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The curse of dimensionality from the high dimensional data
is mitigated when there is a low dimensional geometric and
topological structure.

1

1http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/
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Geometric and topological structures in the data provide
information.

2

2http://www.mpa-garching.mpg.de/galform/virgo/millennium/poster_half.jpg
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Statistic Inference for Geometric and Topological Data is
explored.

▶ Minimax Rates for Geometric Parameters of a Manifold
▶ Minimax Rates for Estimating the Dimension of a Manifold (Kim,

Rinaldo, Wasserman, 2019)
▶ The Origin of the Reach: Better Understanding Regularity Through

Minimax Estimation Theory (Aamari, Kim, Chazal, Michel, Rinaldo,
Wasserman, 2019)

▶ Statistical Inference For Homological Features
▶ Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,

Rinaldo, Wasserman, 2016)
▶ Statistical Inference for Persistent Homology

▶ Statistical inference on persistent homology of KDE filtration on
Vietoris-Rips complex (Shin, Kim, Rinaldo, Wasserman, 2024?)
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A manifold is a low dimensional geometric structure that
locally resembles Euclidean space.

3

3http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/
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The maximum risk of an estimator is its worst expected
error.

▶ the maximum risk of an estimator θ̂n is the worst expected error that
the estimator θ̂n can make.

▶
sup
P∈P

EP(n)

[
ℓ
(
θ̂n(X ), θ(P)

)]

▶ X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P.

▶ estimator θ̂n is any function of data X .
▶ The loss function ℓ(·, ·) measures the error of the estimator θ̂n.
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The minimax rate describes the statistical difficulty of
estimating a parameter.

▶ The minimax rate Rn is the risk of an estimator that performs best
in the worst case, as a function of sample size.

▶
Rn = inf

θ̂n

sup
P∈P

EP(n)

[
ℓ
(
θ̂n(X ), θ(P)

)]

▶ X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P.

▶ estimator θ̂n is any function of data X .
▶ The loss function ℓ(·, ·) measures the error of the estimator θ̂n.
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We measure the statistical difficulty of estimating geometric
parameters of a manifold by their minimax rate.

▶ Minimax Rates for Estimating the Dimension of a Manifold (Kim,
Rinaldo, Wasserman, 2019)

▶ The Origin of the Reach: Better Understanding Regularity Through
Minimax Estimation Theory (Aamari, Kim, Chazal, Michel, Rinaldo,
Wasserman, 2019)
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The intrinsic dimension of a manifold needs to be estimated
a prior to the manifold learning.

▶ Most manifold learning algorithms require the intrinsic dimension of
the manifold as input.

▶ The intrinsic dimension is rarely known in advance and therefore has
to be estimated.
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Minimax rate for estimating the dimension

▶
Rn = inf

ˆdimn

sup
P∈P

EP(n)

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

▶ X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P.

▶ estimator ˆdimn is any function of data X .
▶ 0 − 1 loss function is considered, so for all x , y ∈ R,

ℓ(x , y) = 1(x ̸= y).
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Minimax rate for estimating the dimension: we first consider
dimension d1 vs d2.

▶
Rn = inf

ˆdimn

sup
P∈P

EP(n)

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

▶ X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P = Pd1 ∪ Pd2 , where Pd is a set of
d-dimensional distributions..

▶ estimator ˆdimn is any function of data X .
▶ 0 − 1 loss function is considered, so for all x , y ∈ R,

ℓ(x , y) = 1(x ̸= y).
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TSP(Travelling Salesman Problem) Path Finds Shortest
Path that Visits Each Points exactly Once.

4

4http://www.heatonresearch.com/fun/tsp/anneal
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Our Estimator estimates Dimension to be d2 if d1-squared
Length of TSP Generated by the Data is Long.

▶ When intrinsic dimesion is higher, length of TSP path is likely to be
longer.

▶

ˆdimn(X ) = d1 ⇐⇒

min
σ∈Sn

n−1∑

i=1

∥Xσ(i+1) − Xσ(i)∥d1
Rm ≤ C ,

where C is some constant.

16 / 71



Minimax rate for estimating the dimension

Theorem
(Proposition 16 and 17)

n−2n ≲ inf
ˆdimn

sup
P∈P

EP(n)

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

≲ n−
1

m−1 n.
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The reach is the maximum radius of a ball that can roll over
the manifold.

Definition
When M ⊂ Rm is a manifold, the reach of M, denoted by τ(M), can be
defined as

τ(M) = inf
q2 ̸=q1∈M

∥q2 − q1∥2
2

2d(q2 − q1, Tq1M)
,

where TaM is the tangent space of M at a.

