al. [2020]: extending Niyogi et al. [2008], Attali et al. [2013]

Theorem

Let $\mathbb{X} \subset \mathbb{R}^d$ be a subset with its reach $\tau > 0$, and let $\mathcal{X} \subset \mathbb{R}^d$ be a closed discrete set of points. If $\frac{d_H(\mathbb{X},\mathcal{X})}{\tau} \leq C$ where $d_H(\mathbb{X},\mathcal{X})$ is the Hausdorff distance, then with appropriate choice of r, the Vietoris-Rips complex Rips (\mathcal{X}, r) is homotopy equivalent to \mathbb{X} , with $C \approx 0.07856 \cdots$.

Underlying circle

Vietoris-Rips complex

Introduction

The nerve theorem for Euclidean sets of positive reach

Homotopy Equivalence on positive μ -reach

Homotopy Reconstruction via Cech complex and Vietoris-Rips complex

We aproximate the target space by the union of balls centered at data points.

Let r > 0 be a pre-specified radius, then we approximate the target space X by the union of restricted balls centered at data points

$$\bigcup_{x\in\mathcal{X}}\mathbb{B}_{\mathbb{X}}(x,r),$$

where $\mathbb{B}_{\mathbb{X}}(x, r) = \{y \in \mathbb{X} : ||y - x|| < r\}$ is the restricted ball of radius *r* centered at *x*.

Union of balls

▶ For $X, X \subset \mathbb{R}^d$ and r > 0, the restricted Čech complex $\check{C}ech_X(X, r)$ is defined as

$$\check{C}ech_{\mathbb{X}}(\mathcal{X},r) = \bigg\{ \{x_1,\ldots,x_k\} \subset \mathcal{X} : \bigcap_{j=1}^k \mathbb{B}_{\mathbb{X}}(x_j,r) \neq \emptyset \bigg\},$$

where $\mathbb{B}_{\mathbb{X}}(x, r) = \{y \in \mathbb{X} : ||y - x|| < r\}$ is the restricted ball of radius *r* centered at *x*.

▶ For $X, X \subset \mathbb{R}^d$ and r > 0, the restricted Čech complex $\check{C}ech_X(X, r)$ is defined as

$$\check{C}ech_{\mathbb{X}}(\mathcal{X},r) = \bigg\{ \{x_1,\ldots,x_k\} \subset \mathcal{X} : \bigcap_{j=1}^k \mathbb{B}_{\mathbb{X}}(x_j,r) \neq \emptyset \bigg\},$$

where $\mathbb{B}_{\mathbb{X}}(x, r) = \{y \in \mathbb{X} : ||y - x|| < r\}$ is the restricted ball of radius *r* centered at *x*.

▶ For $X, X \subset \mathbb{R}^d$ and r > 0, the restricted Čech complex $\check{C}ech_X(X, r)$ is defined as

$$\check{C}ech_{\mathbb{X}}(\mathcal{X},r) = \bigg\{ \{x_1,\ldots,x_k\} \subset \mathcal{X} : \bigcap_{j=1}^k \mathbb{B}_{\mathbb{X}}(x_j,r) \neq \emptyset \bigg\},$$

where $\mathbb{B}_{\mathbb{X}}(x, r) = \{y \in \mathbb{X} : ||y - x|| < r\}$ is the restricted ball of radius *r* centered at *x*.

▶ For $X, X \subset \mathbb{R}^d$ and r > 0, the restricted Čech complex $\check{C}ech_X(X, r)$ is defined as

$$\check{C}ech_{\mathbb{X}}(\mathcal{X},r) = \left\{ \{x_1,\ldots,x_k\} \subset \mathcal{X} : \bigcap_{j=1}^k \mathbb{B}_{\mathbb{X}}(x_j,r) \neq \emptyset \right\},$$

where $\mathbb{B}_{\mathbb{X}}(x, r) = \{y \in \mathbb{X} : ||y - x|| < r\}$ is the restricted ball of radius *r* centered at *x*.

▶ The ambient Čech complex $\check{C}ech_{\mathbb{R}^d}(\mathcal{X}, r)$ is when $\mathbb{X} = \mathbb{R}^d$.

The union of balls and the restricted Čech complex are homotopy equivalent if any non-empty intersection of restricted balls is contractible.

