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Topological structures in the data provide information.

1

1http://www.mpa-garching.mpg.de/galform/virgo/millennium/poster_half.jpg
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Persistent Homology: observe topological structure with
multi resolutions.
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Persistent Homology: observe topological structure with
multi resolutions.

▶ Georges Seurat, A Sunday afternoon on the island of La Grande
Jatte (Un dimanche après-midi à l’Île de la Grande Jatte)
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A (very) rough introduction to Machine Learning

▶ For given problem and data, machine learning / deep learning learns
a parametrized model.
▶ Given data X ,
▶ Parametrized model fθ,
▶ Loss funciton L adapted to a problem,
▶ Machine Learning computes a solution that minimizes the loss

function: argminθ L(fθ,X ).
▶ For many cases, computing an explicit formula for the minimizer is

impossible or too expensive (e.g. inverting a large matrix). So, we
often use gradient descent using ∇θL(fθ,X ):

θn+1 = θn − λ∇θL(fθ,X ).
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Topological Data Analysis is applied to Machine Learning.

▶ A Survey of Topological Machine Learning Methods (Hensel, Moor,
Rieck, 2021)

▶ Roughly, there are two directions applying Topological Data Analysis
(TDA) to Machine Learning:
▶ Make features from TDA to add topological features to data X :

more common
▶ PLLay: Efficient Topological Layer based on Persistence Landscapes

(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)
▶ Generalized penalty for circular coordinate representation (Luo,

Patania, Kim, Vejdemo-Johansson, 2021)
▶ ECLayr: Fast and Robust Topological Layer based on Differentiable

Euler Characteristic Curve (Lee, Kim, Kim, 2025?)
▶ Evaluate quality of data X or model fθ using TDA: recently of

interest
▶ TopP&R: Robust Support Estimation Approach for Evaluating

Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
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Topological structure is featurized as persistence landscape
to be further applied in machine learning framework.

▶ Featurization using Persistence Landscape
▶ PLLay: Efficient Topological Layer based on Persistent Landscapes

(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)

10 / 65



Topological structure is featurized as euler characteristic
curve to be further applied in machine learning framework.

▶ Featurization using Euler Characteristic Curve
▶ ECLayr: Fast and Robust Topological Layer based on Differentiable

Euler Characteristic Curve (Lee, Kim, Kim, 2025?)
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Topological structure is featurized as circular coordinates to
be further applied in machine learning framework.

▶ Featurization using Circular Coordinates
▶ Generalized penalty for circular coordinate representation (Luo,

Patania, Kim, Vejdemo-Johansson, 2021)
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Data or Model is evaluated using Topological Data Analysis.

▶ Evaluation using Confidence of Topological Data Analysis
▶ TopP&R: Robust Support Estimation Approach for Evaluating

Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
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Topological holes in the data provide information.
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The number of holes is used to summarize geometrical
features.

▶ Geometrical objects :
▶ ㄱ, ㄴ, ㄷ, ㄹ, ㅁ, ㅂ, ㅅ, ㅇ, ㅈ, ㅊ, ㅋ, ㅌ, ㅍ, ㅎ
▶ A, あ, い, う, え, お
▶ 福, 岡, 九, 州, 大, 学, 西, 新, プ, ラ, ザ

▶ The number of holes of different dimensions is considered.

1. β0 =# of connected components

2. β1 =# of loops (holes inside 1-dim sphere)

3. β2 =# of voids (holes inside 2-dim sphere) : if dim ≥ 3
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Example : Objects are classified by homologies.

1. β0 =# of connected components

2. β1 =# of loops

β0 \ β1 0 1 2 5

1 ㄱ, ㄴ, ㄷ, ㄹ, ㅅ, ㅁ, ㅇ, ㅂ,
あ,西

ㅈ, ㅋ, ㅌ, 九, 大 ㅍ, A
2 ㅊ, い, う, え, ラ お, 新, プ

3 岡, ザ ㅎ

4 学

6 州

7 福
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Homology of finite sample is different from homology of
underlying ma6nifold, hence it cannot be directly used for
the inference.