M

q1 + Tq1M

d (q2 − q1, Tq1M)

‖q2 − q1‖‖q2−q1‖2

2d(q2−q1,Tq1
M)

C

q2

q1
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The reach is a regularity parameter in many geometrical
inference problem.

▶ The reach is a key paramter in:
▶ Dimension estimation
▶ Homology inference
▶ Volume estimation
▶ Manifold clustering
▶ Diffusion maps
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Minimax rate for estimating the reach

▶

Rn = inf
τ̂n

sup
P∈P

EP(n)

[∣∣∣∣
1

τ(P)
− 1
τ̂n(X )

∣∣∣∣
q]

▶ X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P.

▶ estimator τ̂n is any function of data X .
▶ inverse lq loss function is considered, so for all x , y ∈ R,

ℓ(x , y) =
∣∣∣ 1
x
− 1

y

∣∣∣q.
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We define the reach estimator τ̂n as the maximum radius of
a ball that you can roll over the point cloud.

▶ Given observation X = (X1, . . . ,Xn), then the reach estimator τ̂n is
a plugin estimator as

τ̂n(X ) = inf
1≤i ̸=j≤n

∥Xj − Xi∥2
2

2d(Xj − Xi , TXiM)
.

M

q1 + Tq1M

d (q2 − q1, Tq1M)

‖q2 − q1‖‖q2−q1‖2

2d(q2−q1,Tq1
M)

C

q2

q1
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Minimax rate for estimating the reach

Theorem
(Theorem 5.1 and Proposition 5.6)

n−
q
d ≲ inf

τ̂n
sup
P∈P

EP(n)

[∣∣∣∣
1

τ(P)
− 1
τ̂n(X )

∣∣∣∣
q]

≲ n−
2q

3d−1 .
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Topological holes in the data provide information.

25 / 71



The number of holes is used to summarize geometrical
features.

▶ Geometrical objects :
▶ ㄱ, ㄴ, ㄷ, ㄹ, ㅁ, ㅂ, ㅅ, ㅇ, ㅈ, ㅊ, ㅋ, ㅌ, ㅍ, ㅎ
▶ A, 字, あ

▶ The number of holes of different dimensions is considered.

1. β0 =# of connected components

2. β1 =# of loops (holes inside 1-dim sphere)

3. β2 =# of voids (holes inside 2-dim sphere) : if dim ≥ 3

26 / 71



Example : Objects are classified by homologies.

1. β0 =# of connected components

2. β1 =# of loops

β0 \ β1 0 1 2

1 ㄱ, ㄴ, ㄷ, ㄹ, ㅁ, ㅇ, ㅂ,
あ

ㅅ, ㅈ, ㅋ, ㅌ ㅍ, A
2 ㅊ, 字

3 ㅎ
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Statistical inference for homological features.

▶ Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,
Rinaldo, Wasserman, 2016)
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We want to cluster data.
▶ Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,

Rinaldo, Wasserman, 2016)
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Different clusters can be formed by the desired level of
resolution.

▶ Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,
Rinaldo, Wasserman, 2016)

▶ If you want clusters to describe local and detailed information (high
resolution), there will be more clusters with each of smaller sizes.

▶ If you want clusters to describe global and rough information (low
resolution), there will be less clusters with each of larger sizes.

31 / 71



The network of clusters forms a tree: cluster tree
▶ Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,

Rinaldo, Wasserman, 2016)
▶ Clusters from different levels of resolution have a natural network by

inclusion relation.
▶ Inclusion network of clusters can be represented as a tree: cluster

tree.
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0.5
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0.4
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0.3
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0.2
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0
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A confidence set helps denoising the empirical tree.
▶ An asymptotic 1 − α confidence set Ĉα is a collection of trees with

the property that

P(Tp ∈ Ĉα) = 1 − α+ o(1).

Ring data, alpha = 0.05
la

m
bd

a

0.0 0.2 0.4 0.6 0.8 1.0

0
0.

20
8

0.
27

2
0.

52
9

−

−
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We use the bootstrap to compute 1 − α confidence set Ĉα.

▶ We let Tp̂h be the cluster tree from the kernel density estimator p̂h,
where

p̂h(x) =
1

nhm

n∑

i=1

K

(
x − Xi

h

)
,

and the confidence set as the ball centered at Tp̂h and radius tα, i.e.

Ĉα = {T : d∞(T ,Tp̂h) ≤ tα} .

Theorem
(Theorem 3) Above confidence set Ĉα satisfies

P
(
Th ∈ Ĉα

)
= 1 − α+ O



(
log7 n

nhm

)1/6

 .

35 / 71



The pruned trees according to the confidence set recover the
actual cluster trees.

Ring data, alpha = 0.05
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m
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Mickey mouse data, alpha = 0.05
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Yingyang data, alpha = 0.05
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the
inference.