Theorem (Nerve Theorem)

If any nonempty intersection of finitely many sets in $\{\mathbb{B}_{\mathbb{X}}(x, r_x) : x \in \mathcal{X}\}$ is contractible, then the union of balls $\bigcup_{x \in \mathcal{X}} \mathbb{B}_{\mathbb{X}}(x, r)$ and the restricted Čech complex Čech_x(\mathcal{X}, r) are homotopy equivalent.

 \sim

Union of balls

Restricted Cech complex

For a positive reach set, any non-empty intersection of restricted balls is contractible.

Theorem (Kim et al. [2020, Theorem 9])

Let $\mathbb{X} \subset \mathbb{R}^d$ be a subset with its reach $\tau > 0$, $\mathcal{X} \subset \mathbb{R}^d$ be a set of points, and r > 0. Then, if $r \leq \sqrt{\tau^2 + (\tau - d_{\mathbb{X}}(x))^2}$ for all $x \in \mathcal{X}$, then $\bigcap_{x \in I} \mathbb{B}_{\mathbb{X}}(x, r)$ for $I \subset \mathcal{X}$ is contractible.

The homotopy of a positive reach set is reconstructed from the restricted Čech complex.

Corollary (Kim et al. [2020, Corollary 10]) Let $\mathbb{X} \subset \mathbb{R}^d$ be a subset with its reach $\tau > 0$, $\mathcal{X} \subset \mathbb{R}^d$ be a set of points, and r > 0. Then, if $r \leq \sqrt{\tau^2 + (\tau - d_{\mathbb{X}}(x))^2}$ for all $x \in \mathcal{X}$, then $\bigcup_{x \in \mathcal{X}} \mathbb{B}_{\mathbb{X}}(x, r)$ is homotopy equivalent to the restricted Čech complex Čech $_{\mathbb{X}}(\mathcal{X}, r)$. In addition, if $\mathbb{X} \subset \bigcup_{x \in \mathcal{X}} \mathbb{B}_{\mathbb{X}}(x, r)$, then \mathbb{X} is homotopy equivalent to Čech $_{\mathbb{X}}(\mathcal{X}, r)$.

Underlying circle

Restricted Cech complex

Introduction

The nerve theorem for Euclidean sets of positive reach

Homotopy Equivalence on positive μ -reach

Homotopy Reconstruction via Cech complex and Vietoris-Rips complex

The generalized gradient of the distance function For $x \in \mathbb{R}^d \setminus \mathbb{X}$,

► For $x \in \mathbb{R}^d \setminus \mathbb{X}$, let $\Gamma_{\mathbb{X}}(x)$ be the set of points in \mathbb{X} closest to x,

For $x \in \mathbb{R}^d \setminus \mathbb{X}$, let $\Gamma_{\mathbb{X}}(x)$ be the set of points in \mathbb{X} closest to x, $\Theta_{\mathbb{X}}(x)$ be the center of the unique smallest ball enclosing $\Gamma_{\mathbb{X}}(x)$,

For x ∈ ℝ^d\X, let Γ_X(x) be the set of points in X closest to x, Θ_X(x) be the center of the unique smallest ball enclosing Γ_X(x), and let d_X(x) = d(x, X) be the distance from x to X.

For x ∈ ℝ^d\X, let Γ_X(x) be the set of points in X closest to x, Θ_X(x) be the center of the unique smallest ball enclosing Γ_X(x), and let d_X(x) = d(x, X) be the distance from x to X. The generalized gradient of the distance function, denoted by ∇_X(x), is defined as

The μ -reach of \mathbb{X} , denoted by $\tau^{\mu}_{\mathbb{X}}$, is the minimum distance from the μ -medial axis to the set.

The $\mu\text{-reach}$ of $\mathbb X$, denoted by $\tau^\mu_{\mathbb X}$, is the minimum distance from the $\mu\text{-medial}$ axis to the set.

The μ -reach of X, denoted by τ_{X}^{μ} , is the minimum distance from the μ -medial axis to the set.

• The μ -medial axis is the set of points defined as

 $Med_{\mu}(\mathbb{X}) = \{x \in \mathbb{R}^d \setminus \mathbb{X} : \|\nabla_{\mathbb{X}}(x)\| < \mu\}.$

The μ -reach of X, denoted by τ_{X}^{μ} , is the minimum distance from the μ -medial axis to the set.