▶ When analyzing data, we prefer robust features where features of the
underlying manifold can be inferred from features of finite samples.

▶ Homology is not robust:

Underlying circle: β0 = 1, β1 = 1 100 samples: β0 = 100, β1 = 0
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology is further summarized and embedded
into a Euclidean space or a functional space.

▶ The space of the persistent homology is complex, so directly
applying in machine learning is difficult.

▶ If the persistent homology is further summarized and embedded into
a Euclidean space or a functional space, then applying in machine
learning becomes much more convenient.
▶ e.g., Persistence Landscape, Persistence Silhouette, Persistence

Image
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Persistence Landscape is a functional summary of the
persistent homology.

Persistent Homology
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PLLay: Build topological layer using Persistence Landscape
▶ PLLay: Efficient Topological Layer based on Persistence Landscapes

(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)
1. From data X , choose an appropriate simplicial complex K and a

function f to compute the Persistece diagram D.
2. From the persistence diagram D, compute the persistence landscape

λ : N× R → R.
3. Compute the weighted average function λ̄ω(t) :=

∑Kmax

k=1 ωkλk(t),
and vectorize to get Λ̄ω ∈ Rm.

4. For a parametrized differentiable map gθ : Rm → R, compute
Sθ,ω(D) := gθ(Λ̄ω).
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PLLay is differentiable.

▶ A deep learning model learns its parameters by back propagation,
which is to apply gradient descent layer-wise.

▶ For a deep learning layer to be learnable, it should be differentiable:

Theorem (Theorem 3.1 in Kim et al. [2020])
The PLLay function Sθ,ω is differentiable with respect to the input data
X .
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PLLay is stable.

▶ PLLay is stable with respect to changes in persistence diagrams:

Theorem (Theorem 4.1 in Kim et al. [2020])
For two persistence diagrams D,D′,

|Sθ,ω(D)− Sθ,ω(D′)| = O(dB(D,D′)),

where dB is the bottleneck distance.
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PLLay is stable.

▶ PLLay is stable with respect to perturbations in input X :

Theorem (Theorem 4.2 in Kim et al. [2020])
Let X ∼ P and Pn be the empirical distribution. Further, let DP ,DX be
the persistence diagrams of P, X , respectively. Then

|Sθ,ω(DX )− Sθ,ω(DP)| = O(W2(Pn,P)),

where W2 is 2-Wasserstein distance.
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Experiments
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Euler Characteristic is computationally efficient.
▶ Euler Characteristic of a simplex or cubical complex is an alternating

sum of betti numbers: for a simplex / cubical complex K ,

χ(K ) =
∞∑
k=0

(−1)k |K k | =
∞∑
k=0

(−1)kβk ,

where K k is the set of k-dimensional simplices in K , and βk is the
k-th Betti number of K .

▶ χ(K ) = 5 − 6 = 1 − 2 = −1

▶ χ(K ) = 4 − 6 = 1 − 3 = −2
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Euler Characteristic Curve is computationally efficient
compared to Persistent Homology.

▶ Euler Characteristic Curve (ECC) C : R → R computes the Euler
characteristic along a filtration.

▶ ECC does not involve computing persistent homology, hence more
computationally efficient compard to persistent homology.
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EClayr: Build topological layer using Euler Characteristic
Curves

▶ ECLayr: Fast and Robust Topological Layer based on Differentiable
Euler Characteristic Curve (Lee, Kim, Kim, 2025?)

1. From data X , choose an appropriate simplicial complex K and a
function f to build a filtration.

2. From the filtration, compute the Euler Characteristic Curve
C : R → R, and vectorize to get E ∈ Rv .

3. For a parametrized differentiable map gθ : Rm → R, compute
Oθ := gθ(E).
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Computation Time

Model Data
MNIST Br35H Synthetic

ECC 3.129 sec 0.458 sec 2.17 sec
PH 33.700 sec 11.033 sec 59.288 sec
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Experiments
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Circular coordinates provide topological representations of
reduced dimension.