▶ When analyzing data, we prefer robust features where features of the
underlying manifold can be inferred from features of finite samples.

▶ Homology is not robust:

Underlying circle: β0 = 1, β1 = 1 100 samples: β0 = 100, β1 = 0
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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We rely on the kernel density estimator to extract
topological information of the underlying distribution.

▶ The kernel density estimator is

p̂h(x) =
1

nhm

n∑

i=1

K

(
x − Xi

h

)
.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem
[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f , g : X → R be two
continuous functions. Let Dgm(f ) and Dgm(g) be corresponding
persistence diagrams. Then

W∞(Dgm(f ), Dgm(g)) ≤ ∥f − g∥∞.
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1 − α) confidence band
cn = cn(X ) is a random variable satisfying

P (Dgm(fM) ∈ {D : W∞(D,Dgm(fX )) ≤ cn}) ≥ 1 − α.
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Confidence band for persistent homology separates
homological signal from homological noise.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1 − α) confidence band
cn = cn(X ) is a random variable satisfying

P (W∞(Dgm(fM), Dgm(fX )) ≤ cn) ≥ 1 − α.
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Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1 − α implies

P (W∞(Dgm(fM), Dgm(fX )) ≤ cn) ≥ P (||fM − fX ||∞ ≤ cn) ≥ 1 − α,

so the confidence band of corresponding functions fM can be used for
confidene band of persistent homologies Dgm(fM).
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1, . . . , xn}, compute the kernel density
estimator p̂h.

2. Draw X ∗ = {x∗1 , . . . , x∗n } from X = {x1, . . . , xn} (with replacement),
and compute θ∗ =

√
nhm||p̂∗h(x)− p̂h(x)||∞, where p̂∗h is the density

estimator computed using X ∗.
3. Repeat the previous step B times to obtain θ∗1 , . . . , θ

∗
B

4. Compute ẑα = inf
{
q : 1

B

∑B
j=1 I (θ

∗
j ≥ q) ≤ α

}

5. The (1 − α) confidence band for E[ph] is
[
p̂h − ẑα√

nhm
, p̂h +

ẑα√
nhm

]
.
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Statistical inference for persistent homology.

▶ Persistent homology of KDE filtration on Vietoris-Rips complex
(Shin, Kim, Rinaldo, Wasserman, 2024?)
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Computing a confidence band for the persistent homology
incurs computing on a grid of points, which is infeasible in
high dimensional space.
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Computing the persistent homology of density function on
data points reduces computational complexity.
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How can we compute a confidence band for the persistent
homology with computation on data points?

▶ (Shin, Kim, Rinaldo, Wasserman, 2020?) : extending work from Fasy
et al. [2014], Bobrowski et al. [2014], Chazal et al. [2011].
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We use the Vietoris-Rips complex to estimate the target
persistent homology.

▶ For X ⊂ Rm and r > 0, the Vietoris-Rips complex Rips(X , r) is
defined as

Rips(X , r) = {{x1, . . . , xk} ⊂ X : d(xi , xj) < 2r , for all 1 ≤ i , j ≤ k} .

Vietoris−Rips complex
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We use the Vietoris-Rips complex to estimate the target
persistent homology.

▶ For X ⊂ Rm and r > 0, the Vietoris-Rips complex Rips(X , r) is
defined as

Rips(X , r) = {{x1, . . . , xk} ⊂ X : d(xi , xj) < 2r , for all 1 ≤ i , j ≤ k} .

Vietoris−Rips complex
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We estimate the target persistent homology by using the
KDE and Vietoris-Rips complexes.

▶ For X ⊂ Rm and r > 0, the Vietoris-Rips complex Rips(X , r) is
defined as

Rips(X , r) = {{x1, . . . , xk} ⊂ X : d(xi , xj) < 2r , for all 1 ≤ i , j ≤ k} .

▶ The KDE (kernel density estimator) is

p̂h(x) =
1

nhm

n∑

i=1

K

(
x − Xi

h

)
.

▶ Our persistent homology estimator PHR
∗ (p̂h, r) is built by using the

KDE and Vietoris-Rips complexes.
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Our persistent homology estimator is consistent.

Theorem
(Theorem 16, Corollary 17) Let {rn}n∈N and {hn}n∈N be satisfying

rn = Ω

((
log n
n

)1/m
)

, rn = o(1), and log(1/hn)
nhmn

= O(1). Then

W∞
(
PHR

∗ (p̂hn , rn),PH∗(phn)
)
= OP

(√
log(1/hn)

nhmn
+ ∥rn∥∞

)
.
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Confidence set

▶ An asymptotic 1 − α confidence set Ĉα is a random set of persistent
homologies satisfying

P(PH∗(phn) ∈ Ĉα) ≥ 1 − α+ o(1).
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Confidence set for our persistent homology estimator.