• The μ -medial axis is the set of points defined as

$$Med_{\mu}(\mathbb{X}) = \{ x \in \mathbb{R}^d \setminus \mathbb{X} : \| \nabla_{\mathbb{X}}(x) \| < \mu \}.$$

• The μ -reach is the minimum distance from the μ -medial axis to the set, i.e.

$$au_{\mathbb{X}}^{\mu} = \inf_{q \in \mathbb{X}} d(q, \mathit{Med}_{\mu}(\mathbb{X})) = \inf_{q \in \mathbb{X}, x \in \mathit{Med}_{\mu}(\mathbb{X})} \|q - x\|.$$

For a positive $\mu\text{-reach}$ set, it and its offset are homotopy equivalent.

For a set
$$\mathbb{X} \subset \mathbb{R}^d$$
 and $r > 0$, its *r*-offset \mathbb{X}^r is $\mathbb{X}^r := \{x \in \mathbb{R}^d : d(x, \mathbb{X}) < r\}.$

0.5-offset of square

For a positive μ -reach set, it and its offset are homotopy equivalent.

► For a set $\mathbb{X} \subset \mathbb{R}^d$ and r > 0, its *r*-offset \mathbb{X}^r is $\mathbb{X}^r := \{x \in \mathbb{R}^d : d(x, \mathbb{X}) < r\}.$

Theorem (Kim et al. [2020, Theorem 12])

Let $X \subset \mathbb{R}^d$ be a subset with positive μ -reach $\tau^{\mu} > 0$. For $r \leq \tau^{\mu}$, X and X^r are homotopy equivalent.

0.5-offset of square

Square

▶ For s, t > 0 with $t \le s$, $\mathbb{X}^{s,t} := (((\mathbb{X}^s)^{\complement})^t)^{\complement}$ is the double offset of \mathbb{X} .

▶ For s, t > 0 with $t \le s$, $\mathbb{X}^{s,t} := (((\mathbb{X}^s)^{\complement})^t)^{\complement}$ is the double offset of \mathbb{X} .

▶ For s, t > 0 with $t \le s$, $\mathbb{X}^{s,t} := (((\mathbb{X}^s)^{\complement})^t)^{\complement}$ is the double offset of \mathbb{X} .

For s, t > 0 with $t \le s$, $\mathbb{X}^{s,t} := (((\mathbb{X}^s)^{\complement})^t)^{\complement}$ is the double offset of \mathbb{X} . Corollary (Kim et al. [2020, Corollary 15])

Let $\mathbb{X} \subset \mathbb{R}^d$ be a subset with positive μ -reach $\tau^{\mu} > 0$. For s, t > 0 with $t \leq s$, let $\mathbb{X}^{s,t} := (((\mathbb{X}^s)^{\complement})^t)^{\complement}$ be the double offset of \mathbb{X} . If $s < \tau^{\mu}$ and $t < \mu s$, then $\mathbb{X}^{s,t}$ and \mathbb{X} are homotopy equivalent, and $\tau_{\mathbb{X}^{s,t}} \geq t$.

Introduction

The nerve theorem for Euclidean sets of positive reach

Homotopy Equivalence on positive μ -reach

Homotopy Reconstruction via Cech complex and Vietoris-Rips complex

The homotopy of a positive reach set is reconstructed from the ambient Čech complex.

Theorem

Let $X \subset \mathbb{R}^d$ be a subset with reach $\tau > 0$ and $\mathcal{X} \subset \mathbb{R}^d$ be a closed discrete set of points. Let r > 0, $\epsilon := \max_{x \in \mathcal{X}} \{ d_X(x) \}$, and $\delta > 0$ be satisfying

$$\mathbb{X} \subset \bigcup_{x \in \mathcal{X}} \mathbb{B}_{\mathbb{R}}(x, \delta)$$
 and $r \leq \tau - \epsilon$.

Then with sufficiently small δ , the ambient Čech complex Čech_{\mathbb{R}^d}(\mathcal{X}, r) is homotopy equivalent to \mathbb{X} .

Underlying circle

Ambient Cech complex

The homotopy of a positive reach set is reconstructed from the Vietoris-Rips complex.

Theorem

Let $X \subset \mathbb{R}^d$ be a subset with reach $\tau > 0$ and $\mathcal{X} \subset \mathbb{R}^d$ be a closed discrete set of points. Let r > 0, $\epsilon := \max_{x \in \mathcal{X}} \{ d_X(x) \}$, and $\delta > 0$ be satisfying

$$\mathbb{X} \subset igcup_{x\in\mathcal{X}} \mathbb{B}_{\mathbb{R}}(x,\delta) \qquad ext{and} \qquad r \leq \sqrt{rac{d+1}{2d}}(au-\epsilon).$$

Then with sufficiently small δ , the Vietoris-Rips complex $Rips(\mathcal{X}, r)$ is homotopy equivalent to \mathbb{X} .