▶ Persistent cohomology and circular coordinates (de Silva, Morozov,
Vejdemo-Johansson, 2011)

▶ Topological Learning for Motion Data via Mixed Coordinates
(Vejdemo-Johansson, Pokorny, Skraba, Kragic, 2015)

data loop
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Circular coordinates provide topological representations of
reduced dimension.

▶ circuiar coordinate is a function that maps from data points X to
circle S1.

circular coordinates
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Circular coordinates provide topological representations of
reduced dimension.

▶ circuiar coordinate is a function that maps from data points X to
torus Tk = (S1)k .

circular coordinates loop
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Circular coordinates with generalized penalty better
visualizes topological information from data.

▶ Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)

▶ When computing circular coordinates, we solve an optimization
problem.

▶ We switch L2 loss by L1 loss for circuiar coordinate values to change
more abructly: better visualizes topological information from data.
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Circular coordinates with generalized penalty better
visualizes topological information from data.

▶ Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)

▶ Voting data in 2006 is more bipolarized than voting data in 1990.
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We rely on the kernel density estimator to extract
topological information of the underlying distribution.

▶ The kernel density estimator is

p̂h(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Confidence band for persistent homology separates
homological signal from homological noise.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1 − α) confidence band
cn = cn(X ) is a random variable satisfying

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ 1 − α.
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1, . . . , xn}, compute the kernel density
estimator p̂h.

2. Draw X ∗ = {x∗1 , . . . , x∗n } from X = {x1, . . . , xn} (with replacement),
and compute θ∗ =

√
nhd ||p̂∗h(x)− p̂h(x)||∞, where p̂∗h is the density

estimator computed using X ∗.
3. Repeat the previous step B times to obtain θ∗1 , . . . , θ

∗
B

4. Compute ẑα = inf
{
q : 1

B

∑B
j=1 I (θ

∗
j ≥ q) ≤ α

}
5. The (1 − α) confidence band for E[ph] is

[
p̂h − ẑα√

nhd
, p̂h +

ẑα√
nhd

]
.
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Existing evaluation metrics for generative models are
vulnerable to noise.

▶ TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

▶ To evaluate generative models, metrics compare the support of real
image distributions and fake image distributions.

▶ Existing evaluation metrics tend to overestimate the support of the
data distribution: vulnerable to noise

54 / 65



TopP&R robustly evaluates generative models by retaining
only topologically and statistically significant features with
confidence.

▶ TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
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We find threshold cα that selects statistically and
topologically significant features.

▶ TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
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Experiments

▶ TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
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There are many programs for Topological Data Analysis.

▶ There are many programs for Topological Data Analysis: e.g.,
Dionysus, DIPHA, GUDHI, javaPlex, Perseus, PHAT, Ripser, TDA,
TDAstats
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R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

▶ website:
https://cran.r-project.org/web/packages/TDA/index.html

▶ Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément
Maria, David Milman, and Vincent Rouvreau.

▶ R is a programming language for statistical computing and graphics.
▶ R has short development time, while C/C++ has short execution

time.
▶ R package TDA provides an R interface for C++ library

GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

∥x − γ(x)∥∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem
[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f , g : X → R be two
continuous functions. Let Dgm(f ) and Dgm(g) be corresponding
persistence diagrams. Then

dB(Dgm(f ), Dgm(g)) ≤ ∥f − g∥∞.
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1 − α) confidence band
cn = cn(X ) is a random variable satisfying

P (Dgm(fM) ∈ {D : dB(D,Dgm(fX )) ≤ cn}) ≥ 1 − α.
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Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1 − α implies

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ P (||fM − fX ||∞ ≤ cn) ≥ 1 − α,

so the confidence band of corresponding functions fM can be used for
confidene band of persistent homologies Dgm(fM).
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Persistence Landscape of the underlying manifold can be
inferred from Persistence Landscape of finite samples.
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Confidence band for persistent homology quantifies the
randomness of the persistence landscape.
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∞-landscape distance gives a metric on the space of
persistence landscapes.