▶ We let the confidence set as the ball centered at PHR
∗ (p̂hn , rn) and

radius b̂α, i.e.

Ĉα =
{
D : W∞

(
D,PHR

∗ (p̂hn , rn)
)
≤ b̂α

}
.

This is a valid confidence set by the following theorem.

Theorem
(Theorem 20)

P
(
PH∗(phn) ∈ Ĉα

)
≥ 1 − α+ o(1).

67 / 71



Introduction

Minimax Rates for Geometric Parameters of a Manifold
Minimax Rates for Estimating the Dimension of a Manifold
The Origin of the Reach: Better Understanding Regularity Through
Minimax Estimation Theory

Statistical Inference For Homological Features
Statistical Inference for Cluster Trees

Statistical Inference for Persistent Homology
Confidence band for Persistent Homology of KDEs on Vietoris-Rips
complexes

References

68 / 71



References I

Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro
Rinaldo, and Larry Wasserman. Estimating the Reach of a Manifold.
ArXiv e-prints, May 2019.

O. Bobrowski, S. Mukherjee, and J. E. Taylor. Topological consistency
via kernel estimation. ArXiv e-prints, July 2014.

Frédéric Chazal, Leonidas J Guibas, Steve Y Oudot, and Primoz Skraba.
Scalar field analysis over point cloud data. Discrete & Computational
Geometry, 46(4):743–775, 2011.

Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The
structure and stability of persistence modules. arXiv preprint
arXiv:1207.3674, 2012.

H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
Applied mathematics. American Mathematical Society, 2010. ISBN
9780821849255. URL
http://books.google.com/books?id=MDXa6gFRZuIC.

69 / 71

http://books.google.com/books?id=MDXa6gFRZuIC


References II

Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry
Wasserman, Sivaraman Balakrishnan, and Aarti Singh. Confidence sets
for persistence diagrams. Ann. Statist., 42(6):2301–2339, 12 2014.
doi: 10.1214/14-AOS1252. URL
http://dx.doi.org/10.1214/14-AOS1252.

Jisu Kim, Yen-Chi Chen, Sivaraman Balakrishnan, Alessandro Rinaldo,
and Larry Wasserman. Statistical inference for cluster trees. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages
1839–1847. Curran Associates, Inc., 2016. URL
http://papers.nips.cc/paper/
6508-statistical-inference-for-cluster-trees.pdf.

Jisu Kim, Alessandro Rinaldo, and Larry Wasserman. Minimax Rates for
Estimating the Dimension of a Manifold. ArXiv e-prints, May 2019.

70 / 71

http://dx.doi.org/10.1214/14-AOS1252
http://papers.nips.cc/paper/6508-statistical-inference-for-cluster-trees.pdf
http://papers.nips.cc/paper/6508-statistical-inference-for-cluster-trees.pdf


Thank you!

71 / 71



Minimax Rates for Estimating the Dimension of a Manifold
Regularity conditions
Upper Bound
Lower Bound
Upper Bound and Lower Bound for General Case

The Origin of the Reach: Better Understanding Regularity Through
Minimax Estimation Theory

Reach and its Geometry
Reach estimator and its analysis
Minimax Estimates

Statistical Inference for Cluster Trees

Statistical Inference for Persistent Homology
Confidence band for Persistent Homology of KDEs on Vietoris-Rips
complexes

1 / 63



Minimax Rates for Estimating the Dimension of a Manifold
Regularity conditions
Upper Bound
Lower Bound
Upper Bound and Lower Bound for General Case

The Origin of the Reach: Better Understanding Regularity Through
Minimax Estimation Theory

Reach and its Geometry
Reach estimator and its analysis
Minimax Estimates

Statistical Inference for Cluster Trees

Statistical Inference for Persistent Homology
Confidence band for Persistent Homology of KDEs on Vietoris-Rips
complexes

2 / 63



The supporting manifold M is assumed to be bounded.

M ⊂ I := [−KI ,KI ]
m ⊂ Rm with KI ∈ (0,∞)
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The reach is assumed to be lower bounded to avoid an
arbitrarily complicated manifold.

▶ P is a set of distributions P that is supported on a bounded manifold
M, with its reach τ(M) ≥ τg , and with other regularity assumptions.

πM (x)

x

≤ τg

M
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The reach is assumed to be lower bounded to avoid an
arbitrarily complicated manifold.

▶ M is of local reach ≥ τℓ, if for all points p ∈ M, there exists a
neighborhood Up ⊂ M such that Up is of reach ≥ τℓ.
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Density is bounded away from ∞ with respect to the
uniform measure.