The homotopy of a positive μ -reach set is reconstructed from the ambient Čech complex and the Vietoris-Rips complex.

Corollary

Let $\mathbb{X} \subset \mathbb{R}^d$ be a subset with μ -reach $\tau^{\mu} > 0$ and $\mathcal{X} \subset \mathbb{R}^d$ be a closed discrete set of points. Let r > 0. For $s \ge t \ge 0$ with $\frac{t}{\mu} < s < \tau^{\mu}$, let $\mathbb{Y} := (((\mathbb{X}^s)^{\complement})^t)^{\complement}$ be a double offset of \mathbb{X} . Let $\epsilon := \max_{x \in \mathcal{X}} \{ d_{\mathbb{Y}}(x) \}$ and $\delta > 0$ be satisfying

$$\mathbb{Y} \subset \bigcup_{x \in \mathcal{X}} \mathbb{B}_{\mathbb{R}}(x, \delta).$$

Then with appropriate condition on r and sufficiently small δ , the ambient Čech complex Čech_{R^d}(\mathcal{X} , r) and the Vietoris-Rips complex $Rips(\mathcal{X}, r)$ are homotopy equivalent to \mathbb{X} .

The homotopy of a positive reach set can be reconstructed from the Vietoris-Rips complex.

Corollary

Let $\mathbb{X} \subset \mathbb{R}^d$ be a subset with its reach $\tau > 0$, and let $\mathcal{X} \subset \mathbb{R}^d$ be a closed discrete set of points. If $\frac{d_H(\mathbb{X},\mathcal{X})}{\tau} \leq C$ where $d_H(\mathbb{X},\mathcal{X})$ is the Hausdorff distance, then with appropriate choice of r, the Vietoris-Rips complex Rips (\mathcal{X}, r) is homotopy equivalent to \mathbb{X} , with $C \approx 0.07856 \cdots$.

• Previous result: $C \approx 0.03412$ in Attali et al. [2013]

Underlying circle

Vietoris-Rips complex

Thank you!

- Jisu Kim, Jaehveok Shin, Frédéric Chazal, Alessandro Rinaldo, Larry Wasserman, Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex
- DOI: https://doi.org/10.4230/LIPIcs.SoCG.2020.54
- arXiv: https://arxiv.org/abs/1903.06955
- HAL: https://hal.archives-ouvertes.fr/hal-02425686

Jisu Kim

Jaehyeok Shin

Frédéric Chazal

Rinaldo

Larry Wasserman

References

- Michał Adamaszek and Henry Adams. The Vietoris-Rips complexes of a circle. *Pacific Journal of Mathematics*, 290(1):1–40, 2017. ISSN 0030-8730. doi: 10.2140/pjm.2017.290.1. URL https://doi.org/10.2140/pjm.2017.290.1.
- Dominique Attali, André Lieutier, and David Salinas. Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes. *Comput. Geom.*, 46(4):448–465, 2013. ISSN 0925-7721. doi: 10.1016/j.comgeo.2012.02.009. URL
 - https://doi.org/10.1016/j.comgeo.2012.02.009.
- Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman. Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex. In Sergio Cabello and Danny Z. Chen, editors, *36th International Symposium on Computational Geometry (SoCG 2020)*, volume 164 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 54:1–54:19, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-95977-143-6. doi: 10.4230/LIPIcs.SoCG.2020.54. URL https://drops.dagstuhl.de/opus/volltexte/2020/12212.
- Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high confidence from random samples.

29 / 29

Introduction

The nerve theorem for Euclidean sets of positive reach

Deformation retraction on positive μ -reach

Two topological spaces are homotopy equivalent if they can be continuously deformed into one another.

- Two functions f, g : X → Y are homotopic if there exists a continuous function H : X × [0,1] → Y such that H(x,0) = f(x) and H(x,1) = g(x) for all x ∈ X. We write f ≃ g.
- Two spaces X, Y are homotopy equivalent if there exists continuous f : X → Y and g : Y → X such that g ∘ f ≃ id_X and f ∘ g ≃ id_Y. We write X ≃ Y.

The topology of the Vietoris-Rips complex on samples \mathcal{X} can be very different from the topology of the target space $\mathbb{X} \subset \mathbb{R}^d$.

