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Topological structures in the data provide information.
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Persistent Homology: observe topological structure with
multi resolutions.
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Persistent Homology: observe topological structure with
multi resolutions.
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Persistent Homology: observe topological structure with
multi resolutions.
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Persistent Homology: observe topological structure with
multi resolutions.

▶ Georges Seurat, A Sunday afternoon on the island of La Grande
Jatte (Un dimanche après-midi à l’Île de la Grande Jatte)

7 / 41



Statistic Inference for Topological Data Analysis is explored.

▶ Introduction to Topological Data Analysis
▶ Computational Topology: An Introduction (Edelsbrunner, Harer,

2010)
▶ Topological Data Analysis (Wasserman, 2016)
▶ An Introduction to Topological Data Analysis: Fundamental and

Practical Aspects for Data Scientists (Chazal, Michel, 2021)
▶ Statistical Inference For Homological Features

▶ Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,
Rinaldo, Wasserman, 2016)

▶ Statistical Inference for Persistent Homology
▶ Confidence sets for persistence diagrams (Fasy, Lecci, Rinaldo,

Wasserman, Balakrishnan, Singh, 2014)

8 / 41



Introduction
Homology

Statistical Inference for Cluster Trees

Statistical Inference for Persistent Homology

Reference

9 / 41



The number of holes is used to summarize topological
features.

▶ Geometrical objects:
▶ 一, 二, 三, 四, 五, 六, 七, 八, 九, 十
▶ 中,国,浙,江,杭,州
▶ A, ㄱ, ㄴ, あ

▶ The number of holes of different dimensions is considered.

1. β0 =# of connected components

2. β1 =# of loops (holes inside 1-dim sphere)

3. β2 =# of voids (holes inside 2-dim sphere)
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Example : Objects are classified by homologies.

1. β0 =# of connected components

2. β1 =# of loops (holes inside 1-dim sphere)

β0 \ β1 0 1 2

1 一, 七, 九, 十 五, A 四, 中, あ
ㄱ, ㄴ

2 二, 八

3 三 国

4 六, 江, 浙, 杭

5

6 州
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We want to cluster data.
▶ Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,

Rinaldo, Wasserman, 2016)
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Different clusters can be formed by the desired level of
resolution.

▶ If you want clusters to describe local and detailed information (high
resolution), there will be more clusters with each of smaller sizes.

▶ If you want clusters to describe global and rough information (low
resolution), there will be less clusters with each of larger sizes.

14 / 41



The network of clusters forms a tree: cluster tree
▶ Clusters from different levels of resolution have a natural network by

inclusion relation.
▶ Inclusion network of clusters can be represented as a tree: cluster

tree.
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0.5
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0.4
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0.3
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0.2
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The cluster tree is the hierarchy of the high density clusters.
Definition
For a density function p, its cluster tree Tp : R → P(X ) is a function
where Tp(λ) is the set of connected components of the upper level set
{x ∈ X : p(x) ≥ λ}.

λ = 0
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A confidence set helps denoising the empirical tree.
▶ An asymptotic 1 − α confidence set Ĉα is a collection of trees with

the property that

P(Tp ∈ Ĉα) = 1 − α+ o(1).
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We use the bootstrap to compute 1 − α confidence set Ĉα.

▶ We let Tp̂h be the cluster tree from the kernel density estimator p̂h,
where

p̂h(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
,

and the confidence set as the ball centered at Tp̂h and radius tα, i.e.

Ĉα = {T : d∞(T ,Tp̂h) ≤ tα} .

Theorem
(Theorem 3) Above confidence set Ĉα satisfies

P
(
Th ∈ Ĉα

)
= 1 − α+ O

( log7 n

nhd

)1/6
 .
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The pruned trees according to the confidence set recover the
actual cluster trees.

Ring data, alpha = 0.05
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Mickey mouse data, alpha = 0.05
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Yingyang data, alpha = 0.05
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the
inference.

▶ When analyzing data, we prefer robust features where features of the
underlying manifold can be inferred from features of finite samples.

▶ Homology is not robust:

Underlying circle: β0 = 1, β1 = 1 100 samples: β0 = 100, β1 = 0
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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We rely on the superlevel sets of the kernel density estimator
to extract topological information of the underlying
distribution.

▶ The kernel density estimator is

p̂h(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
.

▶ We look at superlevel sets of the kernel density estimator as{
x ∈ Rd : p̂h(x) ≥ L

}
L>0 .
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Statistically significant homological features can be
distinguished from statistically insignificant ones.

▶ Confidence sets for persistence diagrams (Fasy, Lecci, Rinaldo,
Wasserman, Balakrishnan, Singh, 2014)
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Confidence band for persistent homology separates
homological signal from homological noise.

Let Dgm(M) and Dgm(X ) be persistent homologies of the manifold M
and the data X , respectively. Given the significance level α ∈ (0, 1),
(1 − α) confidence band cn = cn(X ) is a random variable satisfying

P (W∞(Dgm(M), Dgm(X )) ≤ cn) ≥ 1 − α.
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1, . . . , xn}, compute the kernel density
estimator p̂h.

2. Draw X ∗ = {x∗1 , . . . , x∗n } from X = {x1, . . . , xn} (with replacement),
and compute θ∗ =

√
nhd ||p̂∗h(x)− p̂h(x)||∞, where p̂∗h is the density

estimator computed using X ∗.
3. Repeat the previous step B times to obtain θ∗1 , . . . , θ

∗
B

4. Compute ẑα = inf
{
q : 1

B

∑B
j=1 I (θ

∗
j ≥ q) ≤ α

}
5. The (1 − α) confidence band for E[p̂h] is

[
p̂h − ẑα√

nhd
, p̂h +

ẑα√
nhd

]
.
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Thank you!
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We can use ℓ∞ metric to measure a distance between trees.

Definition
The l∞ metric between trees are defined as

d∞(Tp,Tq) = sup |p(x)− q(x)| .
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Pruning finds the simpler trees that are in the confidence set.

▶ We propose two pruning schemes to find trees that are simpler the
empirical tree Tp̂h and are in the fconfidence set.
▶ Pruning only leaves: remove all leaves of length less than 2tα.
▶ Pruning leaves and internal branches: iteratively remove all branches

of cumulative length less than 2tα.

L1
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L3 L4

L5 L6
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem
[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f , g : X → R be two
continuous functions. Let Dgm(f ) and Dgm(g) be corresponding
persistence diagrams. Then

W∞(Dgm(f ), Dgm(g)) ≤ ∥f − g∥∞.
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Confidence set for the persistent homology is a random set
containing the persistent homology with high probability.

Let Dgm(M) and Dgm(X ) be persistent homologies of the manifold M
and the data X , respectively. Given the significance level α ∈ (0, 1),
(1 − α) confidence set {D ∈ Dgm : W∞(Dgm(X ), D) ≤ cn} is a
random set satisfying

P (Dgm(M) ∈ {D ∈ Dgm : W∞(Dgm(X ), D) ≤ cn}) ≥ 1 − α.
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Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1 − α implies

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ P (||fM − fX ||∞ ≤ cn) ≥ 1 − α,

so the confidence band of corresponding functions fM can be used for
confidene band of persistent homologies Dgm(fM).
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

Bootstrap algorithm can be applied to peristent homology.
▶ for the case of kernel density estimator in Fasy et al. [2014],
▶ for the case of distance to measure and kernel distance in Chazal

et al. [2014].
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