▶ Distribution P is absolutely continuous to induced Lebesgue measure
volM , and dP

dvolM
≤ Kp for fixed Kp.

▶ This implies that the distribution on the manifold is of essential
dimension d .

▶ Pd
κl ,κg ,Kp

denotes set of distributions P that is supported on
d-dimensional manifold of (global) reach ≥ τg , local reach ≥ τℓ, and
density is bounded by Kp.
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The Maximum Risk of any chosen Estimator Provides an
Upper Bound on the Minimax Rate.

Rn = inf
ˆdimn

sup
P∈P

EP(n)

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

≤ sup
P∈P

EP(n)

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

︸ ︷︷ ︸
the maximum risk of any chosen estimator
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Our Estimator has Maximum Risk of O
(
n
−
(

d2
d1
−1
)
n
)

.

▶ Our estimator makes error with probability at most O
(
n−(

d2
d1

−1)n
)

if intrinsic dimension is d2.
▶ Our estimator is always correct when the intrinsic dimension is d1.
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Our Estimator makes Error with Probability at most

O

(
n
−
(

d2
d1
−1
)
n
)

if Intrinsic Dimension is d2.

▶ Based on the following lemma:

Lemma
(Lemma 6) Let X1, · · · ,Xn ∼ P ∈ Pd2

κl ,κg ,Kp
, then

P(n)

[
n−1∑

i=1

∥Xi+1 − Xi∥d1 ≤ L

]
≲ n−

d2
d1

n.
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Our Estimator is always Correct when the Intrinsic
Dimension is d1.

▶ Based on following lemma:

Lemma
(Lemma 7) Let M be a d1-dimensional manifold with global reach ≥ τg
and local reach ≥ τℓ, and X1, · · · ,Xn ∈ M. Then there exists C which
depends only on m, d1 and KI , and there exists σ ∈ Sn such that

n−1∑

i=1

∥Xσ(i+1) − Xσ(i)∥d1
Rm ≤ C .
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Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

∥Xσ(i+1) − Xσ(i)∥d1
Rm ≤ C .

▶ When d1 = 1 so that the manifold is a curve, length of TSP path is
bounded by length of curve volM(M).

Xσ(1)

Xσ(2)

Xσ(3)

Xσ(n−1)

Xσ(n)

. . .

Y1

Y2

Yn−1

∑
Yi ≤ volM (M)

M

Xσ(n−2)

Yn−2

▶ Global reach≥ τg implies volM(M) is bounded.
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Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

∥Xσ(i+1) − Xσ(i)∥d1
Rm ≤ C .

▶ When d1 > 1, Several conditions implied by regularity conditions
combined with Hölder continuity of d1-dimensional space-filling
curve is used.
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Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

∥Xσ(i+1) − Xσ(i)∥d1
Rm ≤ C .

▶ When d1 > 1, Several conditions implied by regularity conditions
combined with Hölder continuity of d1-dimensional space-filling
curve is used.

Lemma
(Lemma 22, Space-filling curve) There exists surjective map
ψd : R → Rd which is Hölder continuous of order 1/d , i.e.

0 ≤ ∀s, t ≤ 1, ∥ψd(s)− ψd(t)∥Rd ≤ 2
√
d + 3|s − t|1/d .
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Mimimax rate is upper bounded by O

(
n
−
(

d2
d1
−1
)
n
)

.

Proposition
(Proposition 9) Let 1 ≤ d1 < d2 ≤ m. Then

inf
ˆdimn

sup
P∈Pd1∪Pd2

EP(n)

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

≲ n−(
d2
d1

−1)n.
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Le Cam’s Lemma provides lower bounds for estimating the
dimension.

Lemma
(Lemma 10, Le Cam’s Lemma) Let P be a set of probability measures,
and Pd1 ,Pd2 ⊂ P be such that for all P ∈ Pdi , θ(P) = θi for i = 1, 2.
For any Qi ∈ co(Pi ), let qi be density of Qi with respect to measure ν.
Then

inf
θ̂
sup
P∈P

EP

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

≥ 1(θ1 ̸= θ2)

4
sup

Qi∈co(Pdi )

∫
[q1(x) ∧ q2(x)]dν(x).
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A subset T ⊂ [−KI ,KI ]
n and set of distributions Pd1

1 , Pd2
2

are found so that, whenever X = (X1, · · · ,Xn) ∈ T , we
cannot distinguish two models.

▶ The lower bound measures how hard it is to tell whether the data
come from a d1 or d2 -dimensional manifold.