Definition
[Bubenik, 2012] Let D1, D2 be multiset of points, and λ1 , λ2 be
corresponding persistence landscapes. ∞-landscape distance is defined as

Λ∞(D1,D2) = ∥λ1 − λ2∥∞.
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∞-landscape distance can be controlled by the
corresponding distance on functions: Stability Theorem.

Theorem
Let f , g : X → R be two functions, and let Dgm(f ) and Dgm(g) be
corresponding persistent homologies. Then

Λ∞(Dgm(f ), Dgm(g)) ≤ ∥f − g∥∞.
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Confidence band for the persistence landscape can be
computed using the bootstrap algorithm.

▶ Let λM and λX be persistence landscapes of the manifold M and
samples X . From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1 − α
implies

P (λX (t)− cn ≤ λM(t) ≤ λX (t) + cn ∀t) ≥ P (||fM − fX || ≤ cn) ≥ 1−α,

so the confidence band of corresponding functions fM can be used
for confidene band of the persistence landscape λM .
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Confidence band for the persistence landscape can be
computed using the bootstrap algorithm.

▶ Confidence band for the persistence landscape can be also computed
using multiplier bootstrap; see [Chazal, Fasy, Lecci, Rinaldo, and
Wasserman, 2014].

15 / 35



Statistical Inference for Persistent Homology

Featurization using Persistent Homology

R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
Persistent Homology and Persistence Landscape
Statistical Inference on Persistence Homology and Persistence
Landscape

16 / 35



Statistical Inference for Persistent Homology

Featurization using Persistent Homology

R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
Persistent Homology and Persistence Landscape
Statistical Inference on Persistence Homology and Persistence
Landscape

17 / 35



R Package TDA provides a function to sample on a circle.
The function circleUnif() generates n sample from the uniform
distribution on the circle in R2 with radius r .

circleSample <- circleUnif(n = 20, r = 1)
plot(circleSample, xlab = "", ylab = "", pch = 20)
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R Package TDA provides distance functions and density
functions over a grid.

Suppose n = 400 points are generated from the unit circle, and grid of
points are generated.

X <- circleUnif(n = 400, r = 1)

lim <- c(-1.7, 1.7)
by <- 0.05
margin <- seq(from = lim[1], to = lim[2], by = by)
Grid <- expand.grid(margin, margin)
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R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) p̂h : Rd → [0,∞) is
defined as

p̂h(y) =
1

n(
√

2πh)d

n∑
i=1

exp

(
−∥y − xi∥2

2

2h2

)
,

where h is a smoothing parameter.
The function kde() computes the KDE function p̂h on a grid of points.

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,

z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "KDE")
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R Package TDA provides KDE function over a grid.
The Gaussian Kernel Density Estimator (KDE) p̂h : Rd → [0,∞) is
defined as

p̂h(y) =
1

n(
√

2πh)d

n∑
i=1

exp

(
−∥y − xi∥2

2

2h2

)
,

where h is a smoothing parameter.
The function kde() computes the KDE function p̂h on a grid of points.
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R Package TDA computes Persistent Homology over a grid.

▶ The function gridDiag() computes the persistence diagram of
sublevel (and superlevel) sets of the input function.
▶ gridDiag() evaluates the real valued input function over a grid.
▶ gridDiag() constructs a filtration of simplices using the values of the

input function.
▶ gridDiag() computes the persistent homology of the filtration.

▶ The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Persistent Homology over a grid.