From Adamaszek and Adams [2017], if $\frac{\sqrt{3}}{2} < r < 1$, then

$$\begin{split} \operatorname{Rips}(\mathcal{X},r) &\simeq S^{2l+1} \text{ for some } l \geq 1, \text{ or} \\ \operatorname{Rips}(\mathcal{X},r) &\simeq \lor^c S^{2l} \text{ for some } l \geq 0 \text{ and } c \geq 0. \end{split}$$

Hausdorff distance measures the distance between two subsets.

For two subsets $X, Y \subset \mathbb{R}^d$, the Hausdorff distance between X and Y is defined as $d_H(X, Y) := \inf\{r > 0 : X \subset Y^r \text{ and } Y \subset X^r\}$, where $X^r = \{x \in \mathbb{R}^d : d(x, X) < r\}$ is the *r*-offset of X.

Introduction

The nerve theorem for Euclidean sets of positive reach

Deformation retraction on positive μ -reach

The reach condition on radius $r \leq \sqrt{\tau^2 + (\tau - d_X(x))^2}$ is tight.

Example

Let
$$\mathbb{X} = S^1 \subset \mathbb{R}^2$$
, fix $\epsilon > 0$, $x_1 = (1 - \epsilon, 0)$, $x_2 = (-1 + \epsilon, 0)$, $\mathcal{X} = \{x_1, x_2\}$. Then if $r > \sqrt{1 + (1 - \epsilon)^2}$, then

 $\mathbb{B}_{\mathbb{X}}(x_1,r) \bigcup \mathbb{B}_{\mathbb{X}}(x_2,r) \simeq \mathbb{X}, \quad \text{but} \quad \check{C}ech_{\mathbb{X}}(\mathcal{X},r) \simeq 0.$

Introduction

The nerve theorem for Euclidean sets of positive reach

Deformation retraction on positive μ -reach

For a subset with nonvanishing generalized gradient, its offsets are homotopy equivalent.

For a set
$$\mathbb{X} \subset \mathbb{R}^d$$
 and $r > 0$, its *r*-offset \mathbb{X}^r is $\mathbb{X}^r := \{x \in \mathbb{R}^d : d(x, \mathbb{X}) < r\}.$

0.5-offset of square

For a subset with nonvanishing generalized gradient, its offsets are homotopy equivalent.

► For a set $\mathbb{X} \subset \mathbb{R}^d$ and r > 0, its *r*-offset \mathbb{X}^r is $\mathbb{X}^r := \{x \in \mathbb{R}^d : d(x, \mathbb{X}) < r\}.$

Lemma (Isotopy Lemma)

Let $\mathbb{X} \subset \mathbb{R}^d$ be a subset, and for r, s > 0 with $s \leq r$, let $\mathbb{X}^s, \mathbb{X}^r$ be two offsets of \mathbb{X} . Suppose $\nabla_{\mathbb{X}}(x) \neq 0$ for all $x \in \overline{\mathbb{X}^r} \setminus \mathbb{X}^s$. Then \mathbb{X}^r and \mathbb{X}^s are homeomorphic, and hence homotopy equivalent.

0.5-offset of square

0.3-offset of square

For a positive $\mu\text{-reach}$ set, its offset deformation retracts to itself.

Theorem (Kim et al. [2020, Theorem 12])

Let $X \subset \mathbb{R}^d$ be a subset with positive μ -reach $\tau^{\mu} > 0$. For $r \leq \tau^{\mu}$, the *r*-offset X^r deformation retracts to X. In particular, X and X^r are homotopy equivalent.

 \simeq

The positive μ -reach condition $r \leq \tau^{\mu}$ is critical.

Example

Let \mathbb{X} be a topologist's sine circle, i.e., $\mathbb{X} = \mathbb{X}_0 \cup \mathbb{X}_1 \cup \mathbb{X}_2$, $\mathbb{X}_0 = \{(x, \sin \frac{1}{x}) : x \in (0, 1]\}, \mathbb{X}_1 = \{0\} \times [-1, 1], \text{ and } \mathbb{X}_2 \text{ is a curve}$ joining (0, 1) and (1, 0). Then, $\tau_{\mathbb{X}}^{\mu} = 0$ for any $\mu \in (0, 1]$, but $\nabla_{\mathbb{X}}$ is nonzero for all $x \in \mathbb{R}^2 \setminus \mathbb{X}$. Now, for sufficiently small r > 0,

 $H_1(\mathbb{X}) = 0,$ but $H_1(\mathbb{X}^r) = \mathbb{Z},$

so \mathbb{X}^r cannot deformation retract to \mathbb{X} .