▶ T , Pd1
1 and Pd2

2 are linked to the lower bound by using Le Cam’s
lemma.
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Le Cam’s Lemma provides lower bounds based on the
minimum of two densities q1 ∧ q2, where q1, q2 are in
convex hull of Pd1

1 and convex hull of Pd2
2 , respectively.

Lemma
(Lemma 10, Le Cam’s Lemma) Let P be a set of probability measures,
and Pd1 ,Pd2 ⊂ P be such that for all P ∈ Pdi , θ(P) = θi for i = 1, 2.
For any Qi ∈ co(Pi ), let qi be density of Qi with respect to measure ν.
Then

inf
θ̂
sup
P∈P

EP

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

≥ 1(θ1 ̸= θ2)

4
sup

Qi∈co(Pdi )

∫
[q1(x) ∧ q2(x)]dν(x).
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T is constructed so that for any x = (x1, · · · , xn) ∈ T ,
there exists a d1-dimensional manifold that satisfies
regularity conditions and passes through x1, · · · , xn.

▶ Ti ’s are cylinder sets in [−KI ,KI ]
d2 , and then T is constructed as

T = Sn
n∏

i=1
Ti , where the permutation group Sn acts on

n∏
i=1

Ti as a

coordinate change.

T1 T2

T4 T3

T5 T6

T8 T7

τ`

2KI

2KI
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T is constructed so that for any x = (x1, · · · , xn) ∈ T ,
there exists a d1-dimensional manifold that satisfies
regularity conditions and passes through x1, · · · , xn.

▶ Given x1, · · · , xn ∈ T (blue points), manifold of global reach ≥ τg
and local reach ≥ τℓ (red line) passes through x1, · · · , xn.

T1 T2

x4

x1

x6

x2

x3

x5

x7x8
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Pd1
1 is constructed as set of distributions that are supported

on manifolds that passes through x1, · · · , xn for
x = (x1, · · · , xn) ∈ T , and Pd2

2 is a singleton set consisting
of the uniform distirbution on [−KI ,KI ]

d2.
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If X ∈ T , it is hard to determine whether X is sampled
from distribution P in either Pd1

1 or Pd2
2 .

▶ There exists Q1 ∈ co(Pd1
1 ) and Q2 ∈ co(Pd2

2 ) such that
q1(x) ≥ Cq2(x) for every x ∈ T with C < 1.

▶ Then q1(x) ∧ q2(x) ≥ Cq2(x) if x ∈ T , so C
∫
T
q2(x)dx can serve

as lower bound of minimax rate.
▶ Based on following claim:

Claim
(Claim 25) Let T = Sn

n∏
i=1

Ti . Then for all x ∈ intT , there exists C > 0

that depends only on κl , KI , and rx > 0 such that for all r < rx ,

Q1 (B(xi , r)) ≥ CQ2 (B(xi , r)) .

23 / 63



Mimimax rate is lower bounded by Ω
(
n−2(d2−d1)n

)
.

Proposition
(Proposition 14)

inf
ˆdim

sup
P∈Pd1∪Pd2

EP(n)

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

≳ n−2(d2−d1)n.
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Multinary Classification and 0 − 1 Loss are Considered.

▶
Rn = inf

ˆdimn

sup
P∈P

EP(n)

[
1
(

ˆdimn(X ) ̸= dim(P)
)]

▶ Now the manifolds are of any dimensions between 1 and m, so

considered distribution set is P =
m⋃

d=1
Pd .

▶ 0 − 1 loss function is considered, so for all x , y ∈ R,
ℓ(x , y) = I (x = y).
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Mimimax Rate is Upper Bounded by O
(
n−

1
m−1n

)
, and

Lower Bounded by Ω
(
n−2n

)
.

Proposition
(Proposition 16 and 17)

n−2n ≲ inf
ˆdimn

sup
P∈P

EP(n)

[
1
(

ˆdimn ̸= dim(P)
)]

≲ n−
1

m−1 n.
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The medial axis of a set M is the set of points that have at
least two nearest neighbors on the set M .

▶

Med(M) = {z ∈ Rm : there exists p ̸= q ∈ M with
∥p − z∥ = ∥q − z∥ = d(z ,M)}.

τM

Med(M)

M
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The reach of M , denoted by τM , is the minimum distance
from Med(M) to M .

▶
τM = inf

x∈Med(M),y∈M
∥x − y∥ .

τM

Med(M)

M
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The reach τM gives the maximum offset size of M on which
the projection is well defined.

▶
τM = inf

x∈Med(M),y∈M
∥x − y∥ .

τM

Med(M)

M

32 / 63



The reach τM gives the maximum radius of a ball that you
can roll over M .

▶ When M ⊂ Rm is a manifold,

τM = inf
q2 ̸=q1∈M

∥q2 − q1∥2

2d(q2 − q1,Tq1M)
.