DiagGrid <- gridDiag(X = X, FUN = kde, lim = c(lim, lim), by = by,
sublevel = FALSE, library = "Dionysus", location = TRUE,
printProgress = FALSE, h = h)

par(mfrow = c(1,3))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
one <- which(DiagGrid[["diagram"]][, 1] == 1)
for (i in seq(along = one)) {

for (j in seq_len(dim(DiagGrid[["cycleLocation"]][[one[i]]])[1])) {
lines(DiagGrid[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1,

col = i + 1)
}

}
persp(x = margin, y = margin,

z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
main = "KDE")

plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
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R Package TDA computes Persistent Homology over a grid.
▶ The function gridDiag() computes the persistent homology of

sublevel (and superlevel) sets of the input function.
▶ gridDiag() evaluates the real valued input function over a grid.
▶ gridDiag() constructs a filtration of simplices using the values of the

input function.
▶ gridDiag() computes the persistent homology of the filtration.

▶ The user can choose to compute persistent homology using either
GUDHI, Dionysus, or PHAT.
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R Package TDA computes Vietoris-Rips Persistent
Homology.

▶ Vietoris-Rips complex consists of simplices whose pairwise distances
of vertices are at most 2r apart, i.e.

Rips(X , r) = {{x1, . . . , xk} ⊂ X : d(xi , xj) < 2r , for all 1 ≤ i , j ≤ k} .
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R Package TDA computes Vietoris-Rips Persistent
Homology.

▶ The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.
▶ ripsDiag() constructs the Vietoris-Rips filtration using the data

points.
▶ ripsDiag() computes the persistent homology of the Vietoris-Rips

filtration.
▶ The user can choose to compute persistent homology using either

C++ library GUDHI, Dionysus, or PHAT.

DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,
library = c("GUDHI", "Dionysus"), location = TRUE)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagRips[["diagram"]], main = "Rips Diagram")
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R Package TDA computes Vietoris-Rips Persistent
Homology.

▶ The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.
▶ ripsDiag() constructs the Vietoris-Rips filtration using the data

points.
▶ ripsDiag() computes the persistent homology of the Vietoris-Rips

filtration.
▶ The user can choose to compute persistent homology using either

C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Persistence Landscape.

▶ Let Λp be created by tenting each point p = (x , y) =
(
b+d

2 , d−b
2

)
representing a birth-death pair (b, d) in the persistence diagram D.

▶ The persistence landscape of D is the collection of functions

λk(t) = k max
p

Λp(t), t ∈ [0,T ], k ∈ N,

where k max is the kth largest value in the set.
▶ The function landscape() evaluates the persistence landscape

function λk(t).

tseq <- seq(0, 0.2, length = 1000)
Land <- landscape(DiagGrid[["diagram"]], dimension = 1, KK = 1, tseq = tseq)

par(mfrow = c(1,2))
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",

ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
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R Package TDA computes Persistence Landscape.
▶ Let Λp be created by tenting each point p = (x , y) =

(
b+d

2 , d−b
2

)
representing a birth-death pair (b, d) in the persistence diagram D.

▶ The persistence landscape of D is the collection of functions

λk(t) = k max
p

Λp(t), t ∈ [0,T ], k ∈ N,

where k max is the kth largest value in the set.
▶ The function landscape() evaluates the persistence landscape

function λk(t).
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R Package TDA computes the bootstrap confidence band
for a function.

The function bootstrapBand() computes (1 − α) bootstrap confidence
band for E[p̂h].

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 20,
parallel = FALSE, alpha = 0.1, h = h)

print(bandKDE[["width"]])

## 90%
## 0.06189347
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R Package TDA computes the bootstrap confidence band
for the persistent homology.

The (1 − α) bootstrap confidence band for E[p̂h] is used as the
confidence band for the persistent homology.

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagGrid[["diagram"]], band = 2 * bandKDE[["width"]],

main = "KDE Diagram")
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R Package TDA computes the bootstrap confidence band
for the persistence landscape.

The (1 − α) bootstrap confidence band for E[p̂h] is used as the
confidence band for the persistence landscape.

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",

ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")
axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],

rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,
border = NA)

lines(tseq, Land)
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R Package TDA computes the bootstrap confidence band
for the persistence landscape.

The (1 − α) bootstrap confidence band for E[p̂h] is used as the
confidence band for the persistence landscape.
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