τM
M
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The bottleneck is a geometric structure where the manifold
is nearly self-intersecting.

Definition
(Definition 3.1) A pair of points (q1, q2) in M is said to be a bottleneck
of M if there exists z0 ∈ Med(M) such that q1, q2 ∈ B(z0, τM) and
∥q1 − q2∥ = 2τM .

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0
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The reach is attained either from the bottleneck (global
case) or the area of high curvature (local case).

Theorem
(Theorem 3.4) At least one of the following two assertions holds:
▶ (Global Case) M has a bottleneck (q1, q2) ∈ M2.
▶ (Local case) There exists q0 ∈ M and an arc-length parametrized γ0

such that γ0(0) = q0 and ∥γ′′0 (0)∥ = 1
τM

.

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

q0

z0

τM

B(z0, τM )

Med(M)M
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The statistical efficiency of the reach estimator τ̂ is analyzed
through its risk.

▶ The risk of the estimator τ̂ is the expected loss the estimator.

EP(n) [ℓ (τ̂(X ), τM)] .

▶ X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its
support M.

▶ The loss function used is ℓ(τ, τ ′) =
∣∣ 1
τ
− 1

τ ′

∣∣p, p ≥ 1.
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The risk of the reach estimator τ̂ is analyzed.

▶ The risk of the estimator τ̂ is the expected loss the estimator

EP(n)

[∣∣∣∣
1
τM

− 1
τ̂(X )

∣∣∣∣
q]
.

▶ X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its
support M.

▶ The loss function used is ℓ(τ, τ ′) =
∣∣ 1
τ
− 1

τ ′

∣∣q, q ≥ 1.
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The reach estimator has the risk of O
(
n−

2q
3d−1

)
.

▶ The reach estimator has the risk of O
(
n−

q
d

)
for the global case.

▶ The reach estimator has the risk of O
(
n−

2q
3d−1

)
for the local case.

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

q0

z0

τM

B(z0, τM )

Med(M)M
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The reach estimator has the maximum risk of O
(
n−

q
d

)
for

the global case.

Proposition
(Proposition 4.3) Assume that the support M has a bottleneck. Then,

EPn

[∣∣∣∣
1
τM

− 1
τ̂(X )

∣∣∣∣
q]

≲ n−
q
d .

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0
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The reach estimator has the maximum risk of O
(
n−

2q
3d−1

)

for the local case.
Proposition
(Proposition 4.7) Suppose there exists q0 ∈ M and a geodesic γ0 with
γ0(0) = q0 and ∥γ′′0 (0)∥ = 1

τM
. Then,

EPn

[∣∣∣∣
1
τM

− 1
τ̂(X )

∣∣∣∣
q]

≲ n−
2q

3d−1 .

q0

z0

τM

B(z0, τM )

Med(M)M
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The statistical difficulty of the reach estimation problem is
analyzed by the minimax rate.

▶ Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of sample size.

▶
Rn = inf

τ̂n
sup
P∈P

EPn [ℓ (τ̂n(X ), τM)] .

▶ X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its
support M, where P is contained in set of distributions P.

▶ An estimator τ̂n is any function of data X .
▶ The loss function used is ℓ(τ, τ ′) =

∣∣ 1
τ
− 1

τ ′

∣∣q, q ≥ 1.
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The statistical difficulty of the reach estimation problem is
analyzed by the minimax rate.

▶ Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of sample size.

▶

Rn = inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1
τM

− 1
τ̂n(X )

∣∣∣∣
q]
.

▶ X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its
support M, where P is contained in set of distributions P.

▶ An estimator τ̂n is any function of data X .
▶ The loss function used is ℓ(τ, τ ′) =

∣∣ 1
τ
− 1

τ ′

∣∣q, q ≥ 1.
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The maximum risk of our estimator provides an upper
bound on the minimax rate.

Rn = inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1

τ(P)
− 1
τ̂n(X )

∣∣∣∣
q]

≤ sup
P∈P

EPn

[∣∣∣∣
1

τ(P)
− 1
τ̂(X )

∣∣∣∣
q]

︸ ︷︷ ︸
the maximum risk of our estimator
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Minimax rate is upper bounded by O
(
n−

2q
3d−1

)
.

Theorem
(Theorem 5.1)

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1

τ(P)
− 1
τ̂n(X )

∣∣∣∣
q]

≲ n−
2q

3d−1 .
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Le Cam’s lemma provides a lower bound based on the reach
difference and the statistical difference of two distributions.

▶ Total variance distance between two distributions is defined as

TV (P,P ′) = sup
A∈B(RD )

|P(A)− P ′(A)| .

Lemma
(Lemma 5.2) Let P,P ′ ∈ P with respective supports M and M ′. Then

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1

τ(P)
− 1
τ̂n(X )

∣∣∣∣
q]

≳

∣∣∣∣
1

τ(M)
− 1
τ(M ′)

∣∣∣∣
q

(1 − TV (P,P ′))
2n
.
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Two distributions P , P ′ are found so that their reaches differ
but they are statistically difficult to distinguish.

▶

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1
τM

− 1
τ̂n

∣∣∣∣
q]

≳

∣∣∣∣
1
τM

− 1
τM′

∣∣∣∣
q

(1 − TV (P,P ′))
2n
.

▶ The lower bound measures how hard it is to tell whether the data is
from distributions with different reaches.

▶ P and P ′ are found so that
∣∣∣ 1
τM

− 1
τM′

∣∣∣
q

is large while

(1 − TV (P,P ′))2n is small.
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P is a distribution supported on a sphere while P ′ is a
distribution supported on a bumped sphere.

M ′

M
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Mimimax rate is lower bounded by Ω
(
n−

p
d

)
.

Proposition
(Proposition 5.6)

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1

τ(P)
− 1
τ̂n(X )

∣∣∣∣
q]

≳ n−
q
d .
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We can use ℓ∞ metric to measure a distance between trees.

Definition
The l∞ metric between trees are defined as

d∞(Tp,Tq) = sup |p(x)− q(x)| .
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Pruning finds the simpler trees that are in the confidence set.

▶ We propose two pruning schemes to find trees that are simpler the
empirical tree Tp̂h and are in the fconfidence set.
▶ Pruning only leaves: remove all leaves of length less than 2tα.
▶ Pruning leaves and internal branches: iteratively remove all branches

of cumulative length less than 2tα.

L1

L2

L3 L4

L5 L6

E1

E2

E3

E5

E4
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We are considering the upper level set of the average kernel
density estimator on the support.

▶ Let X1, . . . ,Xn ∼ P, then the average kernel density estimator is

ph(x) = E [p̂h(x)] =
1
hd

E
[
K

(
x − X

h

)]
.

▶ We are considering the upper level sets of the average kernel density
estimator

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} .
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We are considering the upper level set of the average kernel
density estimator on the support.

▶ We are considering the upper level sets of the average KDE

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} .
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We are targeting the persistent homology of the upper level
set of the average kernel density estimator on the support.

▶ We are considering the upper level sets of the average KDE

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} ,

and targeting its persistent homology PH
supp(P)
∗ (ph).
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We estimate the target level set by considering the
Vietoris-Rips complex generated from the level set of the
KDE.

▶ For X ⊂ Rm and r > 0, the Vietoris-Rips complex Rips(X , r) is
defined as

Rips(X , r) = {{x1, . . . , xk} ⊂ X : d(xi , xj) < 2r , for all 1 ≤ i , j ≤ k} .

▶ The KDE (kernel density estimator) is

p̂h(x) =
1

nhm

n∑

i=1

K

(
x − Xi

h

)
.

▶ Given the KDE p̂h and for Xn = {X1, . . . ,Xn}, we consider the
Vietoris-Rips complex generated from the level set of the p̂h as
{

Rips
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L = {Xi ∈ Xn : p̂h(Xi ) ≥ L} .
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We estimate the target level set by considering the
Vietoris-Rips complex generated from the level set of the
KDE.

▶ For Xn = {X1, . . . ,Xn}, we estimate the target level set by the level
sets of the KDE p̂h on Vietoris-Rips complexes,
{

Rips
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L = {Xi ∈ Xn : p̂h(Xi ) ≥ L} .
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We estimate the target level set by Vietoris-Rips complexes
from the KDE level sets.

▶ We approximate the target level set

{DL}L>0 , where DL := {x ∈ X : ph(x) ≥ L} ,
by the level sets of the KDE on Vietoris-Rips complexes,
{

Rips
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L = {Xi ∈ Xn : p̂h(Xi ) ≥ L} .

61 / 63



We estimate the target persistent homology by the
persistent homology of the KDE filtration on Vietoris-Rips
complexes.

▶ We estimate the target persistent homology by the persistent
homology of the level sets of the KDE p̂h on Vietoris-Rips complexes,
{

Rips
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L = {Xi ∈ Xn : p̂h(Xi ) ≥ L} .

and denote the persistent homology as PHR
∗ (p̂h, r).
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We estimate the target persistent homology by the
persistent homology of the KDE filtration on Vietoris-Rips
complexes.

▶ We estimate the target persistent homology

PH
supp(P)
∗ (ph),

by the persistent homology of the KDE filtration on Vietoris-Rips
complexes,

PHR
∗ (p̂h, r).